

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f707t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0											
00h ⁽²⁾	INDF	Addres	sing this loca	ition uses co	ntents of FSI	R to address da	ata memory (n	ot a physical r	egister)	xxxx xxxx	xxxx xxxx
01h	TMR0				Timer0 M	odule Register				0000 0000	0000 0000
02h ⁽²⁾	PCL			Progra	m Counter (F	PC) Least Signi	ficant Byte			0000 0000	0000 0000
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽²⁾	FSR			Indi	rect Data Me	mory Address	Pointer			XXXX XXXX	uuuu uuuu
05h	PORTA		F	PORTA Data	Latch when	written: PORTA	A pins when rea	ad		xxxx xxxx	uuuu uuuu
06h	PORTB		F	ORTB Data	Latch when	written: PORTE	3 pins when re	ad		xxxx xxxx	uuuu uuuu
07h	PORTC		P	ORTC Data	Latch when	written: PORTO	C pins when re	ad		xxxx xxxx	uuuu uuuu
08h	PORTD		P	ORTD Data	Latch when	written: PORT) pins when re	ad		xxxx xxxx	uuuu uuuu
09h	PORTE	—	-	_	—	RE3	RE2	RE1	RE0	xxxx	uuuu
0Ah ^{(1),(2)}	PCLATH	—	-	_	Write I	Buffer for the u	pper 5 bits of t	he Program C	ounter	0 0000	0 0000
0Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	TMR3GIF TMR3IF TMRBIF TMRAIF — — — CCP2IF						00000	00000		
0Eh	TMR1L		Holding R	egister for th	ne Least Sigr	nificant Byte of	the 16-bit TMF	R1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H		Holding F	Register for th	he Most Sign	ificant Byte of t	the 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
11h	TMR2			-	Timer2 M	odule Register	-	_		0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF		S	ynchronous	Serial Port R	eceive Buffer/1	Fransmit Regis	ter		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L			Captu	ure/Compare	/PWM Register	1 (LSB)			xxxx xxxx	uuuu uuuu
16h	CCPR1H			Captu	ire/Compare/	PWM Register	1 (MSB)	_		xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	-	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG				USART Tran	smit Data Regi	ster			0000 0000	0000 0000
1Ah	RCREG				USART Rece	eive Data Regis	ster			0000 0000	0000 0000
1Bh	CCPR2L			Captu	ure/Compare	/PWM Register	7 2 (LSB)			xxxx xxxx	uuuu uuuu
1Ch	CCPR2H			Captu	ire/Compare/	PWM Register	2 (MSB)			xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	-	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES				A/D Re	sult Register				xxxx xxxx	uuuu uuuu
1Fh	ADCON0	_	-	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank.

2:

3: Accessible only when SSPM<3:0> = 1001.

7.4 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 7-1) displays the status and allows frequency selection of the internal oscillator (INTOSC) system clock. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Status Locked bits (ICSL)
- Status Stable bits (ICSS)

REGISTER 7-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	U-0	R/W-1	R/W-0	R-q	R-q	U-0	U-0
—	—	IRCF1	IRCF0	ICSL	ICSS	—	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
q = Value depends on condition	on				

bit 7-6	Unimplemented: Read as '0'
bit 5-4	IRCF<1:0>: Internal Oscillator Frequency Select bits
	<u>When PLLEN = 1 (16 MHz INTOSC)</u>
	11 = 16 MHz
	10 = 8 MHz (POR value)
	01 = 4 MHz
	00 = 2 MHz
	When PLLEN = 0 (500 kHz INTOSC)
	11 = 500 kHz
	10 = 250 kHz (POR value)
	01 = 125 kHz
	00 = 62.5 kHz
bit 3	ICSL: Internal Clock Oscillator Status Locked bit (2% Stable)
	1 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) is in lock.
	0 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet locked.
bit 2	ICSS: Internal Clock Oscillator Status Stable bit (0.5% Stable)
	1 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has stabilized to its maximum accuracy
	0 = 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet reached its maximum accuracy
bit 1-0	Unimplemented: Read as '0'

REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER

R-a	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
FVRRDY ⁽	¹⁾ FVREN			CDAFVR1 ⁽²⁾	CDAFVR0 ⁽²⁾	ADFVR1 ⁽²⁾	ADFVR0 ⁽²⁾				
bit 7	I			1 -			bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	red	x = Bit is unkr	nown				
q = Value de	epends on conditio	on									
bit 7	FVRRDY: Fixe	ed Voltage Ref	erence Read	ly Flag bit ⁽¹⁾							
	0 = Fixed Voltage Reference output is not active or stable										
1.11.0		\perp = rixed voltage releance output is ready for use									
DIT 6	FVREN: Fixed	d voltage Refe		bit							
	0 = Fixed Vol	tage Reference	e is disabled								
bit 5-4	Reserved: Re	ad as '∩' Mair	ntain these hi	its clear							
bit 3-2	CDAFVR<1:0	>: Can Sense	and D/A Con	verter Fixed Vol	tage Reference	Selection bit ⁽²)				
Sit o L	00 = CSM and	d D/A Converte	er Fixed Volta	ae Reference P	eripheral outpu	t is off.					
	01 = CSM and	d D/A Converte	er Fixed Volta	age Reference P	eripheral outpu	t is 1x (1.024V))				
	10 = CSM and	d D/A Converte	er Fixed Volta	age Reference P	eripheral outpu	t is 2x (2.048V))				
	11 = CSM and	d D/A Converte	er Fixed Volta	age Reference P	eripheral outpu	t is 4x (4.096V))				
bit 1-0	ADFVR<1:0>	: A/D Converte	r Fixed Volta	ge Reference Se	election bit ⁽²⁾						
	00 = A/D Con	verter Fixed V	oltage Refere	ence Peripheral o	output is off.						
	01 = A/D Con	Nerter Fixed V	oltage Refere	ence Peripheral (output is 1x (1.0)24V)					
	10 = A/D Con 11 = A/D Con	verter Fixed V	oltage Refere	ence Peripheral (output is 2x (2.) output is 4x (4.))40V))96V)					
Note 1: F	FVRRDY is always	s '1' on PIC16F	707 devices.			,					

2: Fixed Voltage Reference output cannot exceed VDD.

TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
FVRCON	FVRRDY	FVREN	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	q000 0000	d000 0000

Legend: Shaded cells are not used by the voltage reference module.

13.0 TIMER1/3 MODULES WITH GATE CONTROL

The Timer1 and Timer3 modules are 16-bit timers/ counters with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- 3-bit prescaler
- Dedicated LP oscillator circuit (Timer1 only)
- Synchronous or asynchronous operation
- Multiple Timer1/3 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function (Timer1 only)
- Special Event Trigger with CCP (Timer1 only)
- Selectable Gate Source Polarity
- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- · Gate Event Interrupt

Figure 13-1 is a block diagram of the Timer1/3 modules.

TABLE 13-5: TIMER1/3 GATE SOURCES

TxGSS	Timer1 Gate Source	Timer3 Gate Source
00	Timer1 Gate Pin	Timer3 Gate Pin
01	Overflow of TimerA (TMRA increments from FFh to 00h)	Overflow of TimerB (TMRB increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

13.6.3 TxG PIN GATE OPERATION

The TxG pin is one source for Timer1/3 gate control. It can be used to supply an external source to the Timer1/3 gate circuitry. Timer1 gate can be configured for the T1G pin and Timer3 gate can be configured for the T3G pin.

13.6.4 TIMERA/B OVERFLOW GATE OPERATION

When TimerA/B increments from FFh to 00h a low-tohigh pulse will automatically be generated and internally supplied to the Timer1/3 gate circuitry. Timer1 gate can be configured for TimerA overflow and Timer3 gate can be configured for TimerB overflow.

13.6.5 TIMER2 MATCH GATE OPERATION

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1/3 gate circuitry. Both Timer1 gate and Timer3 gate can be configured for the Timer2 match.

13.6.6 WATCHDOG OVERFLOW GATE OPERATION

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMRxGE = 1 and TxGSS selects the WDT as a gate source for Timer1/3 (TxGSS = 11). TMRxON does not factor into the oscillator, prescaler and counter enable. See Table 13-6. Both Timer1 gate and Timer3 gate can be configured for Watchdog overflow.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or wake-up from Sleep upon counter overflow.

