E·XFL

NXP USA Inc. - MSC7110VM1000 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC1400 Core
Interface	Host Interface, I ² C, UART
Clock Rate	266MHz
Non-Volatile Memory	External
On-Chip RAM	80kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7110vm1000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin Assignments4						
	1.1	MAP-BGA Ball Layout Diagrams					
	1.2	Signal List By Ball Location					
2	Spec	ifications					
	2.1	Maximum Ratings					
	2.2	Recommended Operating Conditions					
	2.3	Thermal Characteristics					
	2.4	DC Electrical Characteristics					
	2.5	AC Timings					
3	Hard	ware Design Considerations					
	3.1	Thermal Design Considerations					
	3.2	Power Supply Design Considerations					
	3.3	Estimated Power Usage Calculations46					
	3.4	Reset and Boot48					
	3.5	DDR Memory System Guidelines					
4	Orde	ring Information					
5	Pack	age Information54					
6	Produ	uct Documentation					
7	Revis	sion History					
Lis	List of Figures						
F 1		NOOZ140 Dis st. Dis sus s					

MSC7110 Block Diagram
MSC7110 Molded Array Process-Ball Grid Array
(MAP-BGA), Top View
MSC7110 Molded Array Process-Ball Grid Array
(MAP-BGA), Bottom View
Timing Diagram for a Reset Configuration Write 24
DDR DRAM Input Timing Diagram 24

Figure 6.	DDR DRAM Output Timing Diagram
Figure 7.	DDR DRAM AC Test Load
Figure 8.	TDM Receive Signals
Figure 9.	TDM Transmit Signals
Figure 10.	Read Timing Diagram, Single Data Strobe 29
Figure 11.	Read Timing Diagram, Double Data Strobe
Figure 12.	Write Timing Diagram, Single Data Strobe 30
Figure 13.	Write Timing Diagram, Double Data Strobe
Figure 14.	Host DMA Read Timing Diagram, HPCR[OAD] = 031
Figure 15.	Host DMA Write Timing Diagram, HPCR[OAD] = 032
Figure 16.	I2C Timing Diagram
Figure 17.	UART Input Timing
Figure 18.	UART Output Timing
Figure 19.	EE Pin Timing
Figure 20.	EVNT Pin Timing
Figure 21.	GPI/GPO Pin Timing
Figure 22.	Test Clock Input Timing Diagram
Figure 23.	Boundary Scan (JTAG) Timing Diagram
Figure 24.	Test Access Port Timing Diagram
Figure 25.	TRST Timing Diagram
Figure 26.	Voltage Sequencing Case 1 40
Figure 27.	Voltage Sequencing Case 2 41
Figure 28.	Voltage Sequencing Case 3 42
Figure 29.	Voltage Sequencing Case 4
Figure 30.	Voltage Sequencing Case 5 44
Figure 31.	PLL Power Supply Filter Circuits 45
Figure 32.	SSTL Termination Techniques 50
Figure 33.	SSTL Power Value

Pin Assignments

ssignments

1.2 Signal List By Ball Location

Table 1 lists the signals sorted by ball number and configuration.

Table 1. MSC7110 Signals by Ball Designator

	Signal Names							
Number	Software Controlled				Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
A1			GI	ND				
A2			GI	ND				
A3			DC	QM1				
A4			DC	QS2				
A5			C	к				
A6			C	Ж				
A7		GPIC7		GPOC7	н	015		
A8		GPIC4		GPOC4	н	012		
A9		GPIC2		GPOC2	н	010		
A10		rese	erved		н	D7		
A11		rese	erved		н	D6		
A12		rese	erved		н	D4		
A13		rese	Н	D1				
A14		rese	н	D0				
A15	GND							
A16 (1L44X)	NC							
A16 (1M88B)	BM3	GP	ID8	GPOD7	rese	erved		
A17	NC							
A18			N	IC				
A19			N	IC				
A20			N	IC				
B1			V _C	DDM				
B2			N	IC				
B3			C	S0				
B4			DC	M2				
B5			DG	283				
B6			DG	280				
B7			CI	KE				
B8			V	/E				
B9		GPIC6		GPOC6	н	014		
B10		GPIC3		GPOC3	Н	D11		
B11		GPIC0		GPOC0	н	D8		
B12		rese	erved		н	D5		
B13		rese	erved		н	D2		
B14			N					
B15 (1L44X)			Ν	IC				

