

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf707-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABL	E 1:	40	40/44-PIN ALLOCATION TABLE FOR PIC16F707/PIC16LF707												
Q	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ANSEL	A/D	DAC	Cap Sensor	Timers	ССР	AUSART	SSP	Interrupt	Pull-up	Basic
Vdd	11, 32	7, 26	7, 28	7, 8, 28		_			—	—	_			—	Vdd
Vss	12, 31	6, 27	6, 29	6, 30, 31		_			_	—	_	_		_	Vss

Note 1: Pull-up activated only with external MCLR configuration.

2: RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.

3: RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.

4: PIC16F707 only. VCAP functionality is selectable by the VCAPEN bits in Configuration Word 2.

TABLE 1-1: PIC16(L)F707 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description			
RA0/AN0/SS/Vcap	RA0	TTL	CMOS	General purpose I/O.			
	AN0	AN	—	A/D Channel 0 input.			
	SS	ST	—	Slave Select input.			
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F only).			
RA1/AN1/CPSA0	RA1	TTL	CMOS	General purpose I/O.			
	AN1	AN	—	A/D Channel 1 input.			
	CPSA0	AN		Capacitive sensing A input 0.			
RA2/AN2/CPSA1/DACOUT	RA2	TTL	CMOS	General purpose I/O.			
	AN2	AN	—	A/D Channel 2 input.			
	CPSA1	AN		Capacitive sensing A input 1.			
	DACOUT	_	AN	Voltage Reference Output.			
RA3/AN3/VREF/CPSA2	RA3	TTL	CMOS	General purpose I/O.			
	AN3	AN	_	A/D Channel 3 input.			
	VREF	AN	—	A/D Voltage Reference input.			
	CPSA2	AN	_	Capacitive sensing A input 2.			
RA4/CPSA3/T0CKI/TACKI	RA4	TTL	CMOS	General purpose I/O.			
	CPSA3	AN	—	Capacitive sensing A input 3.			
	TOCKI	ST	—	Timer0 clock input.			
	TACKI	ST	_	TimerA clock input.			
RA5/AN4/CPSA4/SS/VCAP	RA5	TTL	CMOS	General purpose I/O.			
	AN4	AN	—	A/D Channel 4 input.			
	CPSA4	AN	_	Capacitive sensing A input 4.			
	SS	ST	_	Slave Select input.			
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F only).			
RA6/OSC2/CLKOUT/VCAP/	RA6	TTL	CMOS	General purpose I/O.			
CPSB1	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).			
	CLKOUT	_	CMOS	Fosc/4 output.			
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F only).			
	CPSB1	AN		Capacitive sensing B input 1.			
RA7/OSC1/CLKIN/CPSB0	RA7	TTL	CMOS	General purpose I/O.			
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).			
	CLKIN	CMOS		External clock input (EC mode).			
	CLKIN	ST		RC oscillator connection (RC mode).			
	CPSB0	AN	_	Capacitive sensing B input 0.			
RB0/AN12/CPSB8/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.			
	AN12	AN	—	A/D Channel 12 input.			
	CPSB8	AN	—	Capacitive sensing B input 8.			
	INT	ST	—	External interrupt.			
RB1/AN10/CPSB9	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.			
	AN10	AN	—	A/D Channel 10 input.			
	CPSB9	AN	1	Capacitive sensing B input 9.			

6.5 PORTD and TRISD Registers

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 6-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-4 shows how to initialize PORTD.

