



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                       |
|----------------------------|-----------------------------------------------------------------------|
| Product Status             | Active                                                                |
| Core Processor             | ARM® Cortex®-M3                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 72MHz                                                                 |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB          |
| Peripherals                | DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT          |
| Number of I/O              | 37                                                                    |
| Program Memory Size        | 64KB (64K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                |                                                                       |
| RAM Size                   | 20K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                             |
| Data Converters            | A/D 10x12b                                                            |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 48-LQFP                                                               |
| Supplier Device Package    | -                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103c8t6 |
|                            |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# List of figures

| Figure 1.  | STM32F103xx performance line block diagram                                                                                                                  | . 19 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.  | Clock tree                                                                                                                                                  |      |
| Figure 3.  | STM32F103xx performance line LFBGA100 ballout                                                                                                               | . 21 |
| Figure 4.  | STM32F103xx performance line LQFP100 pinout                                                                                                                 | . 22 |
| Figure 5.  | STM32F103xx performance line LQFP64 pinout                                                                                                                  | . 23 |
| Figure 6.  | STM32F103xx performance line TFBGA64 ballout                                                                                                                |      |
| Figure 7.  | STM32F103xx performance line LQFP48 pinout                                                                                                                  |      |
| Figure 8.  | STM32F103xx Performance Line VFQFPN36 pinout.                                                                                                               |      |
| Figure 9.  |                                                                                                                                                             |      |
| Figure 10. | Pin loading conditions.                                                                                                                                     |      |
| Figure 11. | Pin input voltage                                                                                                                                           |      |
| Figure 12. | Power supply scheme.                                                                                                                                        |      |
| Figure 13. | Current consumption measurement scheme                                                                                                                      |      |
| Figure 14. | Typical current consumption in Run mode versus frequency (at 3.6 V) -                                                                                       |      |
|            | code with data processing running from RAM, peripherals enabled.                                                                                            | . 40 |
| Figure 15. | Typical current consumption in Run mode versus frequency (at 3.6 V) -                                                                                       |      |
| rigulo io. | code with data processing running from RAM, peripherals disabled                                                                                            | 40   |
| Figure 16. | Typical current consumption in Stop mode with regulator in Run mode versus                                                                                  |      |
| riguro ro. | temperature at $V_{DD}$ = 3.3 V and 3.6 V                                                                                                                   | 42   |
| Figure 17. | Typical current consumption in Stop mode with regulator in Low-power mode versus                                                                            |      |
| rigure i/. | temperature at $V_{DD}$ = 3.3 V and 3.6 V                                                                                                                   | 43   |
| Figure 18. | Typical current consumption in Standby mode versus temperature at                                                                                           | . 40 |
| rigure ro. | $V_{DD} = 3.3 \text{ V} \text{ and } 3.6 \text{ V} \dots$                                                                                                   | 13   |
| Figure 19. | High-speed external clock source AC timing diagram                                                                                                          |      |
| Figure 20. | Low-speed external clock source AC timing diagram                                                                                                           |      |
| Figure 20. | Typical application with an 8 MHz crystal                                                                                                                   |      |
| Figure 21. | Typical application with a 32.768 kHz crystal                                                                                                               |      |
|            | I/O AC characteristics definition                                                                                                                           |      |
| Figure 23. |                                                                                                                                                             |      |
| Figure 24. | Recommended NRST pin protection                                                                                                                             |      |
| Figure 25. | I <sup>2</sup> C bus AC waveforms and measurement circuit                                                                                                   |      |
| Figure 26. | SPI timing diagram - slave mode and CPHA = 0                                                                                                                | . 04 |
| Figure 27. | SPI timing diagram - slave mode and CPHA = $1^{(1)}$                                                                                                        | . 64 |
| Figure 28. | SPI timing diagram - master mode <sup>(1)</sup>                                                                                                             |      |
| Figure 29. | USB timings: definition of data signal rise and fall time                                                                                                   |      |
| Figure 30. | ADC accuracy characteristics                                                                                                                                |      |
| Figure 31. | Typical connection diagram using the ADC                                                                                                                    |      |
| Figure 32. | Power supply and reference decoupling (V <sub>REF+</sub> not connected to V <sub>DDA</sub> )                                                                | . 70 |
| Figure 33. | Power supply and reference decoupling (V <sub>REF+</sub> connected to V <sub>DDA</sub> )<br>VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline <sup>(1)</sup> | . /1 |
| Figure 34. | VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline                                                                                                            | 73   |
| Figure 35. | Recommended footprint (dimensions in mm) <sup>(1)(2)(3)</sup>                                                                                               |      |
| Figure 36. | LFBGA100 - low profile fine pitch ball grid array package outline                                                                                           |      |
| Figure 37. | Recommended PCB design rules (0.80/0.75 mm pitch BGA)                                                                                                       |      |
| Figure 38. | LQFP100, 100-pin low-profile quad flat package outline                                                                                                      |      |
| Figure 39. | Recommended footprint <sup>(1)</sup>                                                                                                                        | . 76 |
| Figure 40. | LQFP64, 64-pin low-profile quad flat package outline                                                                                                        | . 77 |
| Figure 41. | Recommended footprint <sup>(1)</sup>                                                                                                                        | . 77 |
| Figure 42. | TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline                                                                                  | . 78 |
| Figure 43. | Recommended PCB design rules for pads (0.5 mm pitch BGA)                                                                                                    | . 79 |



can also be seen as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

#### General-purpose timers (TIMx)

There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

#### Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

#### Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.



