E·XFL

NXP USA Inc. - MSC7110VM800 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC1400 Core
Interface	Host Interface, I ² C, UART
Clock Rate	200MHz
Non-Volatile Memory	External
On-Chip RAM	80kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc7110vm800

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

	Signal Names						
Number		So	oftware Control	led	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
F11			١	/DDM			
F12			(GND			
F13			(GND			
F14			(GND			
F15			V	DDIO			
F16			١	DDC			
F17			١	DDC			
F18				NC			
F19				NC			
F20				NC			
G1			(GND			
G2				D13			
G3			(GND			
G4			N	/DDM			
G5			N	/DDM			
G6			(GND			
G7			(GND			
G8			(GND			
G9			(GND			
G10			(GND			
G11			(GND			
G12			(GND			
G13			(GND			
G14			(GND			
G15			V	DDIO			
G16			V	DDIO			
G17			١	/ _{DDC}			
G18				NC			
G19				NC			
G20				NC			
H1				D14			
H2				D12			
H3				D11			
H4			١	/ _{DDM}			
H5			١	/ _{DDM}			
H6			(GND			
H7			(GND			
H8	GND						

Table 1. MSC7110 Signals by Ball Designator (continued)

ssignments

	Signal Names						
Number		S	oftware Controlle	ed	Hardware	Controlled	
Number	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
M3			C	05			
M4			VD	DM			
M5			V _D	DM			
M6			GI	ND			
M7			GI	ND			
M8			GI	ND			
M9			GI	ND			
M10			GI	ND			
M11			GI	ND			
M12			GI	ND			
M13			GI	ND			
M14			GI	ND			
M15			GI	ND			
M16		V _{DDC}					
M17			V	DDC			
M18	GPI	A14	IRQ15	GPOA14	S	SDA	
M19	GPI	A12	IRQ3	GPOA12	U	TXD	
M20	GPIA13 IRQ2 GPOA13			GPOA13	U	RXD	
N1		D4					
N2		D6					
N3			V _F	REF			
N4			V _D	DM			
N5		V _{DDM}					
N6		V _{DDM}					
N7			GI	ND			
N8			GI	ND			
N9			GI	ND			
N10			GI	ND			
N11			GI	ND			
N12			GI	ND			
N13			GI	ND			
N14			GI	ND			
N15			VD	DIO			
N16			V	DDC			
N17							
N18			CL	KIN			
N19	GPI	A15	IRQ14	GPOA15		SCL	
N20			V _{SS}	SPLL			

Table 1. MSC7110 Signals by Ball Designator (continued)

Pin Assignments

	Signal Names							
Number		S	oftware Controll	ed	Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
P1				D7				
P2			C	017				
P3			Γ	016				
P4			V	DDM				
P5			V	DDM				
P6			V	DDM				
P7			G	ND				
P8			G	ND				
P9			G	ND				
P10			G	ND				
P11			G	ND				
P12			G	ND				
P13			G	ND				
P14			G	ND				
P15		V _{DDIO}						
P16		V _{DDIO}						
P17	V _{DDC}							
P18	PORESET							
P19		TPSEL						
P20			V _D	DPLL				
R1			G	ND				
R2			Γ	019				
R3			Γ	018				
R4			V	DDM				
R5			V	DDM				
R6			V	DDM				
R7			G	ND				
R8			V	DDM				
R9			G	ND				
R10			V	DDM				
R11			G	ND				
R12			G	ND				
R13			V	DDIO				
R14			G	ND				
R15			V	ODIO				
R16			V	ODIO				
R17			V	DDC				
R18	ТДО							

Table 1. MSC7110 Signals by Ball Designator (continued)