Reading the PORTD register (Register 6-13) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISD register (Register 6-14) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-4: INITIALIZING PORTD

BANKSEL PORTD	;
CLRF PORTD	;Init PORTD
BANKSEL ANSELD	
CLRF ANSELD	;Make PORTD digital
BANKSEL TRISD	;
MOVLW B'000011	.00' ;Set RD<3:2> as inputs
MOVWF TRISD	;and set RD<7:4,1:0>
	;as outputs

6.5.1 ANSELD REGISTER

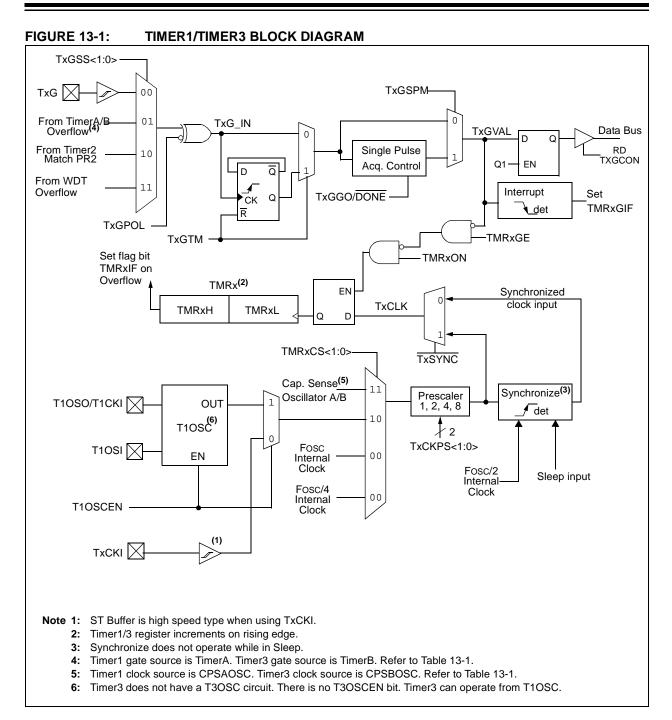
The ANSELD register (Register 6-15) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELD register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

REGISTER 6-13: PORTD: PORTD REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RD7	D7 RD6 RD5 RD4		RD4	RD3	RD2	RD1	RD0
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

RD<7:0>: PORTD General Purpose I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

TABLE 13-1:CPSOSC/TIMERASSOCIATION

Period Measurement	Cap Sense Oscillator	Divider Timer (Gate Source)		
Timer1	CPS A	TimerA		
Timer3	CPS B	TimerB		

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0					
bit 7							bit C					
Legend:												
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 7	Unimplemen	ted: Read as '	0'									
bit 6-3	TOUTPS<3:0)>: Timer2 Outp	out Postscaler	Select bits								
	0000 = 1:1 P	ostscaler										
	0001 = 1:2 P	ostscaler										
	0010 = 1:3 P											
		0011 = 1:4 Postscaler										
		0100 = 1.5 Postscaler										
	0101 = 1:6 Postscaler											
	0110 = 1:7 Postscaler 0111 = 1:8 Postscaler											
	1000 = 1.9 P											
		= 1.9 Postscaler										
		1001 = 1.10 Postscaler										
		1010 = 1.11 Postscaler										
	1100 = 1:13	Postscaler										
	1101 = 1:14	Postscaler										
	1110 = 1:15											
	1111 = 1:16	1111 = 1:16 Postscaler										
bit 2	TMR2ON: Tir	TMR2ON: Timer2 On bit										
	1 = Timer2 is	1 = Timer2 is on										
	0 = Timer2 is	soff										
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits								
	00 = Prescale	er is 1										
	01 = Prescale	er is 4										
	1x = Prescale	er is 16										

