

the man

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf707-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F707 devices are covered by this data sheet. They are available in 40/44-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F707 devices. Table 1-1 shows the pinout descriptions.

TABLE 1-1: PIC16(L)F707 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.
	SDI	ST		SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
RC5/SDO/CPSA9	RC5	ST	CMOS	General purpose I/O.
	SDO	_	CMOS	SPI data output.
	CPSA9	AN	—	Capacitive sensing A input 9.
RC6/TX/CK/CPSA10	RC6	ST	CMOS	General purpose I/O.
	ТХ	—	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	CPSA10	AN	—	Capacitive sensing A input 10.
RC7/RX/DT/CPSA11	RC7	ST	CMOS	General purpose I/O.
	RX	ST		USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	CPSA11	AN	—	Capacitive sensing A input 11.
RD0/CPSB5/T3G	RD0	ST	CMOS	General purpose I/O.
	CPSB5	AN	—	Capacitive sensing B input 5.
	T3G	ST		Timer3 Gate input.
RD1/CPSB6	RD1	ST	CMOS	General purpose I/O.
	CPSB6	AN		Capacitive sensing B input 6.
RD2/CPSB7	RD2	ST	CMOS	General purpose I/O.
	CPSB7	AN		Capacitive sensing B input 7.
RD3/CPSA8	RD3	ST	CMOS	General purpose I/O.
	CPSA8	AN		Capacitive sensing A input 8.
RD4/CPSA12	RD4	ST	CMOS	General purpose I/O.
	CPSA12	AN	—	Capacitive sensing A input 12.
RD5/CPSA13	RD5	ST	CMOS	General purpose I/O.
	CPSA13	AN		Capacitive sensing A input 13.
RD6/CPSA14	RD6	ST	CMOS	General purpose I/O.
	CPSA14	AN		Capacitive sensing A input 14.
RD7/CPSA15	RD7	ST	CMOS	General purpose I/O.
	CPSA15	AN		Capacitive sensing A input 15.
RE0/AN5/CPSA5	RE0	ST	CMOS	General purpose I/O.
	AN5	AN		A/D Channel 5 input.
	CPSA5	AN		Capacitive sensing A input 5.
RE1/AN6/CPSA6	RE1	ST	CMOS	General purpose I/O.
	AN6	AN		A/D Channel 6 input.
	CPSA6	AN		Capacitive sensing A input 6.
RE2/AN7/CPSA7	RE2	ST	CMOS	General purpose I/O.
	AN7	AN		A/D Channel 7 input.
	CPSA7	AN		Capacitive sensing A input 7.
RE3/MCLR/Vpp	RE3	TTL		General purpose input.
	MCLR ST –			Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
Vdd	Vdd	Power	_	Positive supply.
Legend: AN = Analog input or	output CM	OS= CN	IOS comp	oatible input or output OD = Open Drain
TTL = TTL compatible HV = High Voltage	input ST XTA	= Sch AL = Cry	nmitt Trig vstal	ger input with CMOS levels I ² C = Schmitt Trigger input with I ² C levels

TABLE 5-5.				
Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time-out
ADCON0	1Fh	00 0000	00 0000	uu uuuu
OPTION_REG	81h/181h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	1111 1111	1111 1111	uuuu uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
TRISC	87h	1111 1111	1111 1111	uuuu uuuu
TRISD	88h	1111 1111	1111 1111	uuuu uuuu
TRISE	89h	1111	1111	uuuu
PIE1	8Ch	0000 0000	0000 0000	uuuu uuuu
PIE2	8Dh	00000	00000	uuuuu
PCON	8Eh	dd	uu ^(1,5)	uu
T1GCON	8Fh	0000 0x00	uuuu uxuu	uuuu uxuu
OSCCON	90h	10 qq	10 qq	uu qq
OSCTUNE	91h	00 0000	uu uuuu	uu uuuu
PR2	92h	1111 1111	1111 1111	uuuu uuuu
SSPADD	93h	0000 0000	0000 0000	սսսս սսսս
SSPMSK	93h	1111 1111	1111 1111	uuuu uuuu
SSPSTAT	94h	0000 0000	0000 0000	uuuu uuuu
WPUB	95h	1111 1111	1111 1111	սսսս սսսս
IOCB	96h	0000 0000	0000 0000	սսսս սսսս
T3CON	97h	0000 -0-0	0000 -0-0	uuuu -u-u
TXSTA	98h	0000 -010	0000 -010	uuuu –uuu
SPBRG	99h	0000 0000	0000 0000	սսսս սսսս
TMR3L	9Ah	XXXX XXXX	սսսս սսսս	սսսս սսսս
TMR3H	9Bh	xxxx xxxx	սսսս սսսս	սսսս սսսս
APFCON	9Ch	00	00	uu
FVRCON	9Dh	q000 0000	q000 0000	q000 0000
ADCON1	9Fh	-00000	-00000	-uuuuu
TACON	105h	0-00 0000	0-00 0000	u-uu uuuu
CPSBCON0	106h	00 0000	00 0000	uu uuuu
CPSBCON1	107h	0000	0000	uuuu
CPSACON0	108h	00 0000	00 0000	uu uuuu
CPSACON1	109h	0000	0000	uuuu
PMDATL	10Ch	xxxx xxxx	xxxx xxxx	սսսս սսսս
PMADRL	10Dh	xxxx xxxx	XXXX XXXX	սսսս սսսս
PMDATH	10Eh	xx xxxx	xx xxxx	uu uuuu
PMADRH	10Fh	x xxxx	x xxxx	u uuuu
TMRA	110h	0000 0000	0000 0000	uuuu uuuu