Pin Assignments

	Signal Names							
Number		S	oftware Controll	ed	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
P1				D7				
P2			C	017				
P3			Γ	016				
P4			V	DDM				
P5			V	DDM				
P6			V	DDM				
P7			G	ND				
P8			G	ND				
P9			G	ND				
P10			G	ND				
P11			G	ND				
P12			G	ND				
P13			G	ND				
P14			G	ND				
P15			V	סוסכ				
P16		V _{DDIO}						
P17		V _{DDC}						
P18		PORESET						
P19		TPSEL						
P20		V _{DDPLL}						
R1			G	ND				
R2			Γ	019				
R3			Γ	018				
R4			V	DDM				
R5			V	DDM				
R6			V	DDM				
R7			G	ND				
R8			V	DDM				
R9			G	ND				
R10			V	DDM				
R11			G	ND				
R12			G	ND				
R13			V	DDIO				
R14			G	ND				
R15			V	ODIO				
R16			V	ODIO				
R17			V	DDC				
R18			T	DO				

Table 1. MSC7110 Signals by Ball Designator (continued)

ssignments

	Signal Names						
Number		So	oftware Controll	ed	Hardware	Controlled	
Number	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
R19		reser	rved		EE0/[DBREQ	
R20			TE	ST0			
T1			V	DDM			
T2			D	20			
Т3			D	22			
T4			V	DDM			
Т5			V	DDM			
Т6			V	DDC			
Τ7			V	DDM			
Т8			V	DDM			
Т9			V	DDC			
T10			V	DDM			
T11			V	DDM			
T12			V	DIO			
T13							
T14		Volda					
T15	V _{DDIO}						
T16		V _{DDC}					
T17		V _{DDC}					
T18		NC					
T19			Т	MS			
T20			HRI	ESET			
U1			G	ND			
U2		D21					
U3			C	23			
U4			V	DDM			
U5			V	DDC			
U6			V	DDC			
U7			V	DDC			
U8			V	DDC			
U9			V	DDC			
U10			V	DDC			
U11			V	DDC			
U12			V	DDC			
U13			V				
U14			V	DDC			
U15			V	DDC			
U16			V	DDC			

Table 1. MSC7110 Signals by Ball Designator (continued)

ifications

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	℃ ℃

Table 3. Recommended (Operating	Conditions
------------------------	-----------	------------

2.3 Thermal Characteristics

 Table 4 describes thermal characteristics of the MSC7110 for the MAP-BGA package.

				MAP-BGA			
		Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit	
Junction-to-ambient ^{1, 2}		R _{θJA}	39	31	°C/W		
Junction-to-ambient, four-layer board ^{1, 3}		R _{θJA}	23	20	°C/W		
Junction-to-board ⁴		R _{θJB}	12		°C/W		
Junction-to-case ⁵		R _{θJC}	7		°C/W		
Junction-to-package-top ⁶		Ψ_{JT}	2		°C/W		
Notes:	1.	Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.					
	2.	Per SEMI G38-87 and JEDEC JESD51-2 wi	th the single layer bo	oard horizontal.			
3. Per JEDEC JESD51-6 with the board horizontal.							
 Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measing the top surface of the board near the package. 				are is measured on			
	5.	Thermal resistance between the die and the 1012.1).	case top surface as	measured by the col	d plate method (MIL	SPEC-883 Method	
	6.	Thermal characterization parameter indicatir per JEDEC JESD51-2.	ng the temperature di	ifference between pa	ackage top and the ju	nction temperature	

Table 4.	Thermal	Characteristics	for MAP-BG	A Package
----------	---------	-----------------	------------	-----------

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC7110.

Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both V_{DDIO} and V_{DDC} vary by +2 percent or both vary by -2 percent).