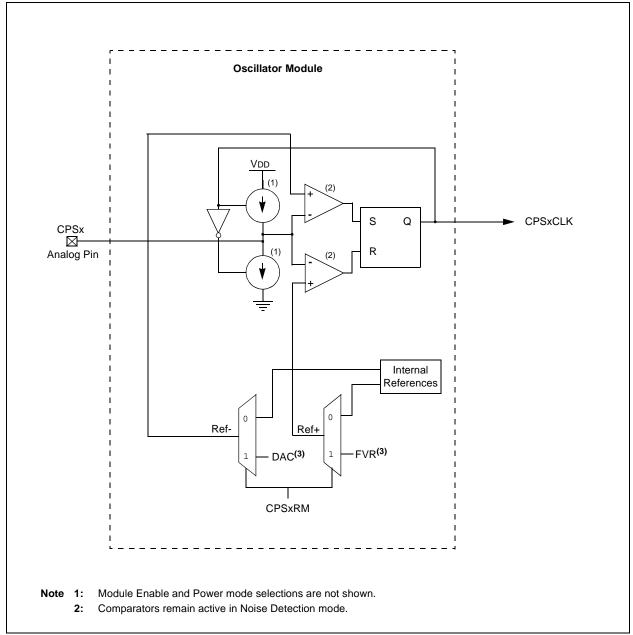
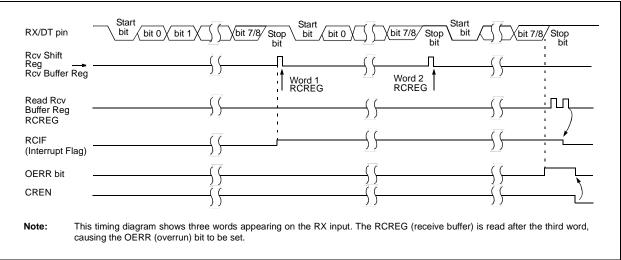

REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 15-1:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
PR2			Т	imer2 Module	Period Regis	ter			1111 1111	1111 1111	
TMR2	Holding Register for the 8-bit TMR2 Register									0000 0000	
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000	
Logondu											

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.



U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7	· · · · · · · · · · · · · · · · · · ·				·	• 	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-6 bit 5-4	Unimplement						
	DCxB<1:0>: F Capture mode Unused Compare mode Unused <u>PWM mode:</u> These bits are	2: le:	Ū	luty cycle. The	eight MSbs are	e found in CCP	RxL.
bit 3-0	0001 = Unuse 0010 = Comp 0011 = Unuse 0100 = Captu 0101 = Captu 0110 = Captu 0111 = Captu 1000 = Comp 1001 = Comp 1010 = Comp 1010 = Comp	ure/Compare/F ed (reserved) pare mode, tog ed (reserved) ure mode, even ure mode, even ure mode, even pare mode, even pare mode, set pare mode, cle pare mode, gen a par is unaffect pare mode, trig v/D conversion	WM off (reset gle output on y falling edge y rising edge y 4th rising ed y 16th rising ed y 16th rising ed output on ma ar output on m herate softwar ted) ger special ev		bit of the PIR: t of the PIRx re bit of the PIRx hatch (CCPxIF it of the PIRx r	gister is set) register is set) bit is set of the register is set.	PIRx register

REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER

TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	—	—	ANSC2	ANSC1	ANSC0	111111	111111
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG			AUSA	ART Receiv	e Data Reg	jister			0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- 4. After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

- 18.3.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the CREN and SREN bits.
- 3. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	_	—	ANSC2	ANSC1	ANSC0	111111	111111
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000X	0000 000x
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART Transmit Data Register				0000 0000	0000 0000				
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

18.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 18.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector. 18.3.2.4 Synchronous Slave Reception Setup:

- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

REGISTER 19-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7							bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 7	SMP: SPI D	Data Input Sampl	e Phase bit							
	SPI Master									
		ata sampled at er	nd of data out	tput time						
		ata sampled at m	iddle of data	output time						
	<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode									
L:1 0				n Slave mode						
bit 6	CKE: SPI Clock Edge Select bit									
	<u>SPI mode, CKP = 0:</u> 1 = Data stable on rising edge of SCK									
	0 = Data stable on falling edge of SCK									
	SPI mode, CKP = 1:									
	1 = Data stable on falling edge of SCK									
	_	able on rising edg	ge of SCK							
bit 5	D/A: Data/Address bit Used in I ² C mode only.									
		mode only.								
bit 4	P: Stop bit									
1 1 0	Used in I ² C	mode only.								
bit 3	S: Start bit									
h 11 O		Used in I^2C mode only.								
bit 2	R/W: Read/Write Information bit									
L:1. 4	Used in I ² C mode only. UA: Update Address bit									
bit 1	UA: Update Used in I ² C									
h :+ 0		,								
bit 0		Full Status bit								
	1 = Receive 0 = Receive	e complete, SSPI	BUF IS TUIL							

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer				
Syntax:	[label] CLRWDT				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD				
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.				