Pin Assignments

Signal Names						
Number		S	oftware Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
U17			V	DDC		
U18			Ν	1C		
U19			T	СК		
U20			T T	RST		
V1			V	DDM		
V2			Ν	1C		
V3			A	.13		
V4			A	.11		
V5			A	.10		
V6			A	45		
V7			A	12		
V8			В	A0		
V9			Ν	1C		
V10		rese	erved		EV	NT0
V11	SWTE	GPIA16	IRQ12	IRQ12 GPOA16 EVNT4		
V12	GP	IA8	IRQ6	GPOA8	T0	тск
V13	GP	IA4	IRQ1	GPOA4	rese	erved
V14	GP	IA0	IRQ11	GPOA0	reserved	
V15	GPI	A28	IRQ17	GPOA28	reserved	reserved
V16		GPID6		GPOD6	reserved	reserved
V17	GPI	A22	IRQ22	GPOA22	rese	erved
V18	GPI	A24	IRQ24	GPOA24	rese	erved
V19			N	1C		
V20			Т	DI		
W1			G	ND		
W2			V	DDM		
W3			A	.12		
W4			A	48		
W5			A	۲		
W6	A6					
W7	A3					
W8	NC					
W9	GPIA17 IRQ13 GPOA17 E				EVNT1	CLKO
W10	BM0	GPI	C14	GPOC14	EV	NT2
W11	GPI	A10	IRQ5	GPOA10	TO	RFS
W12	GP	IA7	IRQ7	GPOA7	Т0	TFS
W13	GP	IA3	IRQ8	GPOA3	rese	erved
W14	GP	IA1	IRQ10	GPOA1	rese	erved

Table 1. MSC7110 Signals by Ball Designator (continued)

ifications

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	℃ ℃

Table 3. Recommended (Operating	Conditions
------------------------	-----------	------------

2.3 Thermal Characteristics

 Table 4 describes thermal characteristics of the MSC7110 for the MAP-BGA package.

Characteristic			MAP-BGA	$17 imes 17~\mathrm{mm^5}$		
		Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit	
Junction	n-to-a	mbient ^{1, 2}	R _{θJA}	39	31	°C/W
Junction-to-ambient, four-layer board ^{1, 3}		R _{θJA}	23	20	°C/W	
Junction-to-board ⁴		R _{θJB}	12		°C/W	
Junction-to-case ⁵		R _{θJC}	7		°C/W	
Junction-to-package-top ⁶ Ψ_{JT} 2				°C/W		
Notes:	Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.					
	2.	Per SEMI G38-87 and JEDEC JESD51-2 wi	th the single layer bo	oard horizontal.		
	3.	Per JEDEC JESD51-6 with the board horizo	ntal.			
	 Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured of the top surface of the board near the package. 					are is measured on
	5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).					SPEC-883 Method
	6.	Thermal characterization parameter indicatir per JEDEC JESD51-2.	ng the temperature di	ifference between pa	ackage top and the ju	nction temperature

Table 4.	Thermal	Characteristics	for MAP-BG	A Package
----------	---------	-----------------	------------	-----------

Section 3.1, Thermal Design Considerations explains these characteristics in detail.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC7110.

Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both V_{DDIO} and V_{DDC} vary by +2 percent or both vary by -2 percent).

Characteristic	Symbol	Min	Typical	Мах	Unit
Core and PLL voltage	V _{DDC} V _{DDPLL}	1.14	1.2	1.26	V
DRAM interface I/O voltage ¹	V _{DDM}	2.375	2.5	2.625	V
I/O voltage	V _{DDIO}	3.135	3.3	3.465	V
DRAM interface I/O reference voltage ²	V _{REF}	$0.49 \times V_{DDM}$	1.25	$0.51 \times V_{DDM}$	V
DRAM interface I/O termination voltage ³	VTT	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04	V
Input high CLKIN voltage	V _{IHCLK}	2.4	3.0	3.465	V
DRAM interface input high I/O voltage	V _{IHM}	V _{REF} + 0.28	V _{DDM}	V _{DDM} + 0.3	V
DRAM interface input low I/O voltage	V _{ILM}	-0.3	GND	V _{REF} – 0.18	V
Input leakage current, $V_{IN} = V_{DDIO}$	I _{IN}	-1.0	0.09	1	μA
V _{REF} input leakage current	I _{VREF}	_	—	5	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDIO}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, V _{IL} = 0.4 V	ΙL	-1.0	0.09	1	μA
Signal high input current, V_{IH} = 2.0 V	I _H	-1.0	0.09	1	μA
Output high voltage, $I_{OH} = -2$ mA, except open drain pins	V _{OH}	2.0	3.0	—	V
Output low voltage, I _{OL} = 5 mA	V _{OL}	_	0	0.4	V
Typical core power ⁵ • at 200 MHz • at 266 MHz (mask set 1M88B only)	P _C	_	222 293		mW mW
Notes: 1. The value of V_{DDM} at the MSC7110 device r	nust remain wit	hin 50 mV of V _{DDM} a	t the DRAM de	vice at all times.	

