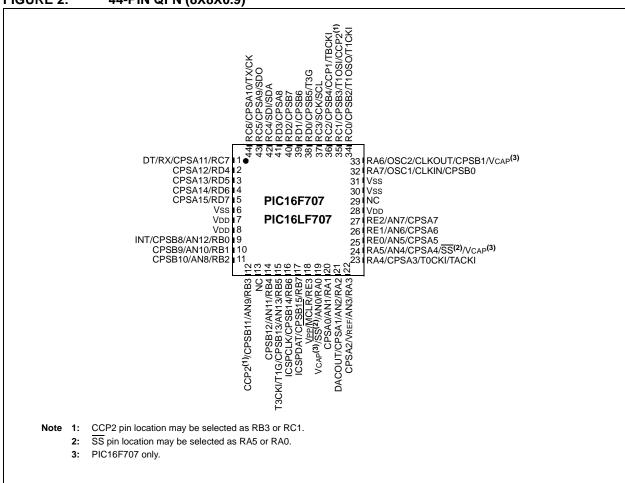
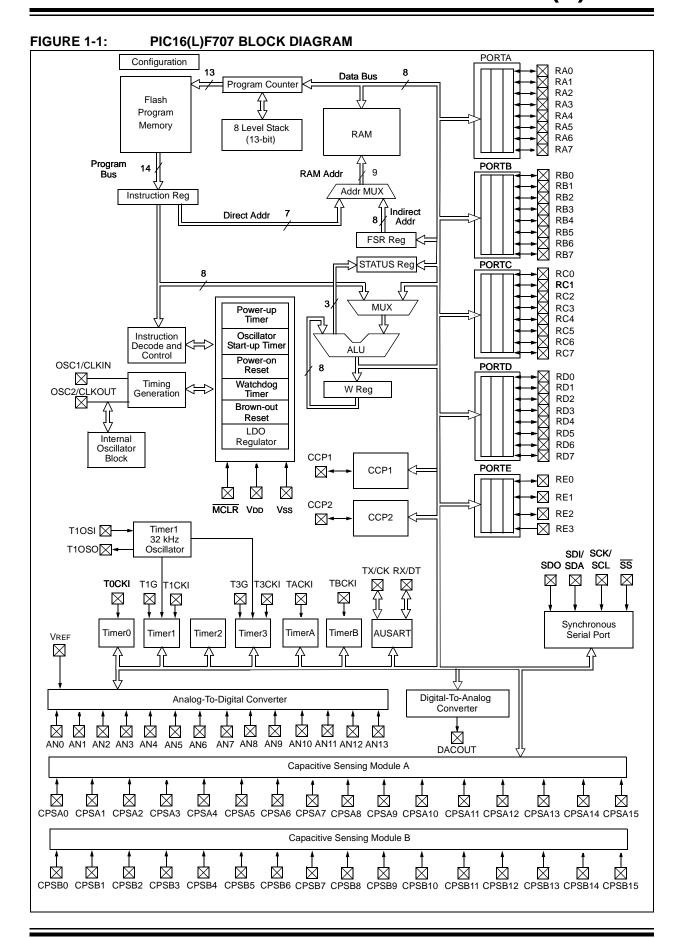


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

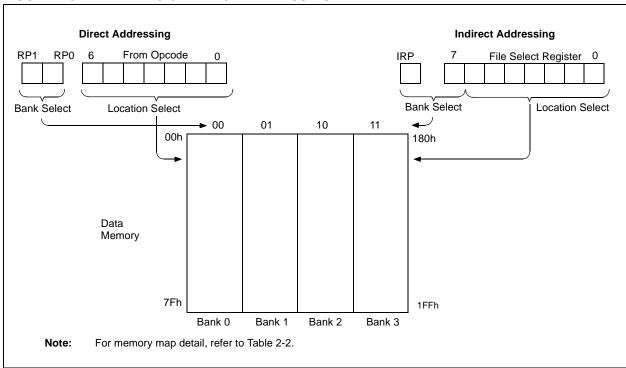
Applications of "<u>Embedded - Microcontrollers</u>"

B-4-9-	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	363 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf707t-i-pt

FIGURE 2: 44-PIN QFN (8X8X0.9)

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-3.