Characteristic	Symbol	Min	Typical	Мах	Unit
Core and PLL voltage	V _{DDC} V _{DDPLL}	1.14	1.2	1.26	V
DRAM interface I/O voltage ¹	V _{DDM}	2.375	2.5	2.625	V
I/O voltage	V _{DDIO}	3.135	3.3	3.465	V
DRAM interface I/O reference voltage ²	V _{REF}	$0.49 \times V_{DDM}$	1.25	$0.51 \times V_{DDM}$	V
DRAM interface I/O termination voltage ³	VTT	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	V
Input high CLKIN voltage	V _{IHCLK}	2.4	3.0	3.465	V
DRAM interface input high I/O voltage	V _{IHM}	V _{REF} + 0.28	V _{DDM}	V _{DDM} + 0.3	V
DRAM interface input low I/O voltage	V _{ILM}	-0.3	GND	V _{REF} – 0.18	V
Input leakage current, $V_{IN} = V_{DDIO}$	I _{IN}	-1.0	0.09	1	μA
V _{REF} input leakage current	I _{VREF}	_	—	5	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDIO}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, V _{IL} = 0.4 V	ΙL	-1.0	0.09	1	μA
Signal high input current, V_{IH} = 2.0 V	I _H	-1.0	0.09	1	μA
Output high voltage, $I_{OH} = -2$ mA, except open drain pins	V _{OH}	2.0	3.0	—	V
Output low voltage, I _{OL} = 5 mA	V _{OL}	_	0	0.4	V
Typical core power ⁵ • at 200 MHz • at 266 MHz (mask set 1M88B only)	P _C	_	222 293		mW mW
Notes: 1. The value of V_{DDM} at the MSC7110 device r	nust remain wit	hin 50 mV of V _{DDM} a	t the DRAM de	vice at all times.	

Table 5. DC Electrical Characteristics

V_{REF} must be equal to 50% of V_{DDM} and track V_{DDM} variations as measured at the receiver. Peak-to-peak noise must not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the MSC7110 device. It is the level measured at the far end signal termination. It should be equal to V_{REF}. This rail should track variations in the DC level of V_{REF}.

Output leakage for the memory interface is measured with all outputs disabled, 0 V ≤ V_{OUT} ≤ V_{DDM}.

5. The core power values were measured using a standard EFR pattern at typical conditions (25°C, 200 MHz or 266 MHz, 1.2 V core).

Table 6 lists the DDR DRAM capacitance.

Table 6. DDR DRAM Capacitance

Parameter/Condition	Symbol	Max	Unit
Input/output capacitance: DQ, DQS	C _{IO}	30	pF
Delta input/output capacitance: DQ, DQS	C _{DIO}	30	pF
Note:These values were measured under the following conditions: $V_{DDM} = 2.5 V \pm 0.125 V$ $f = 1 MHz$ $T_A = 25^{\circ}C$ $V_{OUT} = V_{DDM}/2$ V_{OUT} (peak to peak) = 0.2 V			

2.5.2.1 PLL Multiplier Restrictions

There are two restrictions for correct usage of the PLL block:

- The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range 10.5–19.5 MHz.
- The output frequency of the PLL multiplier must be in the range 300-600 MHz.

When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you must meet these constraints.

2.5.2.2 Division Factors and Corresponding CLKIN Frequency Range

The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in Table 10.

PLLDVF Field Value	Divide Factor	CLKIN Frequency Range	Comments	
0x00	1	10.5 to 19.5 MHz	Pre-Division by 1	
0x01	2	21 to 39 MHz	Pre-Division by 2	
0x02	3	31.5 to 58.5 MHz	Pre-Division by 3	
0x03	4	42 to 78 MHz	Pre-Division by 4	
0x04	5	52.5 to 97.5 MHz	Pre-Division by 5	
0x05	6	63 to 100 MHz	Pre-Division by 6	
0x06	7	73.5 to 100 MHz	Pre-Division by 7	
0x07	8	84 to 100 MHz	Pre-Division by 8	
0x08	9	94.5 to 100 MHz	Pre-Division by 9	
Note: The maximum CLKIN frequency is 100 MHz. Therefore, the PLLDVF value must be in the range from 1–9.				

Table 10. CLKIN Frequency Ranges by Divide Factor Value

2.5.2.3 Multiplication Factor Range

The multiplier block output frequency ranges depend on the input clock frequency as shown in Table 11.