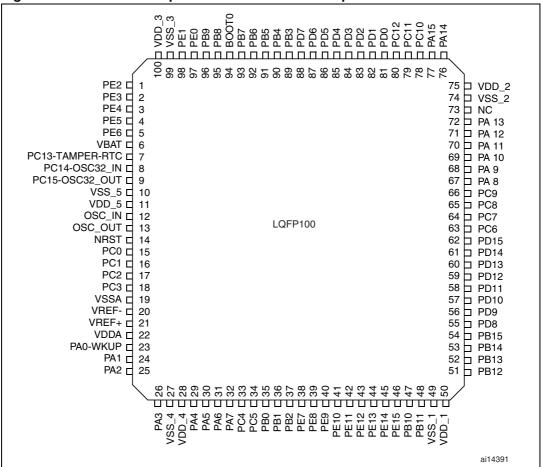
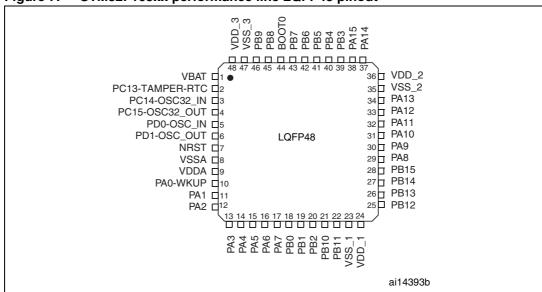
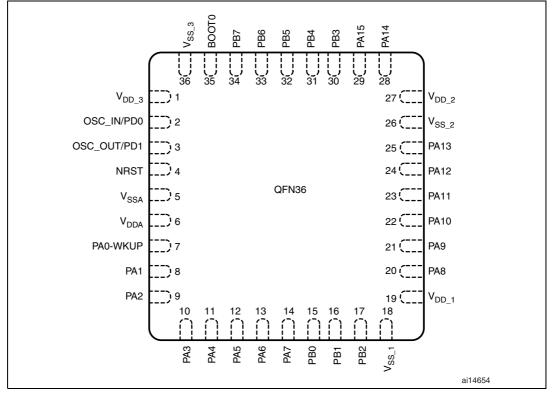