Table 5. DC Electrical Characteristics

V_{REF} must be equal to 50% of V_{DDM} and track V_{DDM} variations as measured at the receiver. Peak-to-peak noise must not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the MSC7110 device. It is the level measured at the far end signal termination. It should be equal to V_{REF}. This rail should track variations in the DC level of V_{REF}.

Output leakage for the memory interface is measured with all outputs disabled, 0 V ≤ V_{OUT} ≤ V_{DDM}.

5. The core power values were measured using a standard EFR pattern at typical conditions (25°C, 200 MHz or 266 MHz, 1.2 V core).

Table 6 lists the DDR DRAM capacitance.

Table 6. DDR DRAM Capacitance

Parameter/Condition	Symbol	Max	Unit
Input/output capacitance: DQ, DQS	C _{IO}	30	pF
Delta input/output capacitance: DQ, DQS C _{DIO} 30			pF
Note:These values were measured under the following conditions: $V_{DDM} = 2.5 V \pm 0.125 V$ $f = 1 MHz$ $T_A = 25^{\circ}C$ $V_{OUT} = V_{DDM}/2$ V_{OUT} (peak to peak) = 0.2 V			

CLKCTRL[CKSEL]	CLKCTRL[RNG]	Resulting Division Factor	Allowed Range of Core Clock	Comments	
11	1	1	Reserved	Reserved	
11	0	2	$150 \le Core_Clk \le 200 \text{ MHz}$	Limited by range of PLL	
01	1	2	$150 \le Core_Clk \le 200 MHz$	Limited by range of PLL	
01	0	4	$75 \le Core_Clk \le 150 MHz$	Limited by range of PLL	
Note: This table results from the allowed range for F _{OUT} , which depends on clock selected via CLKCTRL[CKSEL].					

Table 13. Resulting Ranges Permitted for the Core Clock

2.5.2.5 Core Clock Frequency Range When Using DDR Memory

The core clock can also be limited by the frequency range of the DDR devices in the system. **Table 14** summarizes this restriction.

DDR Type	Allowed Frequency Range for DDR CK	Corresponding Range for the Core Clock	Comments
DDR 200 (PC-1600)	83–100 MHz	$166 \le core \ clock \le 200 \ MHz$	Core limited to $2 \times$ maximum DDR frequency
DDR 266 (PC-2100)	83–133 MHz	$166 \le core \ clock \le 266 \ MHz$	Core limited to $2 \times maximum DDR$ frequency
DDR 333 (PC-2600)	83–150 MHz	$166 \le core \ clock \le 300 \ MHz$	Core limited to $2 \times maximum DDR$ frequency

Table 14. Core Clock Ranges When Using DDR

2.5.3 Reset Timing

The MSC7110 device has several inputs to the reset logic. All MSC7110 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 15** describes the reset sources.

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC7110 and configures various attributes of the MSC7110. On PORESET, the entire MSC7110 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC7110. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset.
Software watchdog reset	Internal	When the MSC7110 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC7110 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
JTAG EXTEST, CLAMP, or HIGHZ command	Internal	When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence.

Table 16 summarizes the reset actions that occur as a result of the different reset sources.

2.5.4.2 DDR DRAM Output AC Timing Specifications

Table 19 and Table 20 list the output AC timing specifications and measurement conditions for the DDR DRAM interface.

			м			
No.	Parameter	Symbol	Mask Set 1L44X	Mask Set 1M88B	Мах	Unit
200	CK cycle time, (CK/ CK crossing) ¹ • 100 MHz (DDR200) • 133 MHz (DDR266)	t _{СК}	10 Not applicable	1.0 7.52	_	ns ns
204	An/RAS/CAS/WE/CKE output setup with respect to CK	t _{DDKHAS}	$0.5 imes t_{CK} - 2250$	$0.5 imes t_{CK} - 1000$	—	ps
205	An/RAS/CAS/WE/CKE output hold with respect to CK	t _{DDKHAX}	$0.5 imes t_{CK} - 1250$	$0.5 imes t_{CK} - 1000$	—	ps
206	CSn output setup with respect to CK	t _{DDKHCS}	$0.5 \times t_{CK} - 2250$	$0.5 \times t_{CK} - 1000$	—	ps
207	CSn output hold with respect to CK	t _{DDKHCX}	$0.5 imes t_{CK} - 1250$	$0.5 \times t_{\text{CK}} - 1000$	—	ps
208	CK to DQSn ²	t _{DDKHMH}	-600	-600	600	ps
209	Dn/DQMn output setup with respect to DQSn ³	t _{DDKHDS,} t _{DDKLDS}	0.25 × t _{MCK} – 1050	$0.25 imes t_{CK} - 750$	_	ps
210	Dn/DQMn output hold with respect to DQSn ³	t _{DDKHDX,} t _{DDKLDX}	$0.25 \times t_{CK} - 1050$	$0.25 imes t_{CK} - 750$	—	ps
211	DQSn preamble start ⁴	t _{DDKHMP}	$-0.25 \times t_{CK}$	$-0.25 \times t_{CK}$	_	ps
212	DQSn epilogue end ⁵	t _{DDKHME}	-600	-600	600	ps