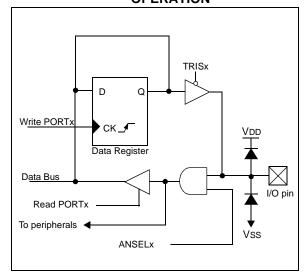
A simple program to clear RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW	020h	;initialize pointer
	MOVWF	FSR	;to RAM
	BANKISEL	020h	
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		yes continue;

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

6.0 I/O PORTS


There are thirty-five general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Each port has two registers for its operation. These registers are:

- TRISx registers (data direction register)
- PORTx registers (port read/write register)

Ports with analog functions also have an ANSELx register which can disable the digital input and save power. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 6-1.

FIGURE 6-1: GENERIC I/O PORT OPERATION

6.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 6-1. For this device family, the following functions can be moved between different pins.

- SS (Slave Select)
- CCP2

REGISTER 6-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	SSSEL	CCP2SEL
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-2 **Unimplemented:** Read as '0'.

bit 1 SSSEL: SS Input Pin Selection bit

 $0 = \overline{SS} \text{ function is on RA5/AN4/CPS7/\overline{SS}/VCAP}$ $1 = \overline{SS} \text{ function is on RA0/AN0/\overline{SS}/VCAP}$

bit 0 CCP2SEL: CCP2 Input/Output Pin Selection bit

0 = CCP2 function is on RC1/T1OSI/CCP2

1 = CCP2 function is on RB3/CCP2

6.6.2.4 RE3/MCLR/VPP

These pins are configurable to function as one of the following:

- General purpose input
- Master Clear Reset with weak pull-up
- Programming voltage reference input

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ANSELE	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
CPSACON0	CPSAON	CPSARM	_	_	CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000
CPSACON1	_	_	_	_	CPSACH3	CPSACH2	CPSACH1	CPSACH0	0000	0000
PORTE	_	_	_	_	RE3	RE2	RE1	RE0	xxxx	xxxx
TRISE	_	_	_	_	TRISE3 ⁽¹⁾	TRISE2	TRISE1	TRISE0	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: This bit is always '1' as RE3 is input-only.

9.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- · ADC voltage reference selection
- · ADC conversion clock source
- · Interrupt control
- · Results formatting

9.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 6.0** "I/O Ports" for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

9.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2** "**ADC Operation**" for more information.

9.1.3 ADC VOLTAGE REFERENCE

The ADREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be either VDD, an external voltage source or the internal Fixed Voltage Reference. The negative voltage reference is always connected to the ground reference. See **Section 10.0 "Fixed Voltage Reference"** for more details on the Fixed Voltage Reference.

9.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 10 TAD periods as shown in Figure 9-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 25.0** "**Electrical Specifications**" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock	Period (TAD)		Device Frequency (Fosc)								
ADC Clock Source ADCS<2:0>		20 MHz 16 MHz		8 MHz	4 MHz	1 MHz					
Fosc/2	000	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs					
Fosc/4	100	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs					
Fosc/8	001	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾					
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾					
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾					
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾					
FRC	x11	1.0-6.0 μs ^(1,4)									

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- **4:** When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

13.0 TIMER1/3 MODULES WITH GATE CONTROL

The Timer1 and Timer3 modules are 16-bit timers/counters with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- 3-bit prescaler
- Dedicated LP oscillator circuit (Timer1 only)
- Synchronous or asynchronous operation
- Multiple Timer1/3 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function (Timer1 only)
- Special Event Trigger with CCP (Timer1 only)
- Selectable Gate Source Polarity
- · Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- · Gate Event Interrupt

Figure 13-1 is a block diagram of the Timer1/3 modules.

