

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, EBI/EMI, I ² C, MMC/SD, QSPI, SCI, SSIE, SPI, UART/USART, USB
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 26x14b; D/A 2x8b, 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	121-LFBGA
Supplier Device Package	121-LFBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs3a17c2a01cbj-ac0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.6 Pin assignment for 100-pin LQFP (top view)

Figure 1.8 Pin assignment for 64-pin LQFP (top view)

2.2.3 I/O I_{OH}, I_{OL}

Table 2.6 I/O I_{OH}, I_{OL} (1 of 2)

	÷			
Conditions:	VCC = AVCC0 =	<pre>VCC_USB = VCC</pre>	USB_LCO = 1.6 to 5.5 \	/

Parameter			Symbol	Min	Тур	Мах	Unit
Permissible output current	Ports P212, P213	-	I _{OH}	-	-	-4.0	mA
(average value per pin)			I _{OL}	-	-	4.0	mA
	Port P408	Low drive*1	I _{ОН}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive for IIC	I _{OH}	-	-	-8.0	mA
		VCC = 2.7 to 5.5 V	I _{OL}	-	-	8.0	mA
	Middle drive*2	I _{ОН}	-	-	-20.0	mA	
		VCC = 3.0 to 5.5 V	I _{OL}	-	-	20.0	mA
	Port P409 Middle drive*2 VCC = 2.7 to 3.0 V	I _{ОН}	-	-	-4.0	mA	
			I _{OL}	-	-	4.0	mA
		Middle drive*2 VCC = 2.7 to 3.0 V	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA
		Middle drive ^{*2}	I _{OH}	-	-	-20.0	mA
		VCC - 5.0 10 5.5 V	I _{OL}	-	-	20.0	mA
	Ports P100 to P115, P201 to P204, P300 to P315	Low drive*1	I _{ОН}	-	-	-4.0	mA
	P500 to P503, P600 to P606,		I _{OL}	-	-	4.0	mA
	P900 to P902	Middle drive*2	I _{ОН}	-	-	-4.0	mA
	(total 67 pins)		I _{OL}	-	-	8.0	mA
	Ports P914, P915	-	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
	Other output pin*3	Low drive*1	I _{OH}	-	-	-4.0	mA
			I _{OL}	-	-	4.0	mA
		Middle drive*2	I _{OH}	-	-	-8.0	mA
			I _{OL}	-	-	8.0	mA

2.2.5 I/O Pin Output Characteristics of Low Drive Capacity

Figure 2.2 V_{OH}/V_{OL} and I_{OH}/I_{OL} voltage characteristics at Ta = 25°C when low drive output is selected (reference data)

Figure 2.3 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data)

Figure 2.4 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data)

Figure 2.5 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data)

Figure 2.18 Voltage dependency in middle-speed mode (reference data)

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.15 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC rising gradient	Voltage monitor 0 reset disabled at startup (normal startup)	SrVCC	0.02	-	2	ms/V	-
	Voltage monitor 0 reset enabled at startup*1		0.02	-	-		
	SCI/USB Boot mode*2		0.02	-	2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.

Table 2.16 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When VCC change exceeds VCC ± 10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r(VCC)}	-	-	10	kHz	Figure 2.25 $V_{r(VCC)} \le VCC \times 0.2$
		-	-	1	MHz	Figure 2.25 V _{r(VCC)} ≤ VCC × 0.08
		-	-	10	MHz	Figure 2.25 V _{r(VCC)} ≤ VCC × 0.06
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ± 10%

Figure 2.25 Ripple waveform

- Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
- Note 4. The maximum value of operation frequency does not include the internal oscillator errors. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

Table 2.20	Operation frequency value in Low-voltage mode
Conditions: VCC	= AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max* ⁵	Unit		
Operation	System clock (ICLK)*4	1.6 to 5.5 V	f	0.032768	-	4	MHz	
frequency	FlashIF clock (FCLK)*1, *2, *4	1.6 to 5.5 V		0.032768	-	4		
	Peripheral module clock (PCLKA)*4	1.6 to 5.5 V		-	-	4		
	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4		
	Peripheral module clock (PCLKC)*3, *4	1.6 to 5.5 V		-	-	4		
	Peripheral module clock (PCLKD)*4	1.6 to 5.5 V		-	-	4		
	External bus clock (BCLK)*4	1.6 to 5.5 V	-	-	-	-	4	
	EBCLK pin output	1.8 to 5.5 V		-	-	4		
		1.6 to 1.8 V		-	-	2	1	

Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.