Table 19. DDR DRAM Output AC Timing

Notes: 1. All CK/CK referenced measurements are made from the crossing of the two signals ±0.1 V.

2. t_{DDKHMH} can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 410 ps before the CK/CK crossing and no later than 677 ps after the crossing time; the device uses 1087 ps of the skew budget (the interval from –410 to +677 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the *MSC711x Reference Manual* for details.

3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe should be centered inside of the data eye.

4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this reason, we reference from DQSn.

5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition there is no real "maximum" time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the chip to guarantee fast enough write to read turn-around times. This is already guaranteed by the memory controller operation.

Table 21. TDM Timing

Characteristic	Expression	Min	Мах	Units	
TDMxTCK High to TDMxTD output valid		—	14.0	ns	
TDMxTD hold time		2.0	—	ns	
TDMxTCK High to TDMxTD output high impedance		—	10.0	ns	
TDMXTFS/TDMxRFS output valid - 13.5 ns				ns	
TDMxTFS/TDMxRFS output hold time		2.5	_	ns	
1. Output values are based on 30 pF capacitive load.					
	CharacteristicTDMxTCK High to TDMxTD output validTDMxTD hold timeTDMxTCK High to TDMxTD output high impedanceTDMXTFS/TDMxRFS output validTDMxTFS/TDMxRFS output hold time1. Output values are based on 30 pF capacitive load.	CharacteristicExpressionTDMxTCK High to TDMxTD output valid	CharacteristicExpressionMinTDMxTCK High to TDMxTD output valid—TDMxTD hold time2.0TDMxTCK High to TDMxTD output high impedance—TDMXTFS/TDMxRFS output valid—TDMxTFS/TDMxRFS output hold time2.51. Output values are based on 30 pF capacitive load.	CharacteristicExpressionMinMaxTDMxTCK High to TDMxTD output valid—14.0TDMxTD hold time2.0—TDMxTCK High to TDMxTD output high impedance—10.0TDMXTFS/TDMxRFS output valid—13.5TDMxTFS/TDMxRFS output hold time2.5—1. Output values are based on 30 pF capacitive load.——	

2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.

Figure 8. TDM Receive Signals

2.5.6 HDI16 Signals

Table 22. Host Interface ((HDI16) Timing ^{1, 2}	2
----------------------------	--------------------------------	---

No	Characteristics ³	Mask Set 1L	.44X	Mask Set 1M88B		Unit
110.	onardoteristics	Expression	Value	Expression	Value	
40	Host Interface Clock period	T _{HCLK}	Note 1	T _{CORE}	Note 1	ns