Table 11. PLLMLTF Ranges

Multiplier Block (Loop) Output Range		Minimum PLLMLTF Value	Maximum PLLMLTF Value
	$300 \leq [Pre-Divided Clock \times (PLLMLTF + 1)] \leq 600 \text{ MHz}$	300/Pre-Divided Clock	600/Pre-Divided Clock
Note:	This table results from the allowed range for F_{Loop} . The minim frequency of the Pre-Divided Clock.	num and maximum multiplication fa	ctors are dependent on the

2.5.2.4 Allowed Core Clock Frequency Range

The frequency delivered to the core, extended core, and peripheral depends on the value of the CLKCTRL[RNG] bit as shown in **Table 12**.

Table 12.	F _{vco}	Frequency	Ranges
-----------	------------------	-----------	--------

CL	KCTRL[RNG] Value	Allowed Range of F _{vco}	
	1	$300 \le F_{vco} \le 600 \text{ MHz}$	
	0	$150 \le F_{vco} \le 300 \text{ MHz}$	
Note:	This table results from the allowed range for F _{vco} , which is F _{Loop} modified by CLKCTRL[RNG].		

This bit along with the CKSEL determines the frequency range of the core clock.

	Po <u>wer-On Re</u> set (PORESET)	H <u>ard Rese</u> t (HRESET)	S <u>oft Rese</u> t (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (refer to Section 2.5.3.1 for details).	Yes	No	No
PLL and clock synthesis states Reset	Yes	No	No
HRESET Driven	Yes	Yes	No
Software watchdog and bus time-out monitor registers	Yes	Yes	Yes
Clock synthesis modules (STOPCTRL, HLTREQ, and HLTACK) reset	Yes	Yes	Yes
Extended core reset	Yes	Yes	Yes
Peripheral modules reset	Yes	Yes	Yes

Table 16. Reset Actions for Each Reset Source

2.5.3.1 Power-On Reset (PORESET) Pin

Asserting $\overrightarrow{\text{PORESET}}$ initiates the power-on reset flow. $\overrightarrow{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after external power to the MSC7110 reaches at least 2/3 V_{DD}.

2.5.3.2 Reset Configuration

The MSC7110 has two mechanisms for writing the reset configuration:

- From a host through the host interface (HDI16)
- From memory through the I²C interface

Five signal levels (see **Chapter 1** for signal description details) are sampled on **PORESET** deassertion to define the boot and operating conditions:

- BM[0–1]
- SWTE
- H8BIT
- HDSP

2.5.3.3 Reset Timing Tables

 Table 17 and Figure 4 describe the reset timing for a reset configuration write.

Table 17. Timing for a Reset Configuration Write

No.	Characteristics	Expression	Unit			
1	Required external PORESET duration minimum	16/F _{CLKIN}	clocks			
2	Delay from PORESET deassertion to HRESET deassertion	521/F _{CLKIN}	clocks			
Note:	: Timings are not tested, but are guaranteed by design.					

Table 21. TDM Timing

Characteristic	Expression	Min	Мах	Units		
TDMxTCK High to TDMxTD output valid		—	14.0	ns		
TDMxTD hold time		2.0	—	ns		
TDMxTCK High to TDMxTD output high impedance		—	10.0	ns		
TDMXTFS/TDMxRFS output valid		—	13.5	ns		
TDMxTFS/TDMxRFS output hold time 2.5				ns		
1. Output values are based on 30 pF capacitive load.						
	CharacteristicTDMxTCK High to TDMxTD output validTDMxTD hold timeTDMxTCK High to TDMxTD output high impedanceTDMXTFS/TDMxRFS output validTDMxTFS/TDMxRFS output hold time1. Output values are based on 30 pF capacitive load.	CharacteristicExpressionTDMxTCK High to TDMxTD output valid	CharacteristicExpressionMinTDMxTCK High to TDMxTD output valid—TDMxTD hold time2.0TDMxTCK High to TDMxTD output high impedance—TDMXTFS/TDMxRFS output valid—TDMxTFS/TDMxRFS output hold time2.51. Output values are based on 30 pF capacitive load.	CharacteristicExpressionMinMaxTDMxTCK High to TDMxTD output valid—14.0TDMxTD hold time2.0—TDMxTCK High to TDMxTD output high impedance—10.0TDMXTFS/TDMxRFS output valid—13.5TDMxTFS/TDMxRFS output hold time2.5—1. Output values are based on 30 pF capacitive load.——		

2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.