Figure 4. STM32F103xx performance line LQFP100 pinout




57









## STM32F103x8, STM32F103xB

57

|          |        | Pir     | IS     |         |          |                   |                     | (2)                                                                 |                        | Alternate                                            | functions                            |
|----------|--------|---------|--------|---------|----------|-------------------|---------------------|---------------------------------------------------------------------|------------------------|------------------------------------------------------|--------------------------------------|
| LFBGA100 | LQFP48 | TFBGA64 | LQFP64 | LQFP100 | VFQFPN36 | Pin name          | Type <sup>(1)</sup> | TA<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D |                        | Default                                              | Remap                                |
| A10      | 34     | A8      | 46     | 72      | 25       | PA13              | I/O                 | FT                                                                  | JTMS/SWDIO             |                                                      | PA13                                 |
| F8       | -      | -       | -      | 73      | -        |                   |                     | Not                                                                 | connected              |                                                      |                                      |
| E6       | 35     | D5      | 47     | 74      | 26       | V <sub>SS_2</sub> | S                   |                                                                     | V <sub>SS_2</sub>      |                                                      |                                      |
| F6       | 36     | E5      | 48     | 75      | 27       | V <sub>DD_2</sub> | S                   |                                                                     | V <sub>DD_2</sub>      |                                                      |                                      |
| A9       | 37     | A7      | 49     | 76      | 28       | PA14              | I/O                 | FT                                                                  | JTCK/SWCLK             |                                                      | PA14                                 |
| A8       | 38     | A6      | 50     | 77      | 29       | PA15              | I/O                 | FT                                                                  | JTDI                   |                                                      | TIM2_CH1_ETR/<br>PA15 /SPI1_NSS      |
| B9       | -      | B7      | 51     | 78      |          | PC10              | I/O                 | FT                                                                  | PC10                   |                                                      | USART3_TX                            |
| B8       | -      | B6      | 52     | 79      |          | PC11              | I/O                 | FT                                                                  | PC11                   |                                                      | USART3_RX                            |
| C8       | -      | C5      | 53     | 80      |          | PC12              | I/O                 | FT                                                                  | PC12                   |                                                      | USART3_CK                            |
| D8       | 5      | C1      | 5      | 81      | 2        | PD0               | I/O                 | FT                                                                  | OSC_IN <sup>(8)</sup>  |                                                      | CANRX                                |
| E8       | 6      | D1      | 6      | 82      | 3        | PD1               | I/O                 | FT                                                                  | OSC_OUT <sup>(8)</sup> |                                                      | CANTX                                |
| B7       |        | B5      | 54     | 83      | -        | PD2               | I/O                 | FT                                                                  | PD2                    | TIM3_ETR                                             |                                      |
| C7       | -      | -       | -      | 84      | -        | PD3               | I/O                 | FT                                                                  | PD3                    |                                                      | USART2_CTS                           |
| D7       | -      | -       | -      | 85      | -        | PD4               | I/O                 | FT                                                                  | PD4                    |                                                      | USART2_RTS                           |
| B6       | -      | -       | -      | 86      | -        | PD5               | I/O                 | FT                                                                  | PD5                    |                                                      | USART2_TX                            |
| C6       | -      | -       | -      | 87      | -        | PD6               | I/O                 | FT                                                                  | PD6                    |                                                      | USART2_RX                            |
| D6       | -      | -       | -      | 88      | -        | PD7               | I/O                 | FT                                                                  | PD7                    |                                                      | USART2_CK                            |
| A7       | 39     | A5      | 55     | 89      | 30       | PB3               | I/O                 | FT                                                                  | JTDO                   |                                                      | TIM2_CH2/PB3<br>TRACESWO<br>SPI1_SCK |
| A6       | 40     | A4      | 56     | 90      | 31       | PB4               | I/O                 | FT                                                                  | JNTRST                 |                                                      | TIM3_CH1/PB4/<br>SPI1_MISO           |
|          |        |         |        |         |          |                   |                     |                                                                     |                        |                                                      |                                      |
| C5       | 41     | C4      | 57     | 91      | 32       | PB5               | I/O                 |                                                                     | PB5                    | I2C1_SMBAI                                           | TIM3_CH2 /<br>SPI1_MOSI              |
| B5       | 42     | D3      | 58     | 92      | 33       | PB6               | I/O                 | FT                                                                  | PB6                    | l2C1_SCL <sup>(7)</sup> /<br>TIM4_CH1 <sup>(7)</sup> | USART1_TX                            |
| A5       | 43     | C3      | 59     | 93      | 34       | PB7               | I/O                 | FT                                                                  | PB7                    | I2C1_SDA <sup>(7)</sup> /<br>TIM4_CH2 <sup>(7)</sup> | USART1_RX                            |
| D5       | 44     | B4      | 60     | 94      | 35       | BOOT0             | Ι                   |                                                                     | BOOT0                  |                                                      |                                      |
| B4       | 45     | B3      | 61     | 95      | -        | PB8               | I/O                 | FT                                                                  | PB8                    | TIM4_CH3 <sup>(7)</sup>                              | I2C1_SCL /<br>CANRX                  |
| A4       | 46     | A3      | 62     | 96      | -        | PB9               | I/O                 | FT                                                                  | PB9                    | TIM4_CH4 <sup>(7)</sup>                              | I2C1_SDA/<br>CANTX                   |

## Table 5. Medium-density STM32F103xx pin definitions (continued)



## 5 Electrical characteristics

## 5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to  $V_{SS}$ .

#### 5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25$  °C and  $T_A = T_A max$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$ ).

### 5.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_A$  = 25 °C,  $V_{DD}$  = 3.3 V (for the 2 V  $\leq$   $V_{DD}$   $\leq$  3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$ ).

#### 5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

#### 5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.



| Table 9. | General operating conditio                                 | ns (continued)                       |         |      |       |
|----------|------------------------------------------------------------|--------------------------------------|---------|------|-------|
| Symbol   | Parameter                                                  | Conditions                           | Min     | Max  | Unit  |
|          |                                                            | LFBGA100                             |         | 454  |       |
|          |                                                            | LQFP100                              |         | 434  |       |
| Р        | Power dissipation at $T_A = 85 \degree C$                  | TFBGA64                              |         | 308  | mW    |
| PD       | for suffix 6 or $T_A = 105$ °C for suffix 7 <sup>(3)</sup> | LQFP64                               |         | 444  | 11177 |
|          |                                                            | LQFP48                               | 363     |      |       |
|          |                                                            | VFQFPN36                             |         | 1110 |       |
|          | Ambient temperature for 6 suffix version                   | Maximum power dissipation            | -40     | 85   | °C    |
| Та       |                                                            | Low power dissipation <sup>(4)</sup> | -40     | 105  | C     |
| IA       | Ambient temperature for 7                                  | Maximum power dissipation            | -40     | 105  | °C    |
|          | suffix version                                             | Low power dissipation <sup>(4)</sup> | -40 125 |      | C     |
| TJ       | lunction tomporature range                                 | 6 suffix version                     | -40     | 105  | °C    |
| IJ       | Junction temperature range                                 | 7 suffix version                     | -40     | 125  | U     |

Table 9. General operating conditions (continued)

1. When the ADC is used, refer to *Table 45: ADC characteristics*.

2. It is recommended to power V<sub>DD</sub> and V<sub>DDA</sub> from the same source. A maximum difference of 300 mV between V<sub>DD</sub> and V<sub>DDA</sub> can be tolerated during power-up and operation.

- If T<sub>A</sub> is lower, higher P<sub>D</sub> values are allowed as long as T<sub>J</sub> does not exceed T<sub>J</sub>max (see *Table 6.2: Thermal characteristics on page 81*).
- In low power dissipation state, T<sub>A</sub> can be extended to this range as long as T<sub>J</sub> does not exceed T<sub>J</sub>max (see Table 6.2: Thermal characteristics on page 81).