ifications

	Characteristics ³	Mask Set 1L	44X	Mask Set 1M88B		Unit
NO.	Characteristics	Expression	Value	Expression	Value	
44a	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	$3.0 imes T_{HCLK}$	Note 11	2.0 × T _{CORE} + 9.0	Note 11	ns
44b	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 \times T_{CORE}$	Note 11	ns
44c	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	$2.5 imes T_{HCLK}$	Note 11	2.5 × T _{CORE}	Note 11	ns
45	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	$1.5 imes T_{HCLK}$	Note 11	$1.5 imes T_{CORE}$	Note 11	ns
46	<u>Write d</u> ata strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	$2.5 imes T_{HCLK}$	Note 11	$2.5 \times T_{CORE}$	Note 11	ns
47	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	3.0	_	2.5	ns
48	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	4.0	_	2.5	ns
49	Read data strobe minimum assertion to output data active from high impedance ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	_	1.0	ns
50	Read data strobe maximum assertion to output data valid ⁴ HACK read maximum assertion to output data valid	(2.0 × T _{HCLK}) + 8.0	Note 11	(2.0 × T _{CORE}) + 8.0	Note 11	ns
51	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance	_	8.0	_	9.0	ns
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	_	1.0	ns
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	—	0.0	—	0.5	ns
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	—	0.0	—	0.0	ns
55	HCS[1-2] maximum assertion to output data valid	$(2.0 \times T_{\text{HCLK}})$ + 8.0	Note 11	$(2.0 \times T_{CORE})$ + 6.0	Note 11	ns
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	—	0.0	—	0.5	ns
57	HA[0–3], HRW minimum setup time before data strobe assertion ⁹	—	5.0	—	5.0	ns
58	HA[0–3], HRW minimum hold time after data strobe deassertion ⁹	—	5.0	—	5.0	ns
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	$(3.0 \times T_{\text{HCLK}}) + 8.0$	Note 11	$(3.0 \times T_{CORE}) + 6.0$	Note 11	ns
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	$(3.0 imes T_{HCLK}) + 8.0$	Note 11	$(3.0 \times T_{CORE})$ + 6.0	Note 11	ns
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion.	(2.0 × T _{HCLK}) + 1.0	Note 11	(2.0 × T _{CORE}) + 1.0	Note 11	ns
64	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{HCLK}) + 8.0	Note 11	(5.0 × T _{CORE}) + 6.0	Note 11	ns

Table 22. Host Interface (HDI16) Timing^{1, 2} (continued)

2.5.7 I²C Timing

Na	Characteristic	Fa			
NO.	Characteristic	Min	Мах	Unit	
450	SCL clock frequency	0	400	kHz	
451	Hold time START condition	(Clock period/2) – 0.3	—	μs	
452	SCL low period	(Clock period/2) – 0.3	—	μs	
453	SCL high period	(Clock period/2) – 0.1	—	μs	
454	Repeated START set-up time (not shown in figure)	$2 \times 1/F_{BCK}$	—	μs	
455	Data hold time	0	—	μs	
456	Data set-up time	250	—	ns	
457	SDA and SCL rise time	—	700	ns	
458	SDA and SCL fall time	—	300	ns	
459	Set-up time for STOP	(Clock period/2) – 0.7	—	μs	
460	Bus free time between STOP and START	(Clock period/2) – 0.3	_	μs	
Note:	SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance on SDA and SCL is 400 pF.				

Table 23. I²C Timing

Figure 16. I²C Timing Diagram

2.5.8 UART Timing

No.	Characteristics	Expression	Mask Set 1L44X		Mask Set 1M88B		Unit
			Min	Max	Min	Max	
	Internal bus clock (APBCLK)	F _{CORE} /2	—	100	—	133	MHz
_	Internal bus clock period (1/APBCLK)	T _{APBCLK}	10.0	_	7.52	_	ns
400	URXD and UTXD inputs high/low duration	$16 \times T_{APBCLK}$	160.0	_	120.3	_	ns
401	URXD and UTXD inputs rise/fall time		_	5	_	5	ns
402	UTXD output rise/fall time		—	5		5	ns

Table 24. UART Timing

Figure 17. UART Input Timing

Figure 18. UART Output Timing

2.5.9 EE Timing

Table 25. EE0 Timing

Number		Characteristics	Туре	Min	
65		EE0 input to the core	Asynchronous	4 core clock periods	
66		EE0 output from the core	Synchronous to core clock	1 core clock period	
Notes: 1.	Notes: 1. The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-			OUT is configured during power-on-reset.	
2. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details.			Reference Manual for details.		
3.	3. Refer to Table 15 for details on EE pin functionality.				

Figure 19 shows the signal behavior of the EE pin.

Figure 19. EE Pin Timing

3.2 **Power Supply Design Considerations**

This section outlines the MSC7110 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to **Section 2**.

3.2.1 **Power Supply**

The MSC7110 requires four input voltages, as shown in Table 29.