TABLE 3-5: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-2 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the interrupt enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual Interrupt Enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated

interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 25.0 "Electrical Specifications".
- **5:** INTF is enabled to be set any time during the Q4-Q1 cycles.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
OPTION_REG	RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	_	—	—	CCP2IE	00000	00000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	_	—	—	CCP2IF	00000	00000

 TABLE 4-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by interrupts.

6.4.2.3 RC2/CCP1/CPSB4/TBCKI

These pins are configurable to function as one of the following:

- General purpose I/O
- Capture 1 input, Compare 1 output, and PWM1 output
- Capacitive sensing input
- TimerB Clock input

6.4.2.4 RC3/SCK/SCL

These pins are configurable to function as one of the following:

- General purpose I/O
- SPI clock
- I²C clock

6.4.2.5 RC4/SDI/SDA

These pins are configurable to function as one of the following:

- General purpose I/O
- SPI data input
- I²C data I/O

6.4.2.6 RC5/SDO/CPSA9

These pins are configurable to function as one of the following:

- General purpose I/O
- · SPI data output
- · Capacitive sensing input

6.4.2.7 RC6/TX/CK/CPSA10

These pins are configurable to function as one of the following:

- General purpose I/O
- Asynchronous serial output
- Synchronous clock I/O
- · Capacitive sensing input

6.4.2.8 RC7/RX/DT/CPSA11

These pins are configurable to function as one of the following:

- General purpose I/O
- Asynchronous serial input
- Synchronous serial data I/O
- · Capacitive sensing input

TABLE 6-3:SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	—	_	ANSC2	ANSC1	ANSC0	111111	111111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CPSACON0	CPSAON	CPSARM			CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000
CPSACON1					CPSACH3	CPSACH2	CPSACH1	CPSACH0	0000	0000
CPSBCON0	CPSBON	CPSBRM			CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000
CPSBCON1					CPSBCH3	CPSBCH2	CPSBCH1	CPSBCH0	0000	0000
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	xxxx xxxx
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC		TMR10N	0000 00-0	uuuu uu-u
TBCON	TMRBON	_	TBCS	TBSE	TBPSA	TBPS2	TBPS1	TBPS0	0-00 0000	0-00 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

11.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with VDD, with 32 selectable output levels. The output of the DAC can be configured to supply a reference voltage to the following:

- DACOUT device pin
- Capacitive sensing modules

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 11-1:

11.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equation:

11.2 Output Clamped to Vss

The DAC output voltage can be set to Vss with no power consumption by setting the DACEN bit of the DACCON0 register to '0'.

11.3 Output Ratiometric to VDD

The DAC is VDD derived and therefore, the DAC output changes with fluctuations in VDD. The tested absolute accuracy of the DAC can be found in **Section 25.0 "Electrical Specifications"**.

11.4 Voltage Reference Output

The DAC can be output to the device DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to DACOUT. Example 11-1 shows an example buffering technique.

11.5 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

11.6 Effects of a Reset

A device Reset affects the following:

- Voltage reference is disabled
- Fixed Voltage Reference is disabled
- DAC is removed from the DACOUT pin
- The DACR<4:0> range select bits are cleared

12.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

12.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note:	The value written to the TMR0 register
	can be adjusted, in order to account for
	the two instruction cycle delay when
	TMR0 is written.