Note: When using the WDT as a gate source for Timer1/3, operations that clear the Watchdog Timer (CLRWDT, SLEEP instructions) will affect the time interval being measured for capacitive sensing. This includes waking from Sleep. All other interrupts that might wake the device from Sleep should be disabled to prevent them from disturbing the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths, depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

WDTE	TMRxGE = 1 and TxGSS = 11	WDT Oscillator Enable	WDT Reset	Wake-up	WDT Available for TxG Source
1	N	Y	Y	Y	N
1	Y	Y	Y	Y	Y
0	Y	Y	N	N	Y
0	N	N	N	N	N

TABLE 13-6: WDT/TIMER1/3 GATE INTERRACTION

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	CPSxCH3	CPSxCH2	CPSxCH1	CPSxCH0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, read a	as '0'	
u = bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set '0' = Bit is clear			red				
bit 7-4	Unimplemen	ted: Read as '0'					
bit 3-0	CPSxCH<3:0	>: Capacitive Se	nsing Chann	el Select bits			
	If CPSxON =	0:	g e e				
	These bi	ts are ignored. N	o channel is	selected.			
	If CPSxON =	1:					
	0000 =	channel 0, (CPS	Sx0)				
	0001 =	channel 1, (CPS	Sx1)				
	0010 =	channel 2, (CPS	Sx2)				
	0011 =	channel 3, (CPS	Sx3)				
	0100 =	channel 4, (CPS	Sx4)				
	0101 =	channel 5, (CPS	Sx5)				
	0110 =	channel 6, (CPS	Sx6)				
	0111 =	channel 7, (CPS	Sx7)				
	1000 =	channel 8, (CPS	Sx8)				
	1001 =	channel 9, (CPS	Sx9)				
	1010 =	channel 10, (CF	PSx10)				
	1011 =	channel 11, (CF	'Sx11)				
	1100 =	channel 12, (CF	PSx12)				
	1101 =	channel 13, (CF	PSx13)				
	1110 =	channel 14, (CF	PSx14)				
	1111 =	channel 15, (CF	PSx15)				

REGISTER 16-2: CPSxCON1: CAPACITIVE SENSING CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0				
bit 7	•			-		·	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5-4	DCxB<1:0>: PWM Duty Cycle Least Significant bits										
	Capture mode	<u>e</u> :	-								
	Unused										
	Compare mo	<u>de:</u>									
	Unused										
	<u>PWM mode:</u>	a tha two I She	of the PM/M of	luty cycle. The	eight MShs ar	a found in CCP	PvI				
hit 2 0				itty cycle. The	eight moos are		INAL.				
DII 3-0	CCFXIVI<3.02		Delect Dits	s CCP module)						
	0000 = Capt0001 = Unus	sed (reserved))						
	0010 = Com	pare mode, tog	gle output on	match (CCPxIF	bit of the PIR	x register is set	t)				
	0011 = Unus	sed (reserved)									
	0100 = Capt	ure mode, eve	ry railing edge								
	0101 = Capt	ure mode, eve	ry 11sing eage	lae							
	0111 = Capt	ure mode, eve	ry 16th rising e	edge							
	1000 = Com	pare mode, set	output on ma	tch (CCPxIF bi	t of the PIRx re	egister is set)					
	1001 = Com	pare mode, cle	ar output on m	natch (CCPxIF	bit of the PIRx	register is set)	DIDy register				
	CCP	x pin is unaffect	ted)	e interrupt on fi		bit is set of the	FIRX register,				
	1011 = Com	pare mode, trig	ger special ev	vent (CCPxIF b	it of the PIRx	register is set,	TMR1 is reset				
		A/D conversion	viv is started if	the ADC modu	lie is enabled.	CCPx pin is un	affected.)				
	$\perp \perp XX = \Gamma V V V$	THOUE.									

REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
ANSELC	ANSC7	ANSC6	ANSC5	—	—	ANSC2	ANSC1	ANSC0	111111	111111
APFCON	—	—	—	_	—	_	SSSEL	CCP2SEL	00	00
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	— — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0							00 0000	00 0000	
CCPRxL				XXXX XXXX	uuuu uuuu					
CCPRxH	Capture/Compare/PWM Register X High Byte									uuuu uuuu
INTCON	GIE	PEIE	TMR0IE	INTE	NTE RBIE TMR0IF INTF RBIF					0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	—	_	_	CCP2IE	00000	00000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	—	—	—	CCP2IF	00000	00000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	00x0 0x00
TMR1L		Holding Re	egister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
TMR1H		Holding Re	egister for the	Most Signific	ant Byte of the	e 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

 $\label{eq:Legend: Legend: Le$

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- 4. After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

- 18.3.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the CREN and SREN bits.
- 3. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	—	—	ANSC2	ANSC1	ANSC0	111111	111111
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	x000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000X
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

18.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 18.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector. 18.3.2.4 Synchronous Slave Reception Setup:

- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

19.1.1.3 Master Mode Setup

In Master mode, the data is transmitted/received as soon as the SSPBUF register is loaded with a byte value. If the master is only going to receive, SDO output could be disabled (programmed and used as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate.