Voltage	Symbol	Value
Core	V _{DDC}	1.2 V
Memory	V _{DDM}	2.5 V
Reference	V _{REF}	1.25 V
I/O	V _{DDIO}	3.3 V

Table 29. MSC7110 Voltages

You should supply the MSC7110 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and -10%) across V_{DDC} and GND and the I/O section is supplied with 3.3 V (\pm 10%) across V_{DDIO} and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across V_{DDM} and GND. The reference voltage is supplied across V_{REF} and GND and must be between 0.49 × V_{DDM} and 0.51 × V_{DDM}. Refer to the JEDEC standard JESD8 (*Stub Series Terminated Logic for 2.5 Volts* (STTL_2)) for memory voltage supply requirements.

3.2.2 Power Sequencing

One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage.

Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated for current spike risks based on actual information for the specific application.

ware Design Considerations

3.2.2.1 Case 1

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 26** for relative timing for power sequencing case 1.

Time Figure 26. Voltage Sequencing Case 1

3.2.2.2 Case 2

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) and V_{DDM} (2.5 V) supplies simultaneously (second).
- 3. Turn on the V_{REF} (1.25 V) supply last (third).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC}/V_{DDM} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down for V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to Figure 27 for relative timing for Case 2.

Figure 27. Voltage Sequencing Case 2

3.2.2.4 Case 4

The power-up sequence is as follows:

- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V), V_{DDM} (2.5 V), and V_{REF} (1.25 V) supplies simultaneously (second).

Note: Make sure that the time interval between the ramp-up of V_{DDIO} and V_{DDC} is less than 10 ms.

The power-down sequence is as follows:

- 1. Turn off the V_{DDC} (1.2 V), V_{REF} (1.25 V), and V_{DDM} (2.5 V) supplies simultaneously (first).
- 2. Turn of the V_{DDIO} (3.3 V) supply last.

Use the following guidelines:

- Make sure that the time interval between the ramp-up or ramp-down time for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 29** for relative timing for Case 4.

Figure 29. Voltage Sequencing Case 4

3.3.2 Peripheral Power

Peripherals include the DDR memory controller, DMA controller, HDI16, TDM, UART, timers, GPIOs, and the I²C module. Basic power consumption by each module is assumed to be the same and is computed by using the following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching frequency of 100 MH or 133 MHz. This yields:

$$P_{PERIPHERAL} = 20 \ pF \times (1.2 \ V)^2 \times 100 \ MHz \times 10^{-3} = 2.88 \ mW \ per \ peripheral \qquad Eqn. 7$$

$$P_{PERIPHERAL} = 20 \ pF \times (1.2 \ V)^2 \times 133 \ MHz \times 10^{-3} = 3.83 \ mW \ per \ peripheral \ Eqn. 8$$

Multiply this value by the number of peripherals used in the application to compute the total peripheral power consumption.

3.3.3 External Memory Power

Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal line usage, termination and load levels, and switching rates. Because the DDR memory includes terminations external to the MSC7110 device, the 2.5 V power source provides the power for the termination, which is a static value of 16 mA per signal driven high. The dynamic power is computed, however, using a differential voltage swing of ± 0.200 V, yielding a peak-to-peak swing of 0.4 V. The equations for computing the DDR power are:

$$P_{DDRIO} = P_{STATIC} + P_{DYNAMIC} \qquad Eqn. 9$$

$$P_{STATIC} = (unused pins \times \% driven high) \times 16 mA \times 2.5 V$$
 Eqn. 10

$$P_{DYNAMIC} = (pin \ activity \ value) \times 20 \ pF \times (0.4 \ V)^2 \times 200 \ MHz \times 10^{-3} \ mW \qquad Eqn. 11$$

$$P_{DYNAMIC} = (pin \ activity \ value) \times 20 \ pF \times (0.4 \ V)^2 \times 266 \ MHz \times 10^{-3} \ mW$$
 Eqn. 12

pin activity value = (active data lines \times % activity \times % data switching) + (active address lines \times % activity) Eqn. 13

As an example, assume the following:

unused pins = 16 (DDR uses 16-pin mode) % driven high = 50% active data lines = 16 % activity = 60% % data switching = 50% active address lines = 3

In this example, the DDR memory power consumption is:

$$P_{DDRIO} = ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 200 \times 10^{-3}) = 324.2 \text{ mW} \qquad Eqn. 14$$

$$P_{DDRIO} = ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 266 \times 10^{-3}) = 326.3 \text{ mW}$$
Eqn. 15

ware Design Considerations

3.4.3.2 I²C Boot

When the MSC7110 device is configured to boot from the I^2C port, the boot program configures the GPIO pins shared with the I^2C pins as I^2C pins. The I^2C interface is configured as follows:

- I²C in master mode.
- EPROM in slave mode.