Note 4. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.

Table 2.21 Operation frequency value in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	
Operation	System clock (ICLK)*3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	FlashIF clock (FCLK)*1, *3	1.8 to 5.5 V		27.8528	32.768	37.6832	
	Peripheral module clock (PCLKA)*3	1.8 to 5.5 V	-	-	-	37.6832	
	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKC)* ^{2, *3}	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)*3	1.8 to 5.5 V		-	-	37.6832	
	External bus clock (BCLK)*3	1.8 to 5.5 V		-	-	37.6832	
	EBCLK pin output	1.8 to 5.5 V	-	-	-	37.6832	

Note 1. Programming and erasing the flash memory are not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 9, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK.

Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Figure 2.31 PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)

Figure 2.32 Sub-clock oscillation start timing

Figure 2.33 MOCO clock oscillation start timing

Table 2.33 Bus timing (3)

Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register VCC = 1.8 to 2.4 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Мах	Unit	Test conditions
Address delay	t _{AD}	-	90	ns	Figure 2.42
Byte control delay	t _{BCD}	-	90	ns	to Figure 2.45
CS delay	t _{CSD}	-	90	ns	
ALE delay time	t _{ALED}	-	90	ns	
RD delay	t _{RSD}	-	90	ns	
Read data setup time	t _{RDS}	70	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR delay	t _{WRD}	-	90	ns	
Write data delay	t _{WDD}	-	90	ns	
Write data hold time	t _{WDH}	0	-	ns	
WAIT setup time	t _{WTS}	70	-	ns	Figure 2.46
WAIT hold time	t _{WTH}	0	-	ns	

Table 2.34 Bus timing (4)

Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register VCC = 1.6 to 1.8 V

Output load conditions: V_{OH} = VCC × 0.5, V_{OL} = VCC × 0.5, C = 30 pF

Parameter	Symbol	Min	Max	Unit	Test conditions
Address delay	t _{AD}	-	120	ns	Figure 2.42
Byte control delay	t _{BCD}	-	120	ns	to Figure 2.45
CS delay	t _{CSD}	-	120	ns	
ALE delay time	t _{ALED}	-	120	ns	
RD delay	t _{RSD}	-	120	ns	
Read data setup time	t _{RDS}	90	-	ns	
Read data hold time	t _{RDH}	0	-	ns	
WR delay	t _{WRD}	-	120	ns	
Write data delay	t _{WDD}	-	120	ns	
Write data hold time	t _{WDH}	0	-	ns	
WAIT setup time	t _{WTS}	90	-	ns	Figure 2.46
WAIT hold time	t _{WTH}	0	-	ns]

Figure 2.41 Address/data multiplexed bus write access timing

Table 2.39 SCI timing (3)

Conditions: VCC = 2.7 to 5.5 V

Parameter	Symbol	Min	Мах	Unit	Test conditions	
Simple IIC	SDA input rise time	t _{Sr}	-	1000	ns	Figure 2.60
(Standard	SDA input fall time	t _{Sf}	-	300	ns	-
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc} *1	ns	
	Data input setup time	t _{SDAS}	250	-	ns	-
	Data input hold time	t _{SDAH}	0	-	ns	-
	SCL, SDA capacitive load	C _b *2	-	400	pF	
Simple IIC	SDA input rise time	t _{Sr}	-	300	ns	Figure 2.60
(Fast mode)	SDA input fall time	t _{Sf}	-	300	ns	For all ports except
	SDA input spike pulse removal time	t _{SP}	0	4 × t _{IICcyc} *1	ns	PmnPFS.DSCR of
	Data input setup time	t _{SDAS}	100	-	ns	For port P408 use
	Data input hold time	t _{SDAH}	0	-	ns	PmnPFS.DSCR1/
	SCL, SDA capacitive load	C _b *2	-	400	pF	DSCR of middle drive for IIC fast-mode.