REGISTER 14-1: TxCON: TIMERA/TIMERB CONTROL REGISTER

R/W-0/0	R/W-0/0 U-0 R/W-		R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMRxON	_	TMRxCS	TMRxSE	TMRxPSA	TMRxPS2	TMRxPS1	TMRxPS0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 TMRxON: TimerA/TimerB On/Off Control bit

1 = Timerx is enabled 0 = Timerx is disabled

bit 6 **Unimplemented:** Read as '0'

bit 5 TMRxCS: TMRx Clock Source Select bit

1 = Transition on TxCKI pin or CPSxOSC signal 0 = Internal instruction cycle clock (Fosc/4)

bit 4 TMRxSE: TMRx Source Edge Select bit

1 = Increment on high-to-low transition on TxCKI pin

0 = Increment on low-to-high transition on TxCKI pin

bit 3 TMRxPSA: Prescaler Assignment bit

1 = Prescaler is disabled. Timer clock input bypasses prescaler.

0 =Prescaler is enabled. Timer clock input comes from the prescaler output.

bit 2-0 TMRxPS<2:0>: Prescaler Rate Select bits

BIT VALUE	TMRx RATE
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1:128
111	1:256

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMERA/B

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CPSACON0	CPSAON	CPSARM	_	_	CPSARNG1	CPSARNG0	CPSAOUT	TAXCS	00 0000	00 0000
CPSBCON0	CPSBON	CPSBRM	ı	_	CPSBRNG1	CPSBRNG0	CPSBOUT	TBXCS	00 0000	00 0000
PIE2	TMR3GIE	TMR3IE	TMRBIE	TMRAIE	_	I	_	CCP2IE	00000	00000
PIR2	TMR3GIF	TMR3IF	TMRBIF	TMRAIF	_	I	_	CCP2IF	00000	00000
TACON	TMRAON	_	TACS	TASE	TAPSA	TAPS2	TAPS1	TAPS0	0-00 0000	0-00 0000
TBCON	TMRBON	_	TBCS	TBSE	TBPSA	TBPS2	TBPS1	TBPS0	0-00 0000	0-00 0000
TMRA				TimerA Mo	odule Register				0000 0000	0000 0000
TMRB	TimerB Module Register								0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the TimerA/B modules.

REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TOUTPS3	TOUTPS2 TOUTPS1		TOUTPS0 TMR2ON		T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-3 TOUTPS<3:0>: Timer2 Output Postscaler Select bits

0000 = 1:1 Postscaler

0001 = 1:2 Postscaler

0010 = 1:3 Postscaler

0011 = 1:4 Postscaler

0100 = 1:5 Postscaler

0101 = 1:6 Postscaler

0110 = 1:7 Postscaler

0111 = 1:8 Postscaler

1000 = 1:9 Postscaler

1001 = 1:10 Postscaler 1010 = 1:11 Postscaler

1010 = 1.111 03130010

1011 = 1:12 Postscaler

1100 = 1:13 Postscaler 1101 = 1:14 Postscaler

1110 = 1:15 Postscaler

1110 = 1.15 Posiscale

1111 = 1:16 Postscaler

bit 2 TMR2ON: Timer2 On bit

1 = Timer2 is on

0 = Timer2 is off

bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits

00 = Prescaler is 1

01 = Prescaler is 4

1x = Prescaler is 16

TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2			Т	imer2 Module	Period Regis	ter			1111 1111	1111 1111
TMR2	Holding Register for the 8-bit TMR2 Register								0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

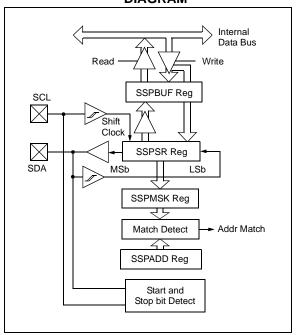
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