For details on the boot procedure, see the "Boot Program" chapter of the MSC711x Reference Manual.

3.5 DDR Memory System Guidelines

MSC7110 devices contain a memory controller that provides a glueless interface to external double data rate (DDR) SDRAM memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two termination techniques, as shown in Figure 32. Technique B is the most popular termination technique.

Figure 32. SSTL Termination Techniques

Figure 33 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:

- $RS = 22 \Omega$
- $RT = 24 \Omega$

Figure 33. SSTL Power Value

3.5.1 V_{REF} and V_{TT} Design Constraints

 V_{TT} and V_{REF} are isolated power supplies at the same voltage, with V_{TT} as a high current power source. This section outlines the voltage supply design needs and goals:

- Minimize the noise on both rails.
- V_{TT} must track variation in the V_{REF} DC offsets. Although they are isolated supplies, one possible solution is to use a single IC to generate both signals.
- Both references should have minimal drift over temperature and source supply.
- It is important to minimize the noise from coupling onto V_{REF} as follows:
 - Isolate V_{REF} and shield it with a ground trace.
 - Use 15–20 mm track.
 - Use 20–30 mm clearance between other traces for isolating.
 - Use the outer layer route when possible.
 - Use distributed decoupling to localize transient currents and return path and decouple with an inductance less than 3 nH.
- Max source/sink transient currents of up to 1.8 A for a 32-bit data bus.
- Use a wide island trace on the outer layer:
 - Place the island at the end of the bus.
 - Decouple both ends of the bus.
 - Use distributed decoupling across the island.
 - Place SSTL termination resistors inside the V_{TT} island and ensure a good, solid connection.
- Place the V_{TT} regulator as closely as possible to the termination island.
 - Reduce inductance and return path.
 - Tie current sense pin at the midpoint of the island.

3.5.2 Decoupling

The DDR decoupling considerations are as follows:

- DDR memory requires significantly more burst current than previous SDRAMs.
- In the worst case, up to 64 drivers may be switching states.
- Pay special attention and decouple discrete ICs per manufacturer guidelines.
- Leverage V_{TT} island topology to minimize the number of capacitors required to supply the burst current needs of the termination rail.
- See the Micron DesignLine publication entitled *Decoupling Capacitor Calculation for a DDR Memory Channel* (http://download.micron.com/pdf/pubs/designline/3Q00dll-4.pdf).

ware Design Considerations

3.5.3 General Routing

The general routing considerations for the DDR are as follows:

- All DDR signals must be routed next to a solid reference:
 - For data, next to solid ground planes.
 - For address/command, power planes if necessary.
- All DDR signals must be impedance controlled. This is system dependent, but typical values are 50-60 ohm.
- Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing between all DDR signals to non-DDR signals.
- Keep the number of vias to a minimum to eliminate additional stubs and capacitance.
- Signal group routing priorities are as follows:
 - DDR clocks.
 - Route MVTT/MVREF.
 - Data group.
 - Command/address.
- Minimize data bit jitter by trace matching.

3.5.4 Routing Clock Distribution

The DDR clock distribution considerations are as follows:

- DDR controller supports six clock pairs:
 - 2 DIMM modules.
 - Up to 36 discrete chips.
- For route traces as for any other differential signals:
 - Maintain proper difference pair spacing.
 - Match pair traces within 25 mm.
- Match all clock traces to within 100 mm.
- Keep all clocks equally loaded in the system.
- Route clocks on inner critical layers.

3.5.5 Data Routing

The DDR data routing considerations are as follows:

- Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.
- Take care to match trace lengths, which is extremely important.
- To make trace matching easier, let adjacent groups be routed on alternate critical layers.
- Pin swap bits within a byte group to facilitate routing (discrete case).
- Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal within ± 25 mm of its respective strobe.
- Minimize lengths across the entire DDR channel:
 - Between all groups maintain a delta of no more than 500 mm.
 - Allows greater flexibility in the design for readjustments as needed.
- DDR data group separation:
 - If stack-up allows, keep DDR data groups away from the address and control nets.
 - Route address and control on separate critical layers.
 - If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.