Note 1. t_{IICcyc} : Clock cycle selected by the SMR.CKS[1:0] bits. Note 2. C_b indicates the total capacity of the bus line.

Table 2.54 A/D conversion characteristics (7) in low power A/D conversion mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Мах	Unit	Test conditions
Frequency			1	-	4	MHz	-
Analog input capacit	ance*2	Cs	-	-	8 (reference data)	pF	High-precision channel
			-	-	9 (reference data)	pF	Normal-precision channel
Analog input resistar	nce	Rs	-	-	13.1 (reference data)	kΩ	High-precision channel
			-	-	14.3 (reference data)	kΩ	Normal-precision channel
Analog input voltage	range	Ain	0	-	VREFH0	V	-
12-bit mode					·		
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKC = 4 MHz)	Permissi source in Max. = 9	ble signal npedance .9 kΩ	13.5	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±1.0	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Full-scale error			-	±1.5	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Quantization error	Quantization error		-	±0.5	-	LSB	-
Absolute accuracy		-	±3.0	±8.0	LSB	High-precision channel	
					±12.0	LSB	Other than above
DNL differential non	inearity eri	ror	-	±1.0	-	LSB	-
INL integral nonlinea	arity error		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKC = 4 MHz)	Permissi source in Max. = 9	ble signal npedance .9 kΩ	15.0	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error	•		-	±4.0	±30.0	LSB	High-precision channel
					±40.0	LSB	Other than above
Full-scale error			-	±6.0	±30.0	LSB	High-precision channel
					±40.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±12.0	±32.0	LSB	High-precision channel
					±48.0	LSB	Other than above
DNL differential non	inearity er	ror	-	±4.0	-	LSB	-
INL integral nonlinea	arity error		-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O V_{OH}, V_{OL}, and Other Characteristics.

2.7 TSN Characteristics

Table 2.60 TSN characteristics

```
Conditions: VCC = AVCC0 = 2.0 to 5.5 V
```

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Relative accuracy	-	-	±1.5	-	°C	2.4 V or above
	-	-	±2.0	-	°C	Below 2.4 V
Temperature slope	-	-	-3.65	-	mV/°C	-
Output voltage (at 25°C)	-	-	1.05	-	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	-	-	5	μs	-
Sampling time	-	5	-	-	μs	-

2.8 OSC Stop Detect Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Detection time	t _{dr}	-	-	1	ms	Figure 2.84

Figure 2.84 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Voltage detection level*1	Power-on reset (POR)	V _{POR}	1.27	1.42	1.57	V	Figure 2.85, Figure 2.86	
	Voltage detection circuit (LVD0)*2	V _{det0_0}	3.68	3.85	4.00	V	Figure 2.87 At falling edge VCC	
		V _{det0_1}	2.68	2.85	2.96			
		V _{det0_2}	2.38	2.53	2.64			
		V _{det0_3}	1.78	1.90	2.02			
		V _{det0_4}	1.60	1.69	1.82			
	Voltage detection circuit (LVD1)*3	V _{det1_0}	4.13	4.29	4.45	V	Figure 2.88	
		V _{det1_1}	3.98	4.16	4.30		At falling edge VCC	
		V _{det1_2}	3.86	4.03	4.18			
		V _{det1_3}	3.68	3.86	4.00			
		V _{det1_4}	2.98	3.10	3.22			
		V _{det1_5}	2.89	3.00	3.11			
		V _{det1_6}	2.79	2.90	3.01			
		V _{det1_7}	2.68	2.79	2.90			
		V _{det1_8}	2.58	2.68	2.78			
		V _{det1_9}	2.48	2.58	2.68			
		V _{det1_A}	2.38	2.48	2.58	-		
		V _{det1_B}	2.10	2.20	2.30			
		V _{det1_C}	1.84	1.96	2.05			
		V _{det1_D}	1.74	1.86	1.95			
		V _{det1_E}	1.63	1.75	1.84			
		V _{det1_F}	1.60	1.65	1.73			
	Voltage detection circuit (LVD2)*4	V _{det2_0}	4.11	4.31	4.48	V	Figure 2.89	
		V _{det2_1}	3.97	4.17	4.34		At falling edge	
		V _{det2_2}	3.83	4.03	4.20			
		V _{det2_3}	3.64	3.84	4.01			

