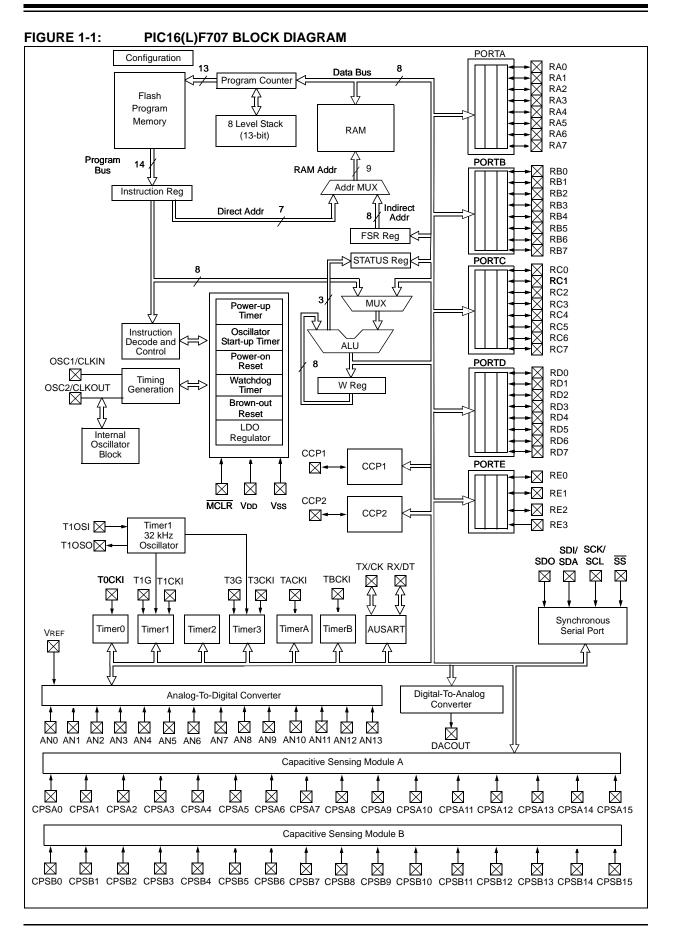


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf707-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			-	-	-	•	-				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 3											
180h ⁽²⁾	INDF	Addres	sing this loca	tion uses co	ntents of FSF	R to address da	ata memory (no	ot a physical	register)	xxxx xxxx	xxxx xxxx
181h	OPTION_REG	RBPU	RBPU INTEDG TMR0CS TMR0SE PSA PS2 PS1 PS0						1111 1111	1111 1111	
182h ⁽²⁾	PCL			Progra	n Counter (P	C) Least Signi	ficant Byte			0000 0000	0000 0000
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h ⁽²⁾	FSR		Indirect Data Memory Address Pointer							xxxx xxxx	uuuu uuuu
185h	ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
186h	ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
187h	ANSELC	ANSC7	ANSC6	ANSC5	_	_	ANSC2	ANSC1	ANSC0	111111	111111
188h	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
189h	ANSELE	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
18Ah ^{(1),(2)}	PCLATH	_	_	_	Write I	Buffer for the u	oper 5 bits of th	ne Program C	Counter	0 0000	0 0000
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
18Ch	PMCON1	_	—	—	_	—	—	_	RD	10	10
18Dh	—				Re	eserved				_	—
18Eh	—				Re	eserved				_	_
18Fh	—				Re	eserved				_	_
1 · · · · · ·											

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:

 The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

 2:
 These registers can be addressed from any bank.

 3:
 Accessible only when SSPM<3:0> = 1001.

2.2.2.2 OPTION Register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull-ups on PORTB

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to '1'. Refer to Section 13.3 "Timer1/3 Prescaler".