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \leq k \leq 2047$			
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>			
Status Affected:	None			
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.			

COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (destination)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.			

CLRF	Clear f		
Syntax:	[label] CLRF f		
Operands:	$0 \le f \le 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W			
Syntax:	[label] CLRW			
Operands:	None			
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$			
Status Affected:	Z			
Description:	W register is cleared. Zero bit (Z) is set.			

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

24.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

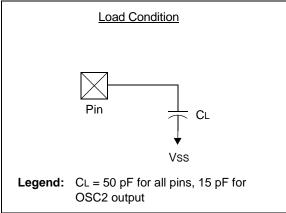
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

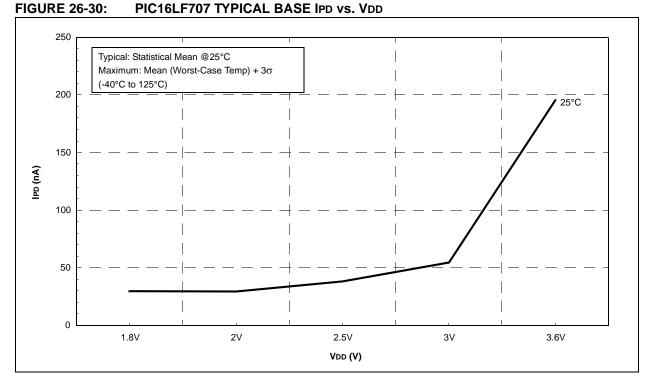
Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

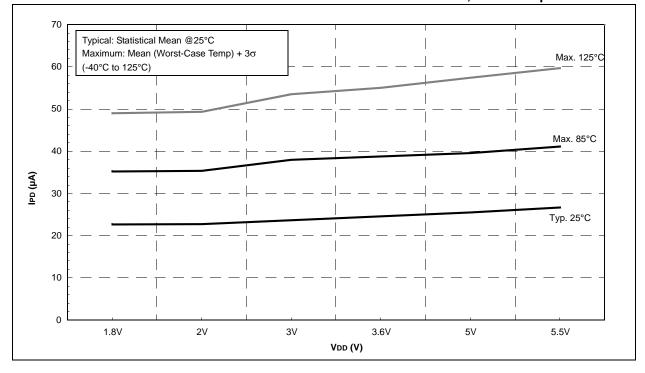
User-Friendly, Customizable Interface:

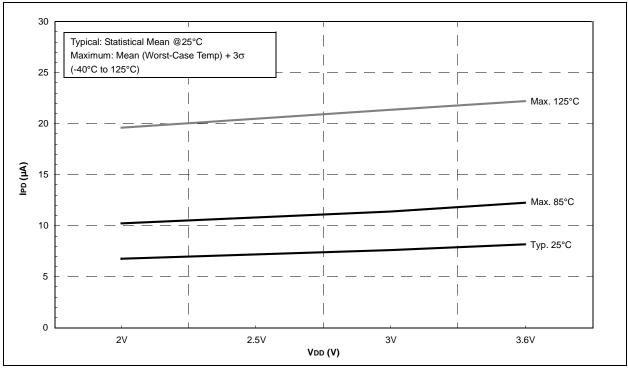
- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

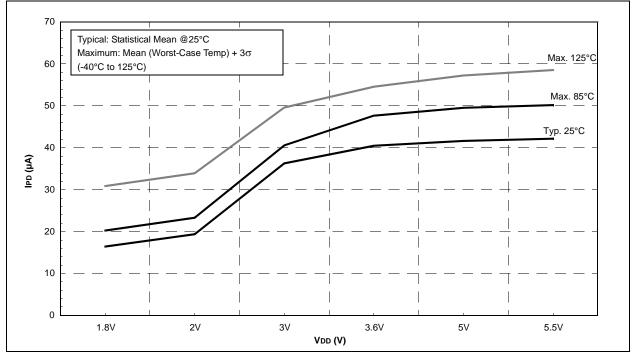

25.6 Timing Parameter Symbology


The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS


2. TPp0				
т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
cs	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	