#### 5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T<sub>A</sub>.

#### Table 10. Operating conditions at power-up / power-down

| Symbol           | Parameter                      | Conditions | Min | Max      | Unit  |
|------------------|--------------------------------|------------|-----|----------|-------|
| +                | V <sub>DD</sub> rise time rate |            | 0   | $\infty$ | µs/V  |
| <sup>I</sup> VDD | V <sub>DD</sub> fall time rate |            | 20  | $\infty$ | μ5/ V |

#### 5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 11* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 9*.



- Note: For  $C_{L1}$  and  $C_{L2}$  it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator.  $C_{L1}$  and  $C_{L2}$ , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . Load capacitance  $C_L$  has the following formula:  $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$  where  $C_{stray}$  is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of  $C_{L1}$  and  $C_{L2}$  (15 pF) it is strongly recommended to use a resonator with a load capacitance  $C_L \le 7$  pF. Never use a resonator with a load capacitance of 12.5 pF.

**Example:** if you choose a resonator with a load capacitance of  $C_L = 6 \text{ pF}$ , and  $C_{stray} = 2 \text{ pF}$ , then  $C_{L1} = C_{L2} = 8 \text{ pF}$ .

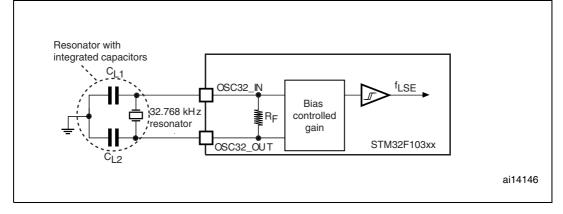

| Symbol                                            | Parameter                                                                                     | Conditions                            | Min | Тур | Max | Unit |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|------|
| R <sub>F</sub>                                    | Feedback resistor                                                                             |                                       |     | 5   |     | MΩ   |
| C <sub>L1</sub><br>C <sub>L2</sub> <sup>(2)</sup> | Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$ | R <sub>S</sub> = 30 kΩ                |     |     | 15  | pF   |
| l <sub>2</sub>                                    | LSE driving current                                                                           | $V_{DD}$ = 3.3 V, $V_{IN}$ = $V_{SS}$ |     |     | 1.4 | μA   |
| 9 <sub>m</sub>                                    | Oscillator Transconductance                                                                   |                                       | 5   |     |     | μA/V |
| $t_{SU(LSE)}^{(4)}$                               | startup time                                                                                  | $V_{DD}$ is stabilized                |     | 3   |     | s    |

Table 23. LSE oscillator characteristics (f<sub>LSE</sub> = 32.768 kHz) <sup>(1)</sup>

1. Based on characterization, not tested in production.

- 2. Refer to the note and caution paragraphs above the table.
- 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small  $R_S$  value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
- t<sub>SU(LSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

#### Figure 22. Typical application with a 32.768 kHz crystal



#### 5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 9*.



#### High-speed internal (HSI) RC oscillator

| Symbol               | Parameter                           | Conditions             | Min  | Тур | Max | Unit |
|----------------------|-------------------------------------|------------------------|------|-----|-----|------|
| f <sub>HSI</sub>     | Frequency                           |                        |      | 8   |     | MHz  |
|                      |                                     | $T_A = -40$ to 105 °C  | -2   | ±1  | 2.5 | %    |
| ACC .                | Accuracy of HSI oscillator          | $T_A = -10$ to 85 °C   | -1.5 | ±1  | 2.2 | %    |
| ACC <sub>HSI</sub>   |                                     | $T_A = 0$ to 70 °C     | -1.3 | ±1  | 2   | %    |
|                      |                                     | T <sub>A</sub> = 25 °C | -1.1 | ±1  | 1.8 | %    |
| t <sub>su(HSI)</sub> | HSI oscillator startup time         |                        | 1    |     | 2   | μs   |
| I <sub>DD(HSI)</sub> | HSI oscillator power<br>consumption |                        |      | 80  | 100 | μA   |

#### Table 24. HSI oscillator characteristics<sup>(1) (2)</sup>

1. Guaranteed by design, not tested in production.

2.  $V_{DD} = 3.3$  V,  $T_A = -40$  to 105 °C unless otherwise specified.

#### Low-speed internal (LSI) RC oscillator

#### Table 25. LSI oscillator characteristics <sup>(1)</sup>

| Symbol                              | Parameter                        | Min | Тур  | Max | Unit |
|-------------------------------------|----------------------------------|-----|------|-----|------|
| f <sub>LSI</sub> <sup>(2)</sup>     | Frequency                        | 30  | 40   | 60  | kHz  |
| t <sub>su(LSI)</sub> <sup>(3)</sup> | LSI oscillator startup time      |     |      | 85  | μs   |
| I <sub>DD(LSI)</sub> <sup>(3)</sup> | LSI oscillator power consumption |     | 0.65 | 1.2 | μA   |

1.  $V_{DD}$  = 3 V,  $T_A$  = -40 to 105 °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design, not tested in production.

#### Wakeup time from low-power mode

The wakeup times given in *Table 26* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 9*.