Figure 8. TDM Receive Signals

2.5.6 HDI16 Signals

Table 22. Host Interface ((HDI16) Timing ^{1, 2}	2
----------------------------	--------------------------------	---

No.	Characteristics ³	Mask Set 1L	.44X	Mask Set 1N	188B	Unit
	onardoteristics	Expression Value Expression Value				
40	Host Interface Clock period	T _{HCLK}	Note 1	T _{CORE}	Note 1	ns

Table 22. Host Interface (HDI16) Timing ^{1, 2} (continued)
---------------------------------	--------------------------------------

No		Characteristics ³	Mask Set 1L	.44X	Mask Set 1	188B	Unit
NO.		Characteristics	Expression	Value	Expression	Value	
Notes	1.	T _{HCLK} = 2/ (Core Clock). At 200 MHz, T _{HCLK} = 10 ns. T _{COR}	E = core clock period	d. At 266 M	IHz, T _{CORE} = 3.75 n	IS.	
	2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.						
	3.	3. $V_{DD} = 3.3 \text{ V} \pm 0.15 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +105 °C, $C_L = 30 \text{ pF}$ for maximum delay timings and $C_L = 0 \text{ pF}$ for minimum delay timing					mings.
	4.	The read data strobe is HRD/HRD in the dual data strobe m	ode and HDS/HDS	in the singl	e data strobe mode		
	5.	For 64-bit transfers, The "last data register" is the register at	address 0x7, which	is the last	location to be read	or written ir	n data
		transfers. This is RX0/TX0 in the little endian mode (HBE =	0), or RX3/TX3 in th	e big endia	an mode (HBE = 1).		
	6.	6. This timing is applicable only if a read from the "last data register" is followed by a read from the RXL, RXM, or RXH regist					sters
		without first polling RXDF or HREQ bits, or waiting for the as	ssertion of the HREC	Q/HREQ sig	gnal.		
	7.	This timing is applicable only if two consecutive reads from	one of these register	rs are exec	uted.		
	8.	The write data strobe is HWR in the dual data strobe mode	and HDS in the sing	le data stro	obe mode.		
	9.	The data strobe is host read (HRD/HRD) or host write (HWF	R/HWR) in the dual o	data strobe	mode and host dat	a strobe	
		(HDS/HDS) in the single data strobe mode.					
	10.	The host request is HREQ/HREQ in the single host request	mode and HRRQ/H	RRQ and I	HTRQ/HTRQ in the	double hos	st
		request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is fu				is full	
		(treat as level Host Request).					
	11.	Compute the value using the expression.					
	12.	For mask set 1M88B, the read and write data strobe minimu and dual data strobe modes is based on timings 57 and 58.	um deassertion width	n for non-"la	ast data register" ac	cesses in s	single

Figure 10 and Figure 11 show HDI16 read signal timing. Figure 12 and Figure 13 show HDI16 write signal timing.

Figure 10. Read Timing Diagram, Single Data Strobe

2.5.7 I²C Timing

No.		Fa			
	Characteristic	Min	Мах	Unit	
450	SCL clock frequency 0		400	kHz	
451	Hold time START condition	(Clock period/2) – 0.3	_	μs	
452	SCL low period	(Clock period/2) – 0.3	_	μs	
453	SCL high period	(Clock period/2) – 0.1		μs	
454	Repeated START set-up time (not shown in figure)	epeated START set-up time (not shown in figure) $2 \times 1/F_{BCK}$		μs	
455	Data hold time	ata hold time 0		μs	
456	Data set-up time	250	_	ns	
457	SDA and SCL rise time	_	700	ns	
458	SDA and SCL fall time	—	300	ns	
459	Set-up time for STOP	(Clock period/2) – 0.7	_	μs	
460	Bus free time between STOP and START	(Clock period/2) – 0.3		μs	
Note:	SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance on SDA and SCL is 400 pF.				