Table 2.62	Power-on reset circuit and voltage detection circuit characteristics (1)
------------	--

Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.

Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.

Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.

Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.

Figure 2.91 VBATT_POR reset timing

Figure 2.92 VBATT pin voltage detection circuit timing

[1/4 Bias Method]

Table 2.71 Internal voltage boosting method LCD characteristics

Conditions: VCC = 1.8 V to 5.5 V

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	Test conditions
LCD output voltage	V _{L1}	C1 to C5*1 = 0.47 µF	VLCD = 04h	0.90	1.0	1.08	V	-
variation range			VLCD = 05h	0.95	1.05	1.13	V	-
			VLCD = 06h	1.00	1.10	1.18	V	-
			VLCD = 07h	1.05	1.15	1.23	V	-
			VLCD = 08h	1.10	1.20	1.28	V	-
			VLCD = 09h	1.15	1.25	1.33	V	-
			VLCD = 0Ah	1.20	1.30	1.38	V	-
			VLCD = 0Bh	1.25	1.35	1.43	V	-
			VLCD = 0Ch	1.30	1.40	1.48	V	-
Doubler output voltage	V _{L2}	C1 to C5*1 = 0.47 µF		2V _{L1} - 0.08	2V _{L1}	2V _{L1}	V	-
Tripler output voltage	V_{L3}	C1 to C5*1 = 0.47 µF		3V _{L1} - 0.12	3V _{L1}	3V _{L1}	V	-
Quadruply output voltage	V _{L4} *4	C1 to C5*1 = 0.47 µF		4V _{L1} - 0.16	4V _{L1}	4V _{L1}	V	-
Reference voltage setup time* ²	t _{VL1S}			5	-	-	ms	Figure 2.93
LCD output voltage variation range*3	t _{VLWT}	C1 to C5*1 = 0.47 µF		500	-	-	ms	

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = C5 = 0.47 µF ± 30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register or when the internal voltage boosting method is selected (by setting the MDSET[1] and MDSET[0] bits in the LCDM0 register to 01b) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 4. V_{L4} must be 5.5 V or lower.

2.12.3 Capacitor Split Method

[1/3 Bias Method]

Table 2.72Internal voltage boosting method LCD characteristicsConditions: VCC = 2.2 V to 5.5 V

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit	Test conditions
VL4 voltage*1	V _{L4}	C1 to C4 = 0.47 µF*2	-	VCC	-	V	-
VL2 voltage*1	V _{L2}	C1 to C4 = 0.47 µF*2	2/3 × V _{L4} - 0.07	$2/3 \times V_{L4}$	$2/3 \times V_{L4} + 0.07$	V	-
VL1 voltage*1	V _{L1}	C1 to C4 = 0.47 µF*2	1/3 × V _{L4} - 0.08	$1/3 \times V_{L4}$	$1/3 \times V_{L4} + 0.08$	V	-
Capacitor split wait time*1	t _{WAIT}		100	-	-	ms	Figure 2.93

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

Figure 1.1 LGA 145-pin

Figure 1.6 LQFP 64-pin