#### 5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

#### Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts  $\times$  (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 32. ESD absolute maximum ratings

| Symbol                | Ratings Conditions C                                  |                                                         | Class | Maximum value <sup>(1)</sup> | Unit |
|-----------------------|-------------------------------------------------------|---------------------------------------------------------|-------|------------------------------|------|
| V <sub>ESD(HBM)</sub> | Electrostatic discharge voltage (human body model)    | $T_A = +25 \ ^{\circ}C$<br>conforming to<br>JESD22-A114 | 2     | 2000                         | V    |
| V <sub>ESD(CDM)</sub> | Electrostatic discharge voltage (charge device model) | $T_A = +25 \text{ °C}$<br>conforming to<br>JESD22-C101  | 11    | 500                          | v    |

1. Based on characterization results, not tested in production.

#### Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

#### Table 33.Electrical sensitivities

| Symbol | Parameter             | Conditions                            | Class      |
|--------|-----------------------|---------------------------------------|------------|
| LU     | Static latch-up class | $T_A = +105$ °C conforming to JESD78A | II level A |



#### **Output driving current**

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed  $V_{OL}$ ).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V<sub>DD</sub>, plus the maximum Run consumption of the MCU sourced on V<sub>DD</sub>, cannot exceed the absolute maximum rating I<sub>VDD</sub> (see *Table 7*).
- The sum of the currents sunk by all the I/Os on V<sub>SS</sub> plus the maximum Run consumption of the MCU sunk on V<sub>SS</sub> cannot exceed the absolute maximum rating I<sub>VSS</sub> (see *Table 7*).

#### **Output voltage levels**

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

| Symbol                            | Parameter                                                                     | Conditions                                                 | Min                  | Max | Unit |
|-----------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|-----|------|
| V <sub>OL</sub> <sup>(1)</sup>    | Output low level voltage for an I/O pin when 8 pins are sunk at same time     | TTL port                                                   |                      | 0.4 | V    |
| V <sub>OH</sub> <sup>(2)</sup>    | Output high level voltage for an I/O pin when 8 pins are sourced at same time | I <sub>IO</sub> = +8 mA<br>2.7 V < V <sub>DD</sub> < 3.6 V | V <sub>DD</sub> -0.4 |     | v    |
| V <sub>OL</sub> <sup>(1)</sup>    | Output low level voltage for an I/O pin when 8 pins are sunk at same time     | CMOS port<br>I <sub>IO</sub> =+ 8mA                        |                      | 0.4 | V    |
| V <sub>OH</sub> <sup>(2)</sup>    | Output high level voltage for an I/O pin when 8 pins are sourced at same time | $2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$     | 2.4                  |     | v    |
| V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level voltage for an I/O pin when 8 pins are sunk at same time     | l <sub>IO</sub> = +20 mA                                   |                      | 1.3 | V    |
| V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2.7 V < V <sub>DD</sub> < 3.6 V                            | V <sub>DD</sub> -1.3 |     | v    |
| V <sub>OL</sub> <sup>(1)(3)</sup> | Output low level voltage for an I/O pin when 8 pins are sunk at same time     | I <sub>IO</sub> = +6 mA                                    |                      | 0.4 | V    |
| V <sub>OH</sub> <sup>(2)(3)</sup> | Output high level voltage for an I/O pin when 8 pins are sourced at same time | 2 V < V <sub>DD</sub> < 2.7 V                              | V <sub>DD</sub> -0.4 |     | v    |

Table 35. Output voltage characteristics

1. The I<sub>IO</sub> current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VSS</sub>.

2. The I<sub>IO</sub> current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I<sub>IO</sub> (I/O ports and control pins) must not exceed I<sub>VDD</sub>.

3. Based on characterization data, not tested in production.



#### 5.3.15 Communications interfaces

#### I<sup>2</sup>C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature,  $f_{PCLK1}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 9*.

The STM32F103xx performance line  $I^2C$  interface meets the requirements of the standard  $I^2C$  communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DD</sub> is disabled, but is still present.

The I<sup>2</sup>C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

| Symbol                                     | Parameter                               | Standard r       | node l <sup>2</sup> C <sup>(1)</sup> | Fast mode              | Unit               |      |
|--------------------------------------------|-----------------------------------------|------------------|--------------------------------------|------------------------|--------------------|------|
| Symbol                                     | Falameter                               | Min              | Max                                  | Min                    | Max                | Unit |
| t <sub>w(SCLL)</sub>                       | SCL clock low time                      | 4.7              |                                      | 1.3                    |                    |      |
| t <sub>w(SCLH)</sub>                       | SCL clock high time                     | 4.0              |                                      | 0.6                    |                    | μs   |
| t <sub>su(SDA)</sub>                       | SDA setup time                          | 250              |                                      | 100                    |                    |      |
| t <sub>h(SDA)</sub>                        | SDA data hold time                      | 0 <sup>(3)</sup> |                                      | 0 <sup>(4)</sup>       | 900 <sup>(3)</sup> |      |
| t <sub>r(SDA)</sub><br>t <sub>r(SCL)</sub> | SDA and SCL rise time                   |                  | 1000                                 | 20 + 0.1C <sub>b</sub> | 300                | ns   |
| t <sub>f(SDA)</sub><br>t <sub>f(SCL)</sub> | SDA and SCL fall time                   |                  | 300                                  |                        | 300                |      |
| t <sub>h(STA)</sub>                        | Start condition hold time               | 4.0              |                                      | 0.6                    |                    |      |
| t <sub>su(STA)</sub>                       | Repeated Start condition setup time     | 4.7              |                                      | 0.6                    |                    | μs   |
| t <sub>su(STO)</sub>                       | Stop condition setup time               | 4.0              |                                      | 0.6                    |                    | μS   |
| t <sub>w(STO:STA)</sub>                    | Stop to Start condition time (bus free) | 4.7              |                                      | 1.3                    |                    | μS   |
| C <sub>b</sub>                             | Capacitive load for each bus line       |                  | 400                                  |                        | 400                | pF   |