Table 23. I²C Timing

Figure 16. I²C Timing Diagram

2.5.8 UART Timing

No.	Characteristics	Expression	Mask Set 1L44X		Mask Set 1M88B		Unit
			Min	Max	Min	Max	
	Internal bus clock (APBCLK)	F _{CORE} /2	—	100	—	133	MHz
_	Internal bus clock period (1/APBCLK)	T _{APBCLK}	10.0	_	7.52	_	ns
400	URXD and UTXD inputs high/low duration	$16 \times T_{APBCLK}$	160.0	_	120.3	_	ns
401	URXD and UTXD inputs rise/fall time		_	5	_	5	ns
402	UTXD output rise/fall time		—	5		5	ns

Table 24. UART Timing

Figure 17. UART Input Timing

Figure 18. UART Output Timing

2.5.9 EE Timing

Table 25. EE0 Timing

Number		Characteristics	Туре	Min	
65		EE0 input to the core	Asynchronous	4 core clock periods	
66		EE0 output from the core	Synchronous to core clock	1 core clock period	
Notes: 1.	The	The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.			
2.	Cor	Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details.			
3.	Ref	Refer to Table 15 for details on EE pin functionality.			

Figure 19 shows the signal behavior of the EE pin.

Figure 19. EE Pin Timing

2.5.12 JTAG Signals

No.	Characteristics	All freq	Unit			
	Characteristics	Min	Max	Onit		
700	TCK frequency of operation (1/($T_C \times 3$); maximum 22 MHz)	0.0	40.0	MHz		
701	TCK cycle time	25.0	_	ns		
702	TCK clock pulse width measured at $V_{M} = 1.6 V$	11.0	_	ns		
703	TCK rise and fall times	0.0	3.0	ns		
704	Boundary scan input data set-up time	5.0	_	ns		
705	Boundary scan input data hold time	14.0	_	ns		
706	TCK low to output data valid	0.0	20.0	ns		
707	TCK low to output high impedance	0.0	20.0	ns		
708	TMS, TDI data set-up time	5.0	_	ns		
709	TMS, TDI data hold time	25.0	_	ns		
710	TCK low to TDO data valid	0.0	24.0	ns		
711	TCK low to TDO high impedance	0.0	10.0	ns		
712	TRST assert time	100.0	_	ns		
Note:	All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.					

Table 28. JTAG Timing

Figure 22. Test Clock Input Timing Diagram

ware Design Considerations

3 Hardware Design Considerations

This section described various areas to consider when incorporating the MSC7110 device into a system design.

3.1 Thermal Design Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D) \qquad \qquad Eqn. \ I$$

where

 T_A = ambient temperature near the package (°C)

 R_{HJA} = junction-to-ambient thermal resistance (°C/W)

 $P_D = P_{INT} + P_{I/O} =$ power dissipation in the package (W)

 $P_{INT} = I_{DD} \times V_{DD}$ = internal power dissipation (W)

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC7110 are listed in **Table 4**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm^2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip.

You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine T_J :

$$T_J = T_T + (\Psi_{JT} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C) Ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in the package (W)

ware Design Considerations

3.2.2.3 Case 3

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDM} (2.5 V) and V_{REF} (1.25 V) supplies simultaneously (first).
- 2. Turn off the V_{DDC} (1.2 V) supply second.
- 3. Turn of the V_{DDIO} (3.3 V) supply third (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 28** for relative timing for Case 3.

Figure 28. Voltage Sequencing Case 3

3.2.2.4 Case 4

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V), V_{DDM} (2.5 V), and V_{REF} (1.25 V) supplies simultaneously (second).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDC} (1.2 V), V_{REF} (1.25 V), and V_{DDM} (2.5 V) supplies simultaneously (first).
- 2. Turn of the V_{DDIO} (3.3 V) supply last.

Use the following guidelines:

- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 29** for relative timing for Case 4.

Figure 29. Voltage Sequencing Case 4

3.2.3 Power Planes

Each power supply pin (V_{DDC} , V_{DDM} , and V_{DDIO}) should have a low-impedance path to the board power supply. Each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the device. The MSC7110 V_{DDC} power supply pins should be bypassed to ground using decoupling capacitors. The capacitor leads and associated printed circuit traces connecting to device power pins and GND should be kept to less than half an inch per capacitor lead. A minimum four-layer board that employs two inner layers as power and GND planes is recommended. See **Section 3.5** for DDR Controller power guidelines.