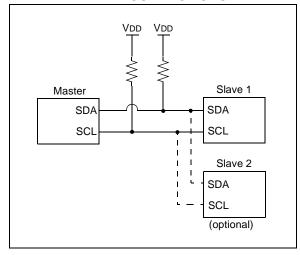
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1111 1111	1111 1111
APFCON	_	_	_	_	_	_	SSSEL	CCP2SEL	00	00
INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2				Timer2 Per	iod Register				1111 1111	1111 1111
SSPBUF		Syı	nchronous Se	erial Port Red	ceive Buffer/1	ransmit Reg	ister		xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

19.2 I²C Mode


The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- · Address masking


Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling $\rm I^2C$ mode, the $\rm I^2C$ slew rate limiters in the I/O pads are controlled by the SMP bit of the SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of the SSPCON register.

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to Section 25.0 "Electrical Specifications".

FIGURE 19-7: I²C MODE BLOCK DIAGRAM

FIGURE 19-8: TYPICAL I²C CONNECTIONS

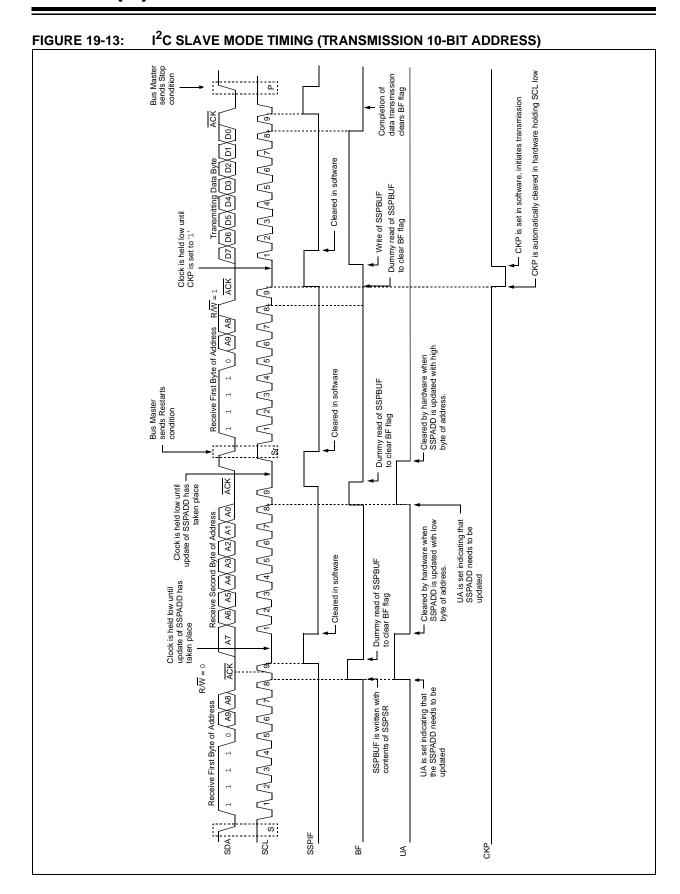
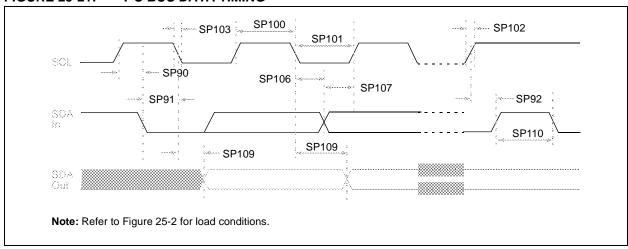
The SSP module has six registers for I^2C operation. They are:

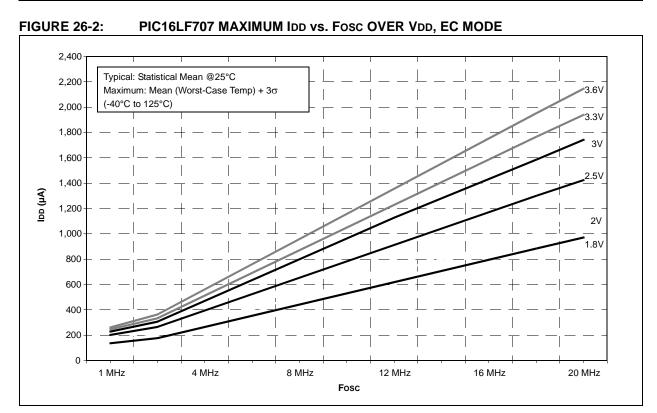
- SSP Control (SSPCON) register
- · SSP Status (SSPSTAT) register
- · Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

19.2.1 HARDWARE SETUP

Selection of I²C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.


TABLE 25-12: I²C BUS START/STOP BITS REQUIREMENTS

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	Tsu:sta	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	_		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	_	ns	After this period, the first
		Hold time	400 kHz mode	600	_	_		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	_	_		
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns	
		Hold time	400 kHz mode	600	_	_		

^{*} These parameters are characterized but not tested.

FIGURE 25-21: I²C BUS DATA TIMING

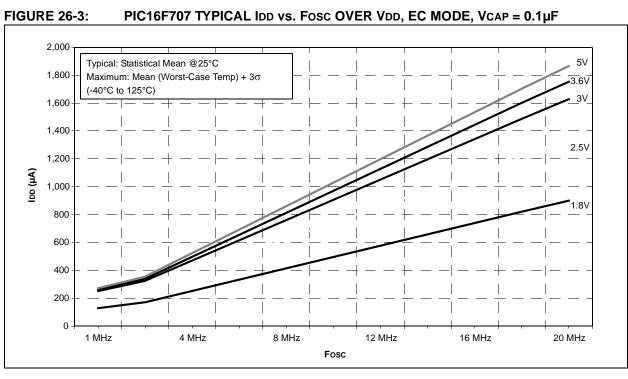


FIGURE 26-12: PIC16LF707 TYPICAL IDD vs. Fosc OVER VDD, HS MODE

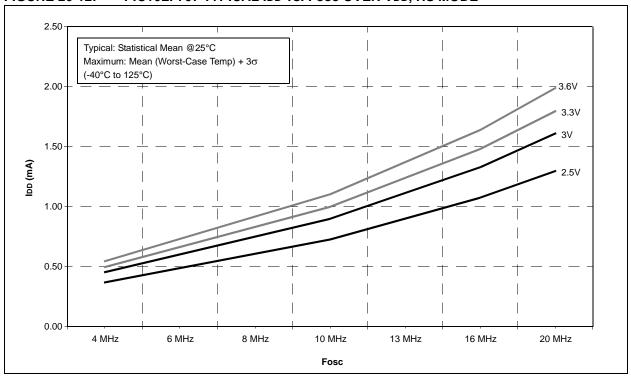
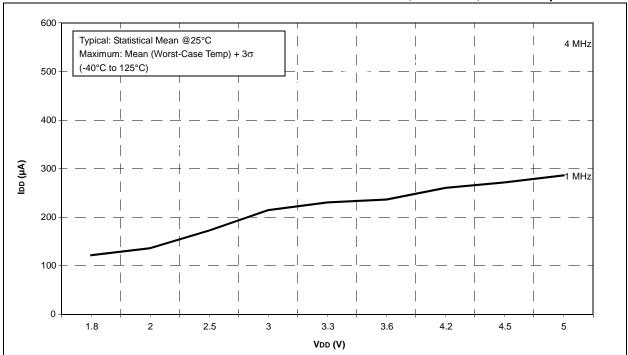