| Table 39. I <sup>2</sup> | C characteristi | cs |
|--------------------------|-----------------|----|
|--------------------------|-----------------|----|

1. Guaranteed by design, not tested in production.

2.  $f_{PCLK1}$  must be higher than 2 MHz to achieve the maximum standard mode I<sup>2</sup>C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I<sup>2</sup>C frequency.

3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.



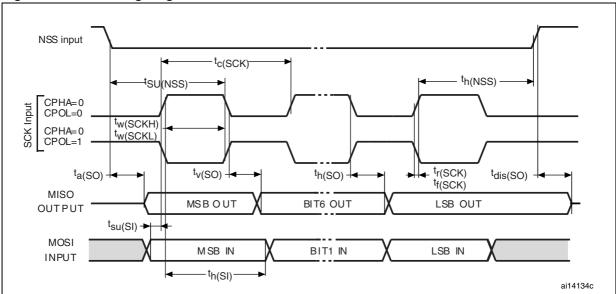
#### SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 9*.

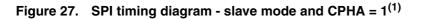
Refer to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

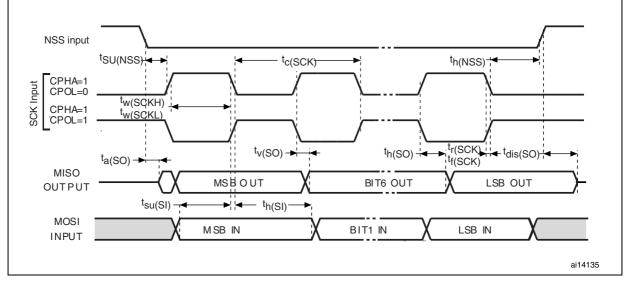
 Table 41.
 SPI characteristics<sup>(1)</sup>

| Symbol                                                                | Parameter                           | Conditions                                            | Min                 | Мах                 | Unit |
|-----------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|---------------------|---------------------|------|
| f <sub>SCK</sub>                                                      |                                     | Master mode                                           | 0                   | 18                  | MHz  |
| 1/t <sub>c(SCK)</sub>                                                 | SPI clock frequency                 | Slave mode                                            | 0                   | 18                  |      |
| t <sub>r(SCK)</sub><br>t <sub>f(SCK)</sub>                            | SPI clock rise and fall time        | Capacitive load: C = 30 pF                            |                     | 8                   |      |
| t <sub>su(NSS)</sub> <sup>(2)</sup>                                   | NSS setup time                      | Slave mode                                            | 4 t <sub>PCLK</sub> |                     |      |
| t <sub>h(NSS)</sub> <sup>(2)</sup>                                    | NSS hold time                       | Slave mode                                            | 73                  |                     |      |
| $t_{w(SCKH)}^{(2)}_{(2)}$<br>$t_{w(SCKL)}^{(2)}$                      | SCK high and low time               | Master mode, f <sub>PCLK</sub> = 36 MHz,<br>presc = 4 | 50                  | 60                  |      |
|                                                                       | Data input setup time               | SPI1                                                  | 1                   |                     |      |
| t <sub>su(MI)</sub> <sup>(2)</sup>                                    | Master mode                         | SPI2                                                  | 5                   |                     |      |
| t <sub>su(SI)</sub> <sup>(2)</sup>                                    | Data input setup time<br>Slave mode |                                                       | 1                   |                     |      |
| . (2)                                                                 | Data input hold time                | SPI1                                                  | 1                   |                     |      |
| t <sub>h(MI)</sub> <sup>(2)</sup> Data input hold time<br>Master mode |                                     | SPI2                                                  | 5                   |                     | ns   |
| $t_{h(SI)}^{(2)}$                                                     | Data input hold time<br>Slave mode  |                                                       | 3                   |                     |      |
| t <sub>a(SO)</sub> (2)(3)                                             | Data output access                  | Slave mode, f <sub>PCLK</sub> = 36 MHz,<br>presc = 4  | 0                   | 55                  |      |
| 4(00)                                                                 | time                                | Slave mode, f <sub>PCLK</sub> = 24 MHz                | 0                   | 4 t <sub>PCLK</sub> |      |
| t <sub>dis(SO)</sub> <sup>(2)(4)</sup>                                | Data output disable<br>time         | Slave mode                                            | 10                  |                     |      |
| t <sub>v(SO)</sub> (2)(1)                                             | Data output valid time              | Slave mode (after enable edge)                        |                     | 25                  |      |
| t <sub>v(MO)</sub> <sup>(2)(1)</sup>                                  | Data output valid time              | Master mode (after enable edge)                       |                     | 3                   |      |
| t <sub>h(SO)</sub> <sup>(2)</sup>                                     | Data output hold time               | Slave mode (after enable edge)                        | 25                  |                     |      |
| t <sub>h(MO)</sub> <sup>(2)</sup>                                     | Data output hold time               | Master mode (after enable edge)                       | 4                   |                     |      |


1. Remapped SPI1 characteristics to be determined.

2. Based on characterization, not tested in production.


3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.