FIGURE 25-2: LOAD CONDITIONS



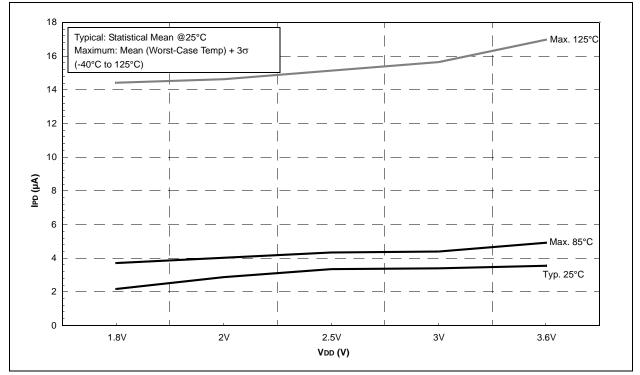
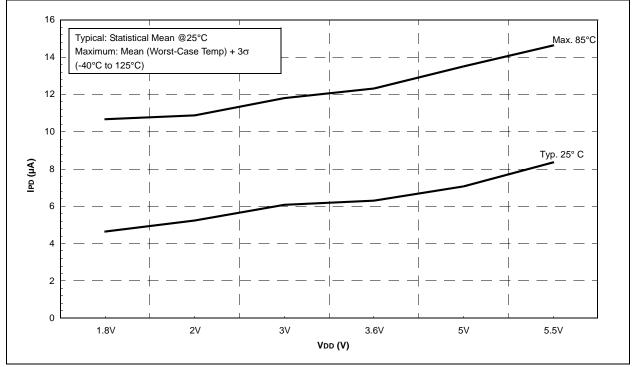