FIGURE 26-13: PIC16F707 MAXIMUM IDD vs. VDD OVER FOSC, XT MODE, VCAP = 0.1 µF

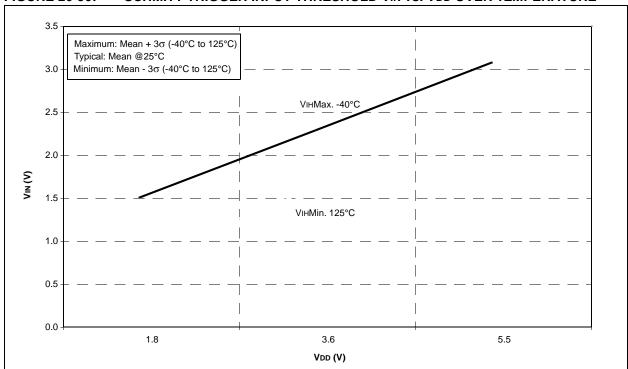


FIGURE 26-51: SCHMITT TRIGGER INPUT THRESHOLD VIN VS. VDD OVER TEMPERATURE

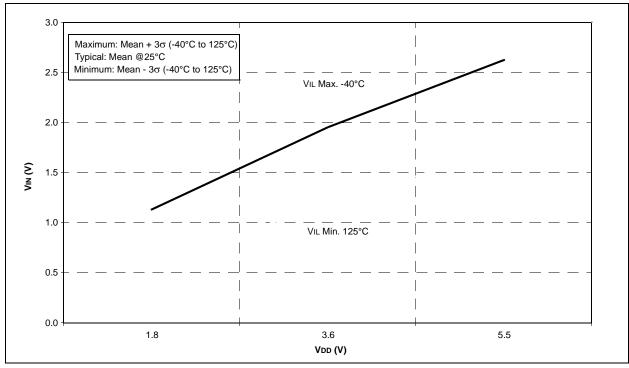


FIGURE 26-60: PIC16F707 HFINTOSC WAKE-UP FROM SLEEP START-UP TIME

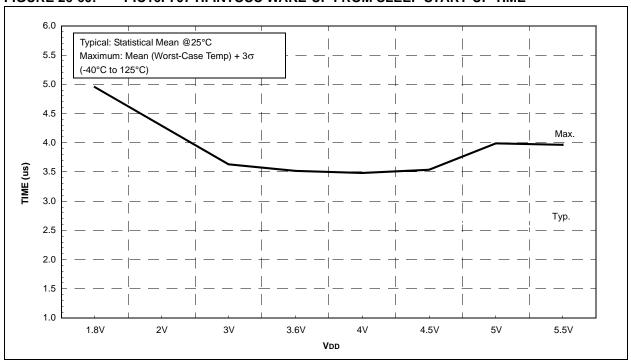


FIGURE 26-61: PIC16F707 A/D INTERNAL RC OSCILLATOR PERIOD

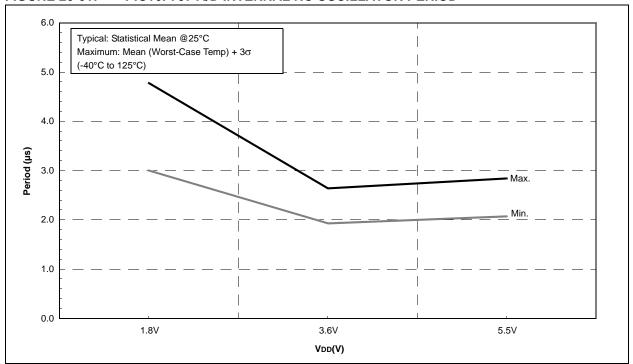


FIGURE 26-62: PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = HIGH

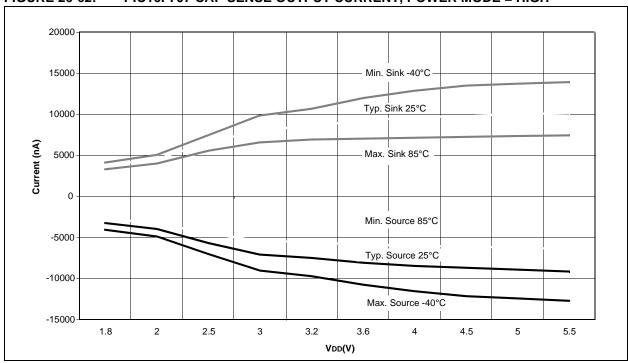


FIGURE 26-63: PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = MEDIUM

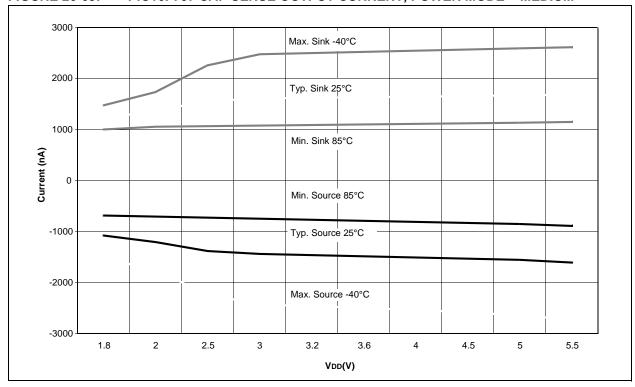