4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z





#### Figure 26. SPI timing diagram - slave mode and CPHA = 0





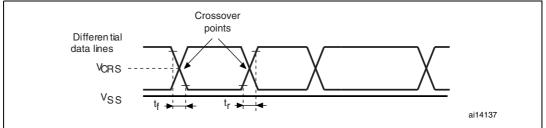
1. Measurement points are done at CMOS levels:  $0.3V_{DD}$  and  $0.7V_{DD}$ .



| Symbol                         | Parameter                            | Conditions                                                       | Min. <sup>(1)</sup> | Max. <sup>(1)</sup> | Unit |  |  |
|--------------------------------|--------------------------------------|------------------------------------------------------------------|---------------------|---------------------|------|--|--|
| Input levels                   |                                      |                                                                  |                     |                     |      |  |  |
| V <sub>DD</sub>                | USB operating voltage <sup>(2)</sup> |                                                                  | 3.0 <sup>(3)</sup>  | 3.6                 | V    |  |  |
| V <sub>DI</sub> <sup>(4)</sup> | Differential input sensitivity       | I(USBDP, USBDM)                                                  | 0.2                 |                     |      |  |  |
| V <sub>CM</sub> <sup>(4)</sup> | Differential common mode range       | Includes V <sub>DI</sub> range                                   | 0.8                 | 2.5                 | V    |  |  |
| V <sub>SE</sub> <sup>(4)</sup> | Single ended receiver threshold      |                                                                  | 1.3                 | 2.0                 |      |  |  |
| Output levels                  |                                      |                                                                  |                     |                     |      |  |  |
| V <sub>OL</sub>                | Static output level low              | $\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(5)}$                    |                     | 0.3                 | v    |  |  |
| V <sub>OH</sub>                | Static output level high             | ${\sf R}_{\sf L}$ of 15 k $\Omega$ to ${\sf V}_{\sf SS}{}^{(5)}$ |                     | 3.6                 | v    |  |  |

 Table 43.
 USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.


2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k $\Omega$  resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V  $V_{DD}$  voltage range.

4. Guaranteed by design, not tested in production.

5. R<sub>L</sub> is the load connected on the USB drivers

#### Figure 29. USB timings: definition of data signal rise and fall time



| Table 44. USB: Full-speed electrical characterist | ics <sup>(1)</sup> |
|---------------------------------------------------|--------------------|
|---------------------------------------------------|--------------------|

| Symbol           | Parameter                       | Conditions                     | Min | Max | Unit |
|------------------|---------------------------------|--------------------------------|-----|-----|------|
| Driver cha       | racteristics                    |                                |     |     |      |
| t <sub>r</sub>   | Rise time <sup>(2)</sup>        | C <sub>L</sub> = 50 pF         | 4   | 20  | ns   |
| t <sub>f</sub>   | Fall time <sup>(2)</sup>        | C <sub>L</sub> = 50 pF         | 4   | 20  | ns   |
| t <sub>rfm</sub> | Rise/ fall time matching        | t <sub>r</sub> /t <sub>f</sub> | 90  | 110 | %    |
| V <sub>CRS</sub> | Output signal crossover voltage |                                | 1.3 | 2.0 | V    |

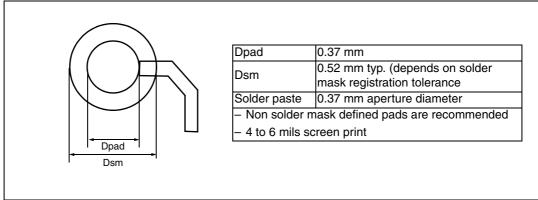
1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

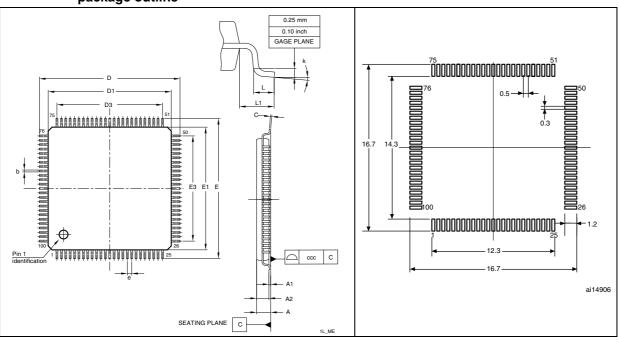
#### 5.3.16 CAN (controller area network) interface

Refer to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (CAN\_TX and CAN\_RX).