FIGURE 26-34: PIC16LF707 BOR IPD vs. VDD



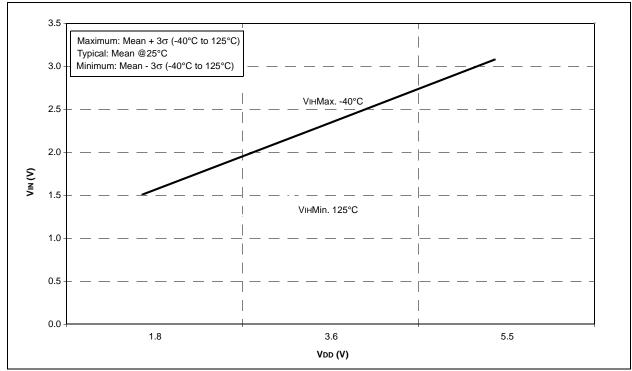
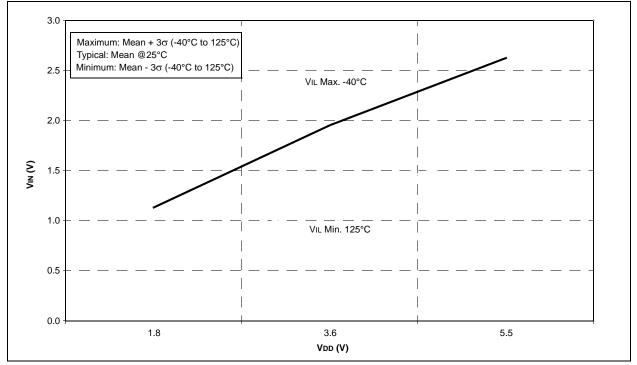
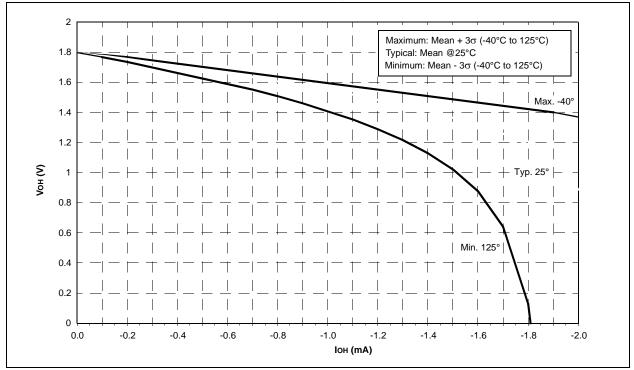
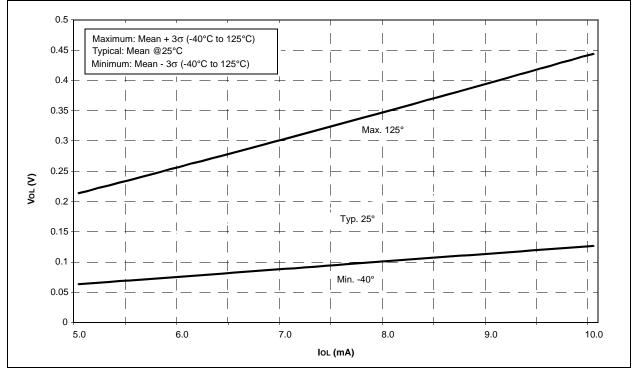
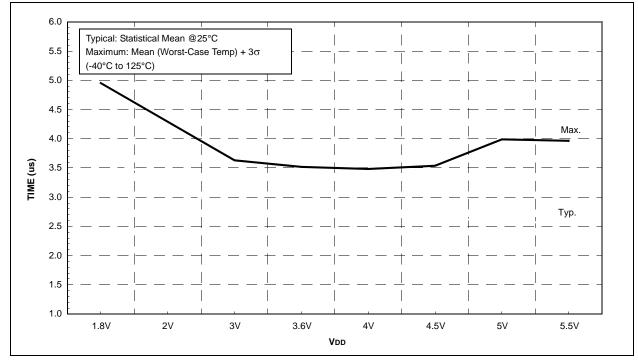




FIGURE 26-50: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE


FIGURE 26-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE



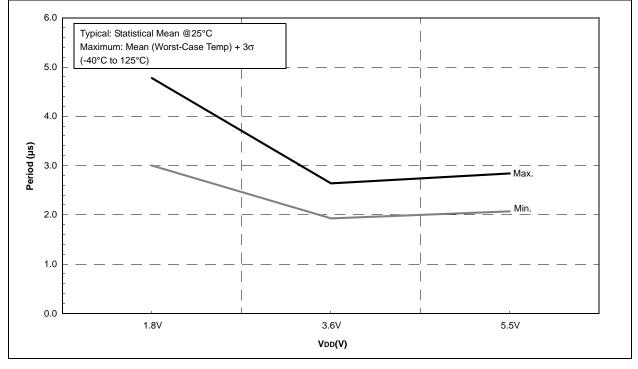
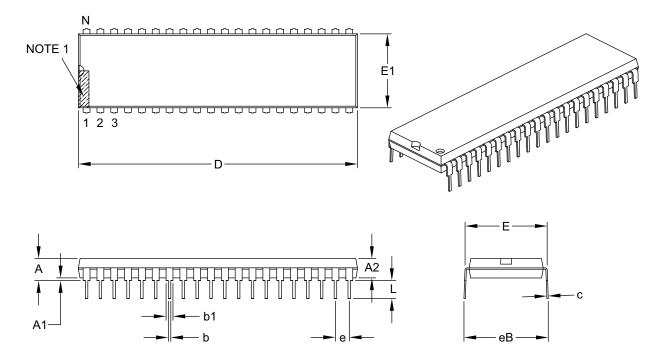


FIGURE 26-60: PIC16F707 HFINTOSC WAKE-UP FROM SLEEP START-UP TIME



27.2 Package Details

The following sections give the technical details of the packages.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensi	ion Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	_	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	-	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B