12.1.2 8-BIT COUNTER MODE

In 8-bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. 8-bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit of the OPTION register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION register.

12.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When the prescaler is enabled or assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

Note: When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

12.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

12.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in **Section 25.0 "Electrical Specifications"**.

12.1.6 TIMER ENABLE

Operation of Timer0 is always enabled and the module will operate according to the settings of the OPTION register.

12.1.7 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0				
CPSxON	CPSxRM	—	_	CPSxRNG1	CPSxRNG0	CPSxOUT	TxXCS				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7 CPSxON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is enabled 0 = Capacitive sensing module is disabled bit C											
	1 = Capacitiv 0 = Capacitiv	/e sensing mod /e sensing mod	ule is in high ule is in low	range. DAC ar range. Internal	nd FVR provide oscillator voltag	oscillator voltag e references ar	ge references. e used.				
bit 5-4	Unimplemen	ted: Read as '	כ'								
bit 3-2	CPSxRNG<1 If CPSxRM = 11 = Oscillato 10 = Oscillato 01 = Oscillato 00 = Oscillato If CPSxRM = 11 = Oscillato 10 = Oscillato 01 = Oscillato 00 = Oscillato	CPSxRNG<1:0>: Capacitive Sensing Current Range bits <u>If CPSxRM = 0 (low range)</u> : 11 = Oscillator is in high range: Charge/discharge current is nominally 18 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 1.2 μA. 01 = Oscillator is in low range. Charge/discharge current is nominally 0.1 μA. 00 = Oscillator is off. <u>If CPSxRM = 1 (high range)</u> : 11 = Oscillator is in high range: Charge/discharge current is nominally 100 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 30 μA. 01 = Oscillator is in low range. Charge/discharge current is nominally 30 μA.									
bit 1	CPSxOUT: C 1 = Oscillato 0 = Oscillato	apacitive Sens r is sourcing cu r is sinking curr	ing Oscillato rrent (Currer ent (Current	r Status bit nt flowing out of flowing into the	the pin) pin)						
bit 0	TxXCS: TimerA/B External Clock Source Select bit $\frac{\text{If TMRxCS} = 1}{\text{The TxXCS bit controls which clock external to the core/TimerA/B module supplies TimerA/B:}$ $1 = \text{TimerA/B clock source is the capacitive sensing oscillator}$ $0 = \text{TimerA/B clock source is the TxCKI pin}$ $\frac{\text{If TMRxCS} = 0}{\text{TimerA/B clock source is controlled by the core/TimerA/B module and is Fosc/4.}$										

REGISTER 16-1: CPSxCON0: CAPACITIVE SENSING CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0					
bit 7	•			-		·	bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 7-6	bit 7-6 Unimplemented: Read as '0'											
bit 5-4	DCxB<1:0>:	PWM Duty Cy	cle Least Sign	ificant bits								
	Capture mode	<u>e</u> :	-									
	Unused											
	Compare mo	<u>de:</u>										
	Unused											
	<u>PWM mode:</u>	a tha two I She	of the PM/M of	luty cycle. The	eight MShs ar	a found in CCP	PvI					
hit 2 0				itty cycle. The	eight moos are		INAL.					
DII 3-0	CCFXIVI<3.02		Delect Dits	s CCP module)							
	0000 = Capt0001 = Unus	sed (reserved))							
	0010 = Com	pare mode, tog	gle output on	match (CCPxIF	bit of the PIR	x register is set	t)					
	0011 = Unus	sed (reserved)										
	0100 = Capt	ure mode, eve	ry railing edge									
	0101 = Capt	ure mode, eve	ry 11sing eage	lae								
	0111 = Capt	ure mode, eve	ry 16th rising e	edge								
	1000 = Com	pare mode, set	output on ma	tch (CCPxIF bi	t of the PIRx re	egister is set)						
	1001 = Com	pare mode, cle	ar output on m	natch (CCPxIF	bit of the PIRx	register is set)	DIDy register					
	CCP	x pin is unaffect	ted)	e interrupt on fi		bit is set of the	FIRX register,					
	1011 = Com	pare mode, trig	ger special ev	vent (CCPxIF b	it of the PIRx	register is set,	TMR1 is reset					
		A/D conversion	viv is started if	the ADC modu	lie is enabled.	CCPx pin is un	affected.)					
	$\perp \perp XX = \Gamma V V V$	THOUE.										

REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER

17.1 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the interrupt request flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 17-1).

17.1.1 CCPx PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	If the CCPx pin is configured as an output,
	a write to the port can cause a capture
	condition.

FIGURE 17-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

17.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

17.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in operating mode.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

17.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (refer to Example 17-1).

EXAMPLE 17-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

17.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

If Timer1 is clocked by FOSC/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 17.1** "**Capture Mode**".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
ANSELC	ANSC7	ANSC6	ANSC5		_	ANSC2	ANSC1	ANSC0	111111	111111
APFCON		—			_		SSSEL	CCP2SEL	00	00
CCP1CON		_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON		_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL			Capture/0	Compare/PWN	/I Register X L	ow Byte			xxxx xxxx	uuuu uuuu
CCPRxH			Capture/C	Compare/PWN	/I Register X H	ligh Byte			xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	—	-	—	CCP2IE	00000	00000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	_	_	—	CCP2IF	00000	00000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	00x0 0x00
TMR1L		Holding Re	gister for the	Least Signific	ant Byte of the	e 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
TMR1H		Holding Re	egister for the	Most Signific	ant Byte of the	e 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

 $\label{eq:Legend: Legend: Le$

19.2 I²C Mode

The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- · Address masking

Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of the SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of the SSPCON register.

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 25.0** "**Electrical Specifications**".

FIGURE 19-7: I²C MODE BLOCK DIAGRAM

FIGURE 19-8: TYPICAL I²C CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:

- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

19.2.1 HARDWARE SETUP

Selection of I²C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

19.2.7 CLOCK STRETCHING

During any SCL low phase, any device on the I^2C bus may hold the SCL line low and delay, or pause, the transmission of data. This "stretching" of a transmission allows devices to slow down communication on the bus. The SCL line must be constantly sampled by the master to ensure that all devices on the bus have released SCL for more data.

Stretching usually occurs after an ACK bit of a transmission, delaying the first bit of the next byte. The SSP module hardware automatically stretches for two conditions:

- After a 10-bit address byte is received (update SSPADD register)
- Anytime the CKP bit of the SSPCON register is cleared by hardware

The module will hold SCL low until the CKP bit is set. This allows the user slave software to update SSPBUF with data that may not be readily available. In 10-bit addressing modes, the SSPADD register must be updated after receiving the first and second address bytes. The SSP module will hold the SCL line low until the SSPADD has a byte written to it. The UA bit of the SSPSTAT register will be set, along with SSPIF, indicating an address update is needed.

19.2.8 FIRMWARE MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits of the SSPSTAT register are cleared from a Reset or when the SSP module is disabled (SSPEN cleared). The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is Idle and both the S and P bits are clear.

In Firmware Master mode, the SCL and SDA lines are manipulated by setting/clearing the corresponding TRIS bit(s). The output level is always low, irrespective of the value(s) in the corresponding PORT register bit(s). When transmitting a '1', the TRIS bit must be set (input) and a '0', the TRIS bit must be clear (output).

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Firmware Master mode of operation can be done with either the Slave mode Idle (SSPM<3:0 > = 1011), or with either of the Slave modes in which interrupts are enabled. When both master and slave functionality is enabled, the software needs to differentiate the source(s) of the interrupt. Refer to Application Note AN554, "Software Implementation of $\hat{I}^2 C^{TM}$ Bus Master" (DS00554) for more information.

19.2.9 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allow the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set or when the bus is Idle, and both the S and P bits are clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRIS bits). There are two stages where this arbitration of the bus can be lost. They are the Address Transfer and Data Transfer stages.

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Refer to Application Note AN578, "Use of the SSP Module in the $l^2 C^{TM}$ Multi-Master Environment" (DS00578) for more information.

25.7 AC Characteristics: PIC16F707-I/E

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	_	-5.8	-6	μΑ	
			Medium		-1.1	-3.2	μA	-40, -85°C
			Low		-0.2	-0.9	μΑ	
CS02	ISNK	Current Sink	High		6.6	6	μΑ	-40, -85°C
			Medium		1.3	3.2	μΑ	
			Low		0.24	0.9	μΑ	
CS03	VCHYST	Cap Hysteresis	High		525	_	mV	VCTH-VCTL
			Medium		375	_	mV	
			Low		280	_	mV	

TABLE 25-14: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-22: CAP SENSE OSCILLATOR