FIGURE 26-64: PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = LOW

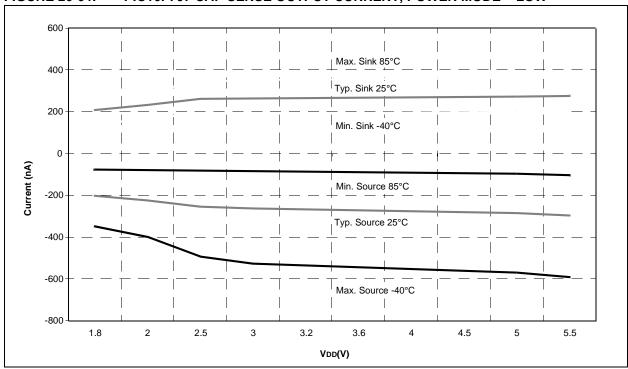
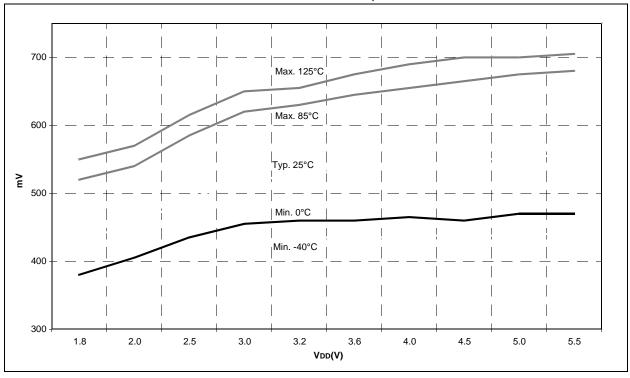
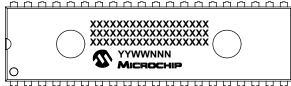



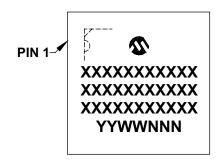
FIGURE 26-65: PIC16F707 CAP SENSOR HYSTERESIS, POWER MODE = HIGH

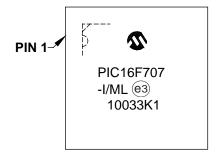


27.0 PACKAGING INFORMATION

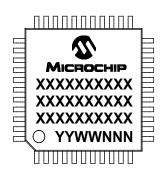
27.1 Package Marking Information

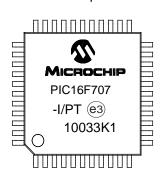
40-Lead PDIP (600 mil)





44-Lead QFN (8x8x0.9 mm)


Example



44-Lead TQFP (10x10x1 mm)

Example

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC® designator ((e3))
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.