3.2.4 Decoupling

Both the I/O voltage and core voltage should be decoupled for switching noise. For I/O decoupling, use standard capacitor values of 0.01 μ F for every two to three voltage pins. For core voltage decoupling, use two levels of decoupling. The first level should consist of a 0.01 μ F high frequency capacitor with low effective series resistance (ESR) and effective series inductance (ESL) for every two to three voltage pins. The second decoupling level should consist of two bulk/tantalum decoupling capacitors, one 10 μ F and one 47 μ F, (with low ESR and ESL) mounted as closely as possible to the MSC7110 voltage pins. Additionally, the maximum drop between the power supply and the DSP device should be 15 mV at 1 A.

3.2.5 PLL Power Supply Filtering

The MSC7110 V_{DDPLL} power signal provides power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to this pin should be filtered with capacitors that have low and high frequency filtering characteristics. V_{DDPLL} can be connected to V_{DDC} through a 2 Ω resistor. V_{SSPLL} can be tied directly to the GND plane. A circuit similar to the one shown in **Figure 31** is recommended. The PLL loop filter should be placed as closely as possible to the V_{DDPLL} pin (which are located on the outside edge of the silicon package) to minimize noise coupled from nearby circuits. The 0.01 µF capacitor should be closest to V_{DDPLL}, followed by the 0.1 µF capacitor, the 10 µF capacitor, and finally the 2- Ω resistor to V_{DDC}. These traces should be kept short.

Figure 31. PLL Power Supply Filter Circuits

3.2.6 Power Consumption

You can reduce power consumption in your design by controlling the power consumption of the following regions of the device:

- Extended core. Use the SC1400 Stop and Wait modes by issuing a stop or wait instruction.
- *Clock synthesis module.* Disable the PLL, timer, watchdog, or DDR clocks or disable the CLKO pin.
- AHB subsystem. Freeze or shut down the AHB subsystem using the GPSCTL[XBR_HRQ] bit.
- *Peripheral subsystem.* Halt the individual on-device peripherals such as the DDR memory controller, HDI16, TDM, UART, I²C, and timer modules.

For details, see the "Clocks and Power Management" chapter of the MSC711x Reference Manual.

ware Design Considerations

3.5.3 General Routing

The general routing considerations for the DDR are as follows:

- All DDR signals must be routed next to a solid reference:
 - For data, next to solid ground planes.
 - For address/command, power planes if necessary.
- All DDR signals must be impedance controlled. This is system dependent, but typical values are 50-60 ohm.
- Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing between all DDR signals to non-DDR signals.
- Keep the number of vias to a minimum to eliminate additional stubs and capacitance.
- Signal group routing priorities are as follows:
 - DDR clocks.
 - Route MVTT/MVREF.
 - Data group.
 - Command/address.
- Minimize data bit jitter by trace matching.

3.5.4 Routing Clock Distribution

The DDR clock distribution considerations are as follows:

- DDR controller supports six clock pairs:
 - 2 DIMM modules.
 - Up to 36 discrete chips.
- For route traces as for any other differential signals:
 - Maintain proper difference pair spacing.
 - Match pair traces within 25 mm.
- Match all clock traces to within 100 mm.
- Keep all clocks equally loaded in the system.
- Route clocks on inner critical layers.

3.5.5 Data Routing

The DDR data routing considerations are as follows:

- Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.
- Take care to match trace lengths, which is extremely important.
- To make trace matching easier, let adjacent groups be routed on alternate critical layers.
- Pin swap bits within a byte group to facilitate routing (discrete case).
- Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal within ± 25 mm of its respective strobe.
- Minimize lengths across the entire DDR channel:
 - Between all groups maintain a delta of no more than 500 mm.
 - Allows greater flexibility in the design for readjustments as needed.
- DDR data group separation:
 - If stack-up allows, keep DDR data groups away from the address and control nets.
 - Route address and control on separate critical layers.
 - If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.

5 Package Information

6 **Product Documentation**

- *MSC711x Reference Manual* (MSC711xRM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC7110 device.
- *SC140/SC1400 DSP Core Reference Manual*. Covers the SC140 and SC1400 core architecture, control registers, clock registers, program control, and instruction set.