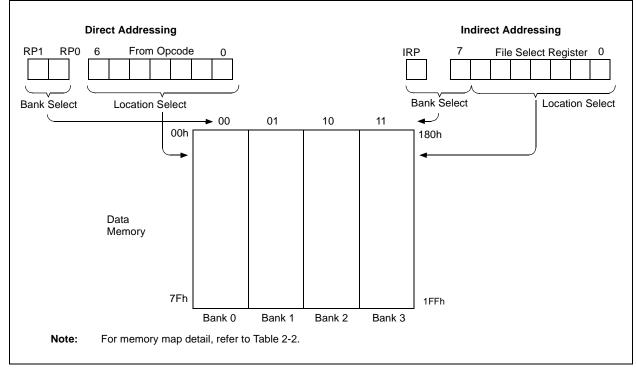
REGISTER 2-2: OPTION_REG: OPTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU			TMR0SE	PSA	PS2	PS1	PS0	
bit 7	·						bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pul	I-up Enable bi	t								
	1 = PORTB pull-up 0 = PORTB pull-up			bits in the WPUB regist	ter						
bit 6	INTEDG: Interrupt	INTEDG: Interrupt Edge Select bit									
	1 = Interrupt on risi 0 = Interrupt on falli										
bit 5	TMR0CS: Timer0 Clock Source Select bit										
	1 = Transition on R 0 = Internal instruct		k (Fosc/4)								
bit 4	TMR0SE: Timer0 Source Edge Select bit										
		1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin									
bit 3	PSA: Prescaler Ass	signment bit									
	1 = Prescaler is ass 0 = Prescaler is ass	•		e							
bit 2-0	PS<2:0>: Prescale	r Rate Select b	oits								
	Bit Value	Timer0 Rate	WDT Rate								
	000 001 010 011 100 101	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32								
	110 111	1 : 128 1 : 256	1 : 64 1 : 128								
		1.200	1.120								

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-3.

A simple program to clear RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW MOVWF BANKISEL	020h FSR 020h	;initialize pointer ;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		;yes continue

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

4.5.5 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 4-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
TMR3GIF	TMR3IF	TMRBIF	TMRAIF	—	—		CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	TMR3GIF: Timer3 Gate Interrupt Flag bit
	1 = Timer3 gate is inactive 0 = Timer3 gate is active
h:+ C	
bit 6	TMR3IF: Timer3 Overflow Interrupt Flag bit
	1 = Timer3 register overflowed (must be cleared in software)
	0 = Timer3 register did not overflow
bit 5	TMRBIF: TimerB Overflow Interrupt Flag bit
	 TimerB register has overflowed (must be cleared in software)
	0 = TimerB register did not overflow
bit 4	TMRAIF: TimerA Overflow Interrupt Flag bit
	 TimerA register has overflowed (must be cleared in software)
	0 = TimerA register did not overflow
bit 3-1	Unimplemented: Read as '0'
bit 0	CCP2IF: CCP2 Interrupt Flag bit
	Capture Mode
	1 = A Timer1 register capture occurred (must be cleared in software)
	0 = No Timer1 register capture occurred
	Compare Mode
	1 = A Timer1 register compare match occurred (must be cleared in software)
	0 = No Timer1 register compare match occurred
	<u>PWM Mode</u>
	Unused in this mode

6.3.4.4 RB3/AN9/CPSB11/CCP2

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- Capacitive sensing input
- Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.3.4.5 RB4/AN11/CPSB12

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- Capacitive sensing input

6.3.4.6 RB5/AN13/CPSB13/T1G/T3CKI

These pins are configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- · Capacitive sensing input
- Timer1 gate input
- Timer3 clock input

6.3.4.7 RB6/ICSPCLK/CPSB14

These pins are configurable to function as one of the following:

- General purpose I/O
- In-Circuit Serial Programming clock
- Capacitive sensing input

6.3.4.8 RB7/ICSPDAT/CPSB15

These pins are configurable to function as one of the following:

- General purpose I/O
- In-Circuit Serial Programming data
- Capacitive sensing input

ABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000		
ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111		
_	_	_	_	_	_	SSSEL	CCP2SEL	00	00		
_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000		
CPSBON	CPSBRM	_	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000		
_	_	_	_	CPSBCH3	CPSBCH2	CPSBCH1	CPSBCH0	0000	0000		
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x		
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000		
RBPU	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111		
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx		
TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	—	T3SYNC	—	TMR3ON	0000 -0-0	0000 -0-0		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu		
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111		
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111		
	Bit 7	Bit 7 Bit 6 — — ANSB7 ANSB6 — — ANSB7 ANSB6 — — CPS — — — GIE PEIE IOCB7 IOCB6 RB7U INTEDG RB7U INTEDG TMR3CS1 TMR3CS0 TMR1GE TIGPOL TRISB7 TRISB6	Bit 7Bit 6Bit 5CHS3ANSB7ANSB6ANSB5DC2B1CPSBONCPSBRMCPSBONCPSBRMGIEPEIETMR0IEIOCB7IOCB6IOCB5RB7RB6RB5TMR3CS1TMR3CS0T3CKPS1TMR1GET1GPOLT1GTMTRISB7TRISB6TRISB5	Bit 7Bit 6Bit 5Bit 4CHS3CHS2ANSB7ANSB6ANSB5ANSB4CHS3CHS2ANSB7ANSB6ANSB5ANSB4DC2B1DC2B0CPSB0NCPSBRMGIEPEIETMR0IEINTEIOCB7IOCB6IOCB5IOCB4RB7RB6RB5RB4TMR3CS1TMR3CS0T3CKPS1TMR1GETIGPOLTIGTMTIGSPMTRISB7TRISB6TRISB5TRISB4	Bit 7Bit 6Bit 5Bit 4Bit 3CHS3CHS2CHS1ANSB7ANSB6ANSB5ANSB4ANSB3DC2B1DC2B0CCP2M3CPSB0NCPSBRMCPSBRN61CPSBRN61CPSBRN61CPSBRN61CPSBCH3GIEPEIETMR0IEINTEIOCB7IOCB6IOCB5IOCB4IOCB3IOCB7IOCB6TMR0CSTMR0SEPSARB7RB6RB5RB4RB3TMR3CS1TMR3CS0T3CKPS1T3CKPS0TMR1GET1GPOLT1GTMT1GSPMT1GG0/ DONETRISB7TRISB6TRISB5TRISB4TRISB3	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2CHS3CHS2CHS1CHS0ANSB7ANSB6ANSB5ANSB4ANSB3ANSB2DC2B1DC2B0CCP2M3CCP2M2CPSB0NCPSBRMCPSBRNG1CPSBRNG0CPSBCH3CCP2M2GIEPEIETMR0IEINTERBIETMR0IFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2RB7RB6RB5RB4RB3RB2TMR3CS1TMR3CS0T3CKPS1T3CKPS0T3SYNCTMR1GET1GPOLT1GTMT1GSPMT1GGO/ DONET1GVALTRISB7TRISB6TRISB5TRISB4TRISB3TRISB2	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1CHS3CHS2CHS1CHS0GO/DONEANSB7ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1SSELDC2B1DC2B0CCP2M3CCP2M2CCP2M1CPSBONCPSBRMCPSBRNG1CPSBRNG0CPSB0UTCPSBRNG1CPSBRNG0CPSB0UTCPSBCH3CPSBCH2CPSBCH1GIEPEIETMR0IEINTERBIETMR0IFINTFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1RB7RB6RB5RB4RB3RB2RB1TMR3CS1TMR3CS0T3CKPS1T3CKPS0T3SYNCTMR1GET1GPOLT1GTMT1GSPMT1GG0/ DONET1GVALT1GSS1TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0CHS3CHS2CHS1CHS0GO/DONEADONANSB7ANSB6ANSB5ANSB4ANSB3ANSB2ANSB1ANSB0SSELCCP2SELDC2B1DC2B0CCP2M3CCP2M2CCP2M1CCP2M0CPSBONCPSBRMCPSBRNG1CPSBRNG0CPSBOUTTBXCSCPSBCH3CPSBCH2CPSBCH1CPSBCH0GIEPEIETMR0IEINTERBIETMR0IFINTFRBIFIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1IOCB0RBFUINTEDGTMR0CSTMR0SEPSAPS2PS1PS0RB7RB6RB5RB4RB3RB2RB1RB0TMR3CS1TMR3CS0T3CKPS1T3CKP30T3SYNCTMR3ONTMR1GETIGPOLT1GTMT1GSPMT1GG0/ DONET1GVALT1GSS1T1GSS0TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1TRISB0	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR CHS3 CHS2 CHS1 CHS0 GO/DONE ADON 00 0000 ANSB7 ANSB6 ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 1111 1111 SSEL CCP2SEL 00 0000 SSEL CCP2SEL -00 0000 SSEL CCP2M2 CCP2M1 CCP2M0 00 0000 CPSBRNG1 CPSBRNG0 CPSBOUT TBXCS 00<0000		

