

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf707-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLI	E 1:	40	/44-P	IN ALL		ATION	TABLE	FOR P	IC16F707	/PIC16	LF707			-	
Q	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ANSEL	A/D	DAC	Cap Sensor	Timers	ССР	AUSART	SSP	Interrupt	Pull-up	Basic
Vdd	11, 32	7, 26	7, 28	7, 8, 28		—	_	—	—	—	_	—	—	—	Vdd
Vss	12, 31	6, 27	6, 29	6, 30, 31		_	_	_	_	_	_	—	_	_	Vss

Note 1: Pull-up activated only with external MCLR configuration.

2: RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.

3: RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.

4: PIC16F707 only. VCAP functionality is selectable by the VCAPEN bits in Configuration Word 2.

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 0											
00h ⁽²⁾	INDF	Addres	sing this loca	ition uses co	ntents of FSI	R to address da	ata memory (n	ot a physical r	egister)	xxxx xxxx	xxxx xxxx
01h	TMR0				Timer0 M	odule Register				0000 0000	0000 0000
02h ⁽²⁾	PCL			Progra	m Counter (F	PC) Least Signi	ficant Byte			0000 0000	0000 0000
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽²⁾	FSR			Indi	rect Data Me	mory Address	Pointer			XXXX XXXX	uuuu uuuu
05h	PORTA		F	PORTA Data	Latch when	written: PORTA	A pins when rea	ad		xxxx xxxx	uuuu uuuu
06h	PORTB		F	ORTB Data	Latch when	written: PORTE	3 pins when re	ad		xxxx xxxx	uuuu uuuu
07h	PORTC		P	ORTC Data	Latch when	written: PORTO	C pins when re	ad		xxxx xxxx	uuuu uuuu
08h	PORTD		P	ORTD Data	Latch when	written: PORT) pins when re	ad		xxxx xxxx	uuuu uuuu
09h	PORTE	—	-	_	—	RE3	RE2	RE1	RE0	xxxx	uuuu
0Ah ^{(1),(2)}	PCLATH	—	-	_	Write I	Buffer for the u	pper 5 bits of t	he Program C	ounter	0 0000	0 0000
0Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	—	_	—	CCP2IF	00000	00000
0Eh	TMR1L		Holding R	egister for th	ne Least Sigr	nificant Byte of	the 16-bit TMF	R1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H		Holding F	Register for th	he Most Sign	ificant Byte of t	the 16-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
11h	TMR2			-	Timer2 M	odule Register	-	_		0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF		S	ynchronous	Serial Port R	eceive Buffer/1	Fransmit Regis	ter		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L			Captu	ure/Compare	/PWM Register	1 (LSB)			xxxx xxxx	uuuu uuuu
16h	CCPR1H			Captu	ire/Compare/	PWM Register	1 (MSB)	_		xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	-	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG				USART Tran	smit Data Regi	ster			0000 0000	0000 0000
1Ah	RCREG				USART Rece	eive Data Regis	ster			0000 0000	0000 0000
1Bh	CCPR2L			Captu	ure/Compare	/PWM Register	7 2 (LSB)			xxxx xxxx	uuuu uuuu
1Ch	CCPR2H			Captu	ire/Compare/	PWM Register	2 (MSB)			xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	-	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Result Register 2						xxxx xxxx	uuuu uuuu		
1Fh	ADCON0	_	-	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter. These registers can be addressed from any bank.

2:

3: Accessible only when SSPM<3:0> = 1001.

3.0 RESETS

The PIC16(L)F707 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset (POR)
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 3-3. These bits are used in software to determine the nature of the Reset.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 25.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

3.1 MCLR

The PIC16(L)F707 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a Reset does not drive the $\overline{\text{MCLR}}$ pin low.

Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 3-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the RE3/MCLR pin becomes an external Reset input. In this mode, the RE3/MCLR pin has a weak pull-up to VDD. In-Circuit Serial Programming is not affected by selecting the internal MCLR option.

3.2 Power-on Reset (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. A maximum rise time for VDD is required. See **Section 25.0 "Electrical Specifications"** for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 3.5** "**Brown-Out Reset (BOR)**").

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, *Power-up Trouble Shooting* (DS00607).

3.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the WDT oscillator. For more information, see **Section 7.3** "Internal Clock Modes". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- · Process variation

See DC parameters for details (Section 25.0 "Electrical Specifications").

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word 1.

3.4 Watchdog Timer (WDT)

The WDT has the following features:

- Shares an 8-bit prescaler with Timer0
- Time-out period is from 17 ms to 2.2 seconds, nominal
- Enabled by a Configuration bit

WDT is cleared under certain conditions described in Table 3-3.