When initializing SPI Master mode operation, several options need to be specified. This is accomplished by programming the appropriate control bits in the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- · SCK as clock output
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)
- · Clock bit rate

In Master mode, the SPI clock rate (bit rate) is user selectable to be one of the following:

- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- (Timer2 output)/2

This allows a maximum data rate of 5 Mbps (at Fosc = 20 MHz).

Figure 19-3 shows the waveforms for Master mode. The clock polarity is selected by appropriately programming the CKP bit of the SSPCON register. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The sample time of the input data is shown based on the state of the SMP bit and can occur at the middle or end of the data output time. The time when the SSPBUF is loaded with the received data is shown.

19.1.1.4 Sleep in Master Mode

In Master mode, all module clocks are halted and the transmission/reception will remain in their current state, paused, until the device wakes from Sleep. After the device wakes up from Sleep, the module will continue to transmit/receive data.

REGISTER 20-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

U-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0		
_	—	_	—	—	—	—	RD		
bit 7							bit 0		
Legend:				S = Setable bit, cleared in hardware					
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	Unimplemen	ted: Read as '	1'						
bit 6-1	Unimplemen	ted: Read as '	0'						

bit 6-1 Unimplemented: Read as '0' bit 0 RD: Read Control bit 1 = Initiates a program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software). 0 = Does not initiate a program memory read

REGISTER 20-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

REGISTER 20-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

REGISTER 20-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—		PMA12	PMA11	PMA10	PMA9	PMA8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 PMA<12:8>: Program Memory Read Address bits

REGISTER 20-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMA7 | PMA6 | PMA5 | PMA4 | PMA3 | PMA2 | PMA1 | PMA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMA<7:0>:** Program Memory Read Address bits

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PMCON1	_			—	—	—	—	RD	10	10
PMADRH				Program Memory Read Address Register High Byte				x xxxx	x xxxx	
PMADRL	Program Memory Read Address Register Low Byte xxxx xxxx xxxx xxxx xxxx								xxxx xxxx	
PMDATH	_	-	Pro	Program Memory Read Data Register High Byte						xx xxxx
PMDATL		Pro	ogram Men	Program Memory Read Data Register Low Byte						

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the program memory read.

25.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 25-2: LOAD CONDITIONS

TABLE 25-13: I²C BUS DATA REQUIREMENTS

SP100* THIGH Clo SP101* TLOW Clo SP102* TR SD tim SP103* TF SD	lock high time	Characteristic		wax.	Units	Conditions
SP101* TLOW Clo SP102* TR SD tim SP103* TF SD	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
SP101* TLOW Clo SP102* TR SD tim SP103* TF SD		400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
SP101* TLOW Clo SP102* TR SD tim SP103* TF SD		SSP Module	1.5Tcy	—		
SP102* TR SD tim SP103* TF SD	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
SP102* TR SD tim SP103* TF SD		400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
SP102* TR SD tim SP103* TF SD		SSP Module	1.5Tcy	—		
SP103* TF SD	SDA and SCL rise time	100 kHz mode	_	1000	ns	
SP103* TF SD		400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
	SDA and SCL fall time	100 kHz mode	—	250	ns	
tim		400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106* THD:DAT Dat	Data input hold time	100 kHz mode	0	—	ns	
tim		400 kHz mode	0	0.9	μS	
SP107* TSU:DAT Da	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
tim		400 kHz mode	100	_	ns	
SP109* TAA Ou	Output valid from clock	100 kHz mode		3500	ns	(Note 1)
clo		400 kHz mode		_	ns	
SP110* TBUF But	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free before a new transmis- sion can start
		400 kHz mode	1.3		μs	
SP111 CB Bus	CB Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

FIGURE 26-8: PIC16LF707 TYPICAL IDD vs. VDD OVER Fosc, EXTRC MODE

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support