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

6.5.2.6 RD5/CPSA13

These pins are configurable to function as one of the following:

- General purpose I/O
- · Capacitive sensing input

6.5.2.7 RD6/CPSA14

These pins are configurable to function as one of the following:

- General purpose I/O
- Capacitive sensing input

6.5.2.8 RD7/CPSA15

These pins are configurable to function as one of the following:

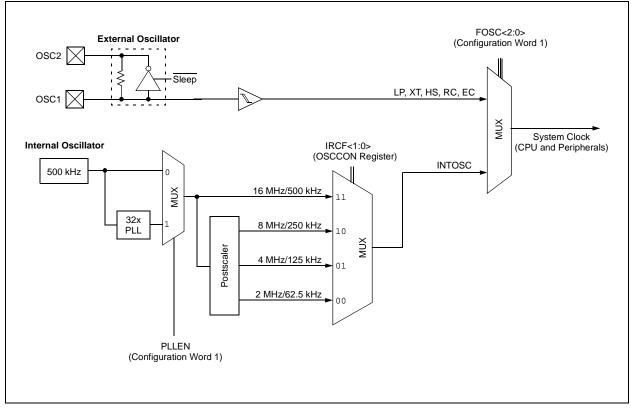
- General purpose I/O
- · Capacitive sensing input

IADLE 0-4	ABLE 6-4: SUMMART OF REGISTERS ASSOCIATED WITH FORTD											
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111		
CPSACON0	CPSAON	CPSARM	_	_	CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000		
CPSACON1	_	_	_	_	CPSACH3	CPSACH2	CPSACH1	CPSACH0	0000	0000		
CPSBCON0	CPSBON	CPSBRM	_	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000		
CPSBCON1	_	_	_	_	CPSBCH3	CPSBCH2	CPSBCH1	CPSBCH0	0000	0000		
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T <u>3GGO</u> / DONE	T3GVAL	T3GSS1	T3GSS0	00x0 0x00	uuuu uxuu		
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	xxxx xxxx		
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111		

TABLE 6-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

7.0 OSCILLATOR MODULE


7.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 7-1 illustrates a block diagram of the oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system can be configured to use an internal calibrated high-frequency oscillator as clock source, with a choice of selectable speeds via software.

Clock source modes are configured by the FOSC bits in Configuration Word 1 (CONFIG1). The oscillator module can be configured for one of eight modes of operation.

- 1. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 2. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 3. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 4. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.
- 5. EC External clock with I/O on OSC2/CLKOUT.
- HS High Gain Crystal or Ceramic Resonator mode.
- 7. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 8. LP Low-Power Crystal mode.

FIGURE 7-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	-	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	-00000	-00000
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
ANSELE	-	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
ADRES				A/D Result	Register Byte	Э			XXXX XXXX	uuuu uuuu
CCP2CON	-	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
FVRCON	FVRRDY	FVREN	_	_	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	q000 0000	d000 0000
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISE	_	_	_		TRISE3	TRISE2	TRISE1	TRISE0	1111	1111

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

TABLE 13-5: TIMER1/3 GATE SOURCES

TxGSS	Timer1 Gate Source	Timer3 Gate Source
00	Timer1 Gate Pin	Timer3 Gate Pin
01	Overflow of TimerA (TMRA increments from FFh to 00h)	Overflow of TimerB (TMRB increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

13.6.3 TxG PIN GATE OPERATION

The TxG pin is one source for Timer1/3 gate control. It can be used to supply an external source to the Timer1/3 gate circuitry. Timer1 gate can be configured for the T1G pin and Timer3 gate can be configured for the T3G pin.

13.6.4 TIMERA/B OVERFLOW GATE OPERATION

When TimerA/B increments from FFh to 00h a low-tohigh pulse will automatically be generated and internally supplied to the Timer1/3 gate circuitry. Timer1 gate can be configured for TimerA overflow and Timer3 gate can be configured for TimerB overflow.