3.4.1 WDT OSCILLATOR

The WDT derives its time base from 31 kHz internal oscillator.

Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (PWRT disabled), there will be no time-out at all. Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-6). This is useful for testing purposes or to synchronize more than one PIC16(L)F707 device operating in parallel.

Table 3-2 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is \overrightarrow{BOR} (Brown-out Reset). \overrightarrow{BOR} is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overrightarrow{BOR} = 0$, indicating that a brown-out has occurred. The \overrightarrow{BOR} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Oscillator Configuration	Power-up		Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 3-4: TIME-OUT IN VARIOUS SITUATIONS

FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1

6.4 **PORTC and TRISC Registers**

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 6-11). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-3 shows how to initialize PORTC.

Reading the PORTC register (Register 6-10) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISC register (Register 6-11) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-3: INITIALIZING PORTC

BANKSEL	PORTC	;
CLRF	PORTC	;Init PORTC
BANKSEL	TRISC	;
MOVLW	B`00001100′	;Set RC<3:2> as inputs
MOVWF	TRISC	;and set RC<7:4,1:0>
		;as outputs

The location of the CCP2 function is controlled by the CCP2SEL bit in the APFCON register (see Register 6-1).

REGISTER 6-10: PORTC: PORTC REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

RC<7:0>: PORTC General Purpose I/O Pin bits 1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

- 1 = PORTC pin configured as an input (tri-stated)
- 0 = PORTC pin configured as an output

14.0 TIMERA/B MODULES

TimerA and TimerB are two more Timer0-type modules. Timers A and B are available as general-purpose timers/counters, and are closely integrated with the capacitive sensing modules.

The TimerA/B modules incorporate the following features:

- 8-bit timer/counter register (TMRx)
- 8-bit prescaler
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- TMRA can be used to gate Timer1
- TMRB can be used to gate Timer3

Figure 14-1 is a block diagram of the TimerA/TimerB modules.

17.3.2 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 17-1.

EQUATION 17-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note:	The	Timer2	postscaler		(refe	r to
	Section	on 15.1"	Timer2 Ope	rati	on")	is not
	used	in the d	etermination	of	the	PWM
	freque	ency.				

17.3.3 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 17-2 is used to calculate the PWM pulse width.

Equation 17-3 is used to calculate the PWM duty cycle ratio.

EQUATION 17-2: PULSE WIDTH

Pulse Width =
$$(CCPRxL:CCPxCON < 5:4>)$$
 •

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 17-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (refer to Figure 17-3).

18.1.2.1 Enabling the Receiver

The AUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other AUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the AUSART. Clearing the SYNC bit of the TXSTA register configures the AUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the AUSART and automatically configures the RX/DT I/O pin as an input.

Note 1:	When the SPEN bit is set, the TX/CK I/O
	pin is automatically configured as an out-
	put, regardless of the state of the corre-
	sponding TRIS bit and whether or not the
	AUSART transmitter is enabled. The
	PORT latch is disconnected from the out-
	put driver so it is not possible to use the
	TX/CK pin as a general purpose output.
-	

2: The corresponding ANSEL bit must be cleared for the RX/DT port pin to ensure proper AUSART functionality.

18.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. Refer to Section 18.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the AUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note	e: lft	he rec	eive FIF	O is overrun	, no additi	onal
	ch	aracte	rs will be	received ur	ntil the ove	errun
	CO	ndition	is	cleared.	Refer	to
	Se	ction	18.1.2.5	"Receiv	e Ove	rrun
	Se Er	ection ror"f	18.1.2.5 or more	"Receiv information	re Over n on over	rrun errun

18.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the AUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Receive Interrupt Enable bit of the PIE1
 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit of the PIR1 register will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

18.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the AUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCREG will not clear the FERR bit.

TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELC	ANSC7	ANSC6	ANSC5	—	—	ANSC2	ANSC1 ANSC0		111111	111111
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG		AUSART Receive Data Register							0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit 0
-							
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	WCOL: Write 1 = The SSP software) 0 = No collisi	Collision Dete BUF register is on	ct bit s written while	it is still transr	nitting the prev	ious word (mus	t be cleared in
bit 6	SSPOV: Rece	eive Overflow I	ndicator bit				
	1 = A new by overflow, the SSPE flow bit i SSPBUF 0 = No overfl	the data in SS BUF, even if on s not set sinc register. ow	while the SS PSR is lost. C ly transmitting e each new	PBUF register Overflow can or g data, to avoid reception (and	is still holding hly occur in Sla d setting overflo l transmission)	the previous da ve mode. The u ow. In Master m is initiated by	ata. In case of iser must read iode, the over- writing to the
bit 5	SSPEN: Sync	hronous Seria	Port Enable	bit			
	⊥ = Enables s 0 = Disables s	serial port and of serial port and	configures SC	se pins as I/O	DI as serial por	t pins	
bit 4	CKP: Clock P	olarity Select b	oit				
	1 = Idle state 0 = Idle state	for clock is a h for clock is a lo	igh level ow level				
bit 3-0	SSPM<3:0>:	Synchronous S	Serial Port Mo	de Select bits			
	0000 = SPI M 0001 = SPI M 0010 = SPI M 0011 = SPI M 0100 = SPI S 0101 = SPI S	laster mode, cl laster mode, cl laster mode, cl laster mode, cl lave mode, clo lave mode, clo	ock = Fosc/4 ock = Fosc/1 ock = Fosc/6 ock = TMR2 ck = SCK pin ck = SCK pin	6 4 output/2 . <u>SS</u> pin contro . SS pin contro	I enabled.	can be used as	I/O pin.
Note 1:	When enabled, the	ese pins must b	e properly co	nfigured as inp	out or output.		

REGISTER 19-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)

E.

NOTES:

25.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F707	0.3V to +6.5V
Voltage on VCAP pin with respect to Vss, PIC16F707	0.3V to +4.0V
Voltage on VDD with respect to Vss, PIC16LF707	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	95 mA
Maximum current into VDD pin	70 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports (2), -40°C \leq TA \leq +85°C for industrial	200 mA
Maximum current sunk by all ports ⁽²⁾ , -40°C \leq TA \leq +125°C for extended	90 mA
Maximum current sourced by all ports ⁽²⁾ , $40^{\circ}C \le T_A \le +85^{\circ}C$ for industrial	140 mA
Maximum current sourced by all ports ⁽²⁾ , -40°C \leq TA \leq +125°C for extended	65 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-V$	OH) X IOH} + Σ (VOI X IOL).
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause perm	anent damage to the

device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

25.3 DC Characteristics: PIC16(L)F707-I/E (Power-Down) (Continued)

PIC16LF707				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F707				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Dovice Characteristics	Min	Tunt	Max.	Max.	Unite		Conditions			
No.	Device Characteristics	IVIIII.	турт	+85°C	+125°C	Units	Vdd	Note			
D028D		_	125	—	—	μA	1.8	Cap Sense HighRange			
			130	—	—	μΑ	3.0	Medium Power (Note 6)			
D028D			145	—	—	μA	1.8	Cap Sense High Range			
			150	—	—	μA	3.0	Medium Power (Note 6)			
			160	_	_	μΑ	5.0				
D028E			150	—	—	μA	1.8	Cap Sense HighRange			
			170	—	—	μA	3.0	High Power (Note 6)			
D028E		_	180	_	_	μA	1.8	Cap Sense High Range			
			190	_	_	μA	3.0	High Power (Note 6)			
		_	200		_	μA	5.0				

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.

4: A/D oscillator source is FRC.

5: 0.1 μF capacitor on VCAP (RA0).

6: Includes FVR IPD and DAC IPD.

FIGURE 25-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteris	Min.	Тур†	Max.	Units	Conditions			
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5TCY + 20		—	ns			
			With Prescaler	20	_	_	ns			
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5TCY + 20	_	_	ns			
			With Prescaler	20		_	ns			
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N		_	ns	N = prescale value (1, 4 or 16)		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 25-7: PIC16F707 A/D CONVERTER (ADC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD01	NR	Resolution	—		8	bit				
AD02	EIL	Integral Error	_		±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V			
AD04	EOFF	Offset Error	_		±2.2	LSb	VREF = 3.0V			
AD05	Egn	Gain Error	_		±1.5	LSb	VREF = 3.0V			
AD06	Vref	Reference Voltage ⁽³⁾	1.8		Vdd	V				
AD07	VAIN	Full-Scale Range	Vss		Vref	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_		50	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.			

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700			ns	Only relevant for Repeated
		Setup time	400 kHz mode	600		_		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000			ns	After this period, the first
		Hold time	400 kHz mode	600	_	—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		_	ns	
		Setup time	400 kHz mode	600		_		
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns	
		Hold time	400 kHz mode	600	_	_		

TABLE 25-12: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 26-18: PIC16LF707 IDD vs. VDD, LP MODE

FIGURE 26-60: PIC16F707 HFINTOSC WAKE-UP FROM SLEEP START-UP TIME