13.6.5 TIMER2 MATCH GATE OPERATION

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1/3 gate circuitry. Both Timer1 gate and Timer3 gate can be configured for the Timer2 match.

13.6.6 WATCHDOG OVERFLOW GATE OPERATION

The Watchdog Timer oscillator, prescaler and counter will be automatically turned on when TMRxGE = 1 and TxGSS selects the WDT as a gate source for Timer1/3 (TxGSS = 11). TMRxON does not factor into the oscillator, prescaler and counter enable. See Table 13-6. Both Timer1 gate and Timer3 gate can be configured for Watchdog overflow.

The PSA and PS bits of the OPTION register still control what time-out interval is selected. Changing the prescaler during operation may result in a spurious capture.

Enabling the Watchdog Timer oscillator does not automatically enable a Watchdog Reset or wake-up from Sleep upon counter overflow.

Note: When using the WDT as a gate source for Timer1/3, operations that clear the Watchdog Timer (CLRWDT, SLEEP instructions) will affect the time interval being measured for capacitive sensing. This includes waking from Sleep. All other interrupts that might wake the device from Sleep should be disabled to prevent them from disturbing the measurement period.

As the gate signal coming from the WDT counter will generate different pulse widths, depending on if the WDT is enabled, when the CLRWDT instruction is executed, and so on, Toggle mode must be used. A specific sequence is required to put the device into the correct state to capture the next WDT counter interval.

WDTE	TMRxGE = 1 and TxGSS = 11	WDT Oscillator Enable	WDT Reset	Wake-up	WDT Available for TxG Source
1	N	Y	Y	Y	N
1	Y	Y	Y	Y	Y
0	Y	Y	N	N	Y
0	N	Ν	N	N	N

TABLE 13-6: WDT/TIMER1/3 GATE INTERRACTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	1111 1111	1111 1111
ANSELC	ANSC7	ANSC6	ANSC5	_	_	ANSC2	ANSC1	ANSC0	111111	111111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
CCPRxL			Capture/0	Compare/PWN	VI Register X L	ow Byte			xxxx xxxx	uuuu uuuu
CCPRxH			Capture/0	Compare/PWN	/I Register X H	ligh Byte			xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	x000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	—	—	—	CCP2IE	00000	00000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	—	_	—	CCP2IF	00000	00000
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	0000 0x00
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	uuuu uuuu
TMR1H		Holding Re	egister for the	Most Signific	ant Byte of the	e 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

 $\label{eq:Legend: Legend: Le$

17.3.4 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 17-4.

EQUATION 17-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 17-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 17-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

17.3.5 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

17.3.6 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (FOSC). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 7.0** "**Oscillator Module**" for additional details.

17.3.7 EFFECTS OF RESET

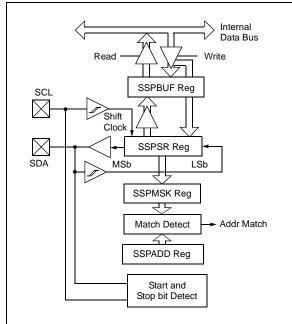
Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

17.3.8 SETUP FOR PWM OPERATION

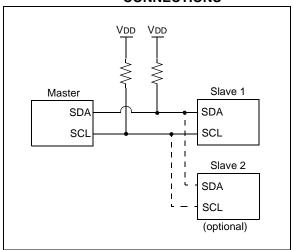
The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output driver(s) by setting the associated TRIS bit(s).
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- 4. Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.

19.2 I²C Mode


The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- · Address masking


Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of the SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of the SSPCON register.

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 25.0** "**Electrical Specifications**".

FIGURE 19-7: I²C MODE BLOCK DIAGRAM

FIGURE 19-8: TYPICAL I²C CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:

- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

19.2.1 HARDWARE SETUP

Selection of I^2C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

19.2.7 CLOCK STRETCHING

During any SCL low phase, any device on the I^2C bus may hold the SCL line low and delay, or pause, the transmission of data. This "stretching" of a transmission allows devices to slow down communication on the bus. The SCL line must be constantly sampled by the master to ensure that all devices on the bus have released SCL for more data.

Stretching usually occurs after an ACK bit of a transmission, delaying the first bit of the next byte. The SSP module hardware automatically stretches for two conditions:

- After a 10-bit address byte is received (update SSPADD register)
- Anytime the CKP bit of the SSPCON register is cleared by hardware

The module will hold SCL low until the CKP bit is set. This allows the user slave software to update SSPBUF with data that may not be readily available. In 10-bit addressing modes, the SSPADD register must be updated after receiving the first and second address bytes. The SSP module will hold the SCL line low until the SSPADD has a byte written to it. The UA bit of the SSPSTAT register will be set, along with SSPIF, indicating an address update is needed.

19.2.8 FIRMWARE MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits of the SSPSTAT register are cleared from a Reset or when the SSP module is disabled (SSPEN cleared). The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is Idle and both the S and P bits are clear.

In Firmware Master mode, the SCL and SDA lines are manipulated by setting/clearing the corresponding TRIS bit(s). The output level is always low, irrespective of the value(s) in the corresponding PORT register bit(s). When transmitting a '1', the TRIS bit must be set (input) and a '0', the TRIS bit must be clear (output).

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Firmware Master mode of operation can be done with either the Slave mode Idle (SSPM<3:0> = 1011), or with either of the Slave modes in which interrupts are enabled. When both master and slave functionality is enabled, the software needs to differentiate the source(s) of the interrupt. Refer to Application Note AN554, "Software Implementation of $l^2 C^{TM}$ Bus Master" (DS00554) for more information.

19.2.9 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allow the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set or when the bus is Idle, and both the S and P bits are clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRIS bits). There are two stages where this arbitration of the bus can be lost. They are the Address Transfer and Data Transfer stages.

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an \overrightarrow{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Refer to Application Note AN578, "Use of the SSP Module in the $l^2 C^{TM}$ Multi-Master Environment" (DS00578) for more information.

REGISTER 20-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

U-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0	
_	—	—	—	—	—	_	RD	
bit 7							bit 0	
Legend: S = Setable bit, cleared in hardware								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 7	Unimpleme	nted: Read as ':	1'					
bit 6-1	bit 6-1 Unimplemented: Read as '0'							

bit 0
 RD: Read Control bit
 1 = Initiates a program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).
 0 = Does not initiate a program memory read

REGISTER 20-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend.							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

REGISTER 20-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETLW	Return with literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE;W contains table
TABLE	<pre>;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

24.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

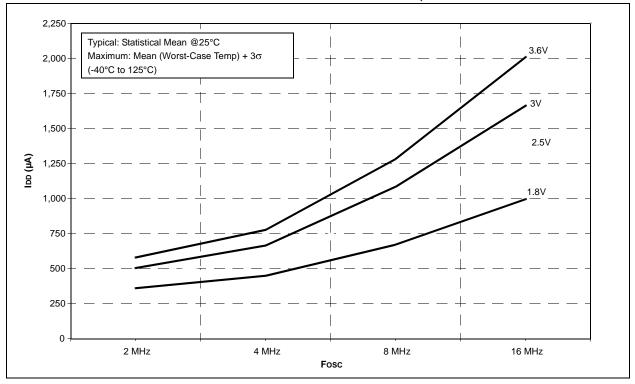
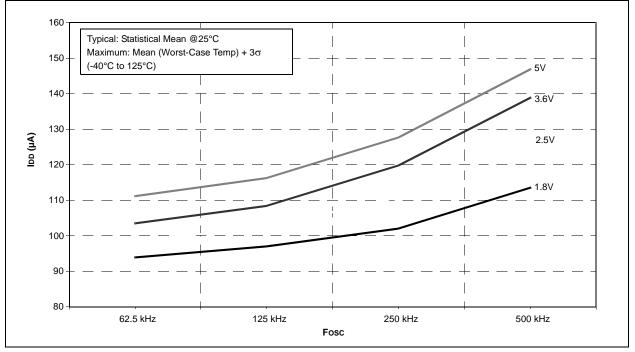

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 25-13: I²C BUS DATA REQUIREMENTS

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	—		
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	_	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free before a new transmis- sion can start
			400 kHz mode	1.3	—	μS	
SP111	Св	Bus capacitive loading		_	400	pF	


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