## 6 Package characteristics

## 6.1 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.











# Figure 38. LQFP100, 100-pin low-profile quad flat package outline<sup>(1)</sup>

1. Drawing is not to scale.

2. Dimensions are in millimeters.

#### Table 52. LQPF100, 100-pin low-profile quad flat package mechanical data

| Symbol | millimeters |      |      | inches <sup>(1)</sup> |        |        |  |
|--------|-------------|------|------|-----------------------|--------|--------|--|
|        | Тур         | Min  | Мах  | Тур                   | Min    | Мах    |  |
| А      |             |      | 1.6  |                       |        | 0.063  |  |
| A1     |             | 0.05 | 0.15 |                       | 0.002  | 0.0059 |  |
| A2     | 1.4         | 1.35 | 1.45 | 0.0551                | 0.0531 | 0.0571 |  |
| b      | 0.22        | 0.17 | 0.27 | 0.0087                | 0.0067 | 0.0106 |  |
| С      |             | 0.09 | 0.2  |                       | 0.0035 | 0.0079 |  |
| D      | 16          | 15.8 | 16.2 | 0.6299                | 0.622  | 0.6378 |  |
| D1     | 14          | 13.8 | 14.2 | 0.5512                | 0.5433 | 0.5591 |  |
| D3     | 12          |      |      | 0.4724                |        |        |  |
| Е      | 16          | 15.8 | 16.2 | 0.6299                | 0.622  | 0.6378 |  |
| E1     | 14          | 13.8 | 14.2 | 0.5512                | 0.5433 | 0.5591 |  |
| E3     | 12          |      |      | 0.4724                |        |        |  |
| е      | 0.5         |      |      | 0.0197                |        |        |  |
| L      | 0.6         | 0.45 | 0.75 | 0.0236                | 0.0177 | 0.0295 |  |
| L1     | 1           |      |      | 0.0394                |        |        |  |
| k      | 3.5°        | 0.0° | 7.0° | 3.5°                  | 0.0°   | 7.0°   |  |
| CCC    |             | 0.08 |      |                       | 0.0031 | •      |  |

1. Values in inches are converted from mm and rounded to 4 decimal digits.



## Figure 39. Recommended footprint $^{(1)(2)}$

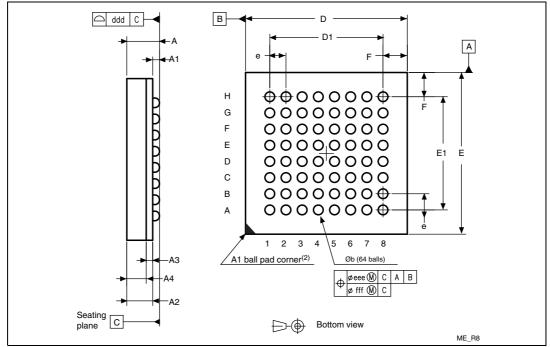



Figure 42. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

Table 54.TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package<br/>mechanical data

| Symbol |       | millimeters |       | inches <sup>(1)</sup> |        |        |  |
|--------|-------|-------------|-------|-----------------------|--------|--------|--|
|        | Тур   | Min         | Max   | Тур                   | Min    | Max    |  |
| A      |       |             | 1.200 |                       |        | 0.0472 |  |
| A1     |       | 0.150       |       |                       | 0.0059 |        |  |
| A2     | 0.785 |             |       | 0.0309                |        |        |  |
| A3     | 0.200 |             |       | 0.0079                |        |        |  |
| A4     |       |             | 0.600 |                       |        | 0.0236 |  |
| b      | 0.300 | 0.250       | 0.350 | 0.0118                | 0.0098 | 0.0138 |  |
| D      | 5.000 | 4.850       | 5.150 | 0.1969                | 0.1909 | 0.2028 |  |
| D1     | 3.500 |             |       | 0.1378                |        |        |  |
| E      | 5.000 | 4.850       | 5.150 | 0.1969                | 0.1909 | 0.2028 |  |
| E1     | 3.500 |             |       | 0.1378                |        |        |  |
| е      | 0.500 |             |       | 0.0197                |        |        |  |
| F      | 0.750 |             |       | 0.0295                |        |        |  |
| ddd    | 0.080 |             |       | 0.0031                |        |        |  |
| eee    | 0.150 |             |       | 0.0059                |        |        |  |
| fff    | 0.050 |             |       |                       | 0.0020 |        |  |

1. Values in inches are converted from mm and rounded to 4 decimal digits.



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |          | I/O information clarified <i>on page 1</i> .<br><i>Figure 3: STM32F103xx performance line LFBGA100 ballout</i> modified.<br><i>Figure 9: Memory map</i> modified. <i>Table 4: Timer feature comparison</i><br>added.<br>PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default<br>column to Remap column in <i>Table 5: Medium-density STM32F103xx</i><br><i>pin definitions</i> . |
| 23-Apr-2009 | 10       | P <sub>D</sub> for LFBGA100 corrected in <i>Table 9: General operating conditions</i> .<br>Note modified in <i>Table 13: Maximum current consumption in Run</i><br><i>mode, code with data processing running from Flash</i> and <i>Table 15:</i><br><i>Maximum current consumption in Sleep mode, code running from</i><br><i>Flash or RAM</i> .                                  |
|             |          | Table 20: High-speed external user clock characteristics and Table 21:Low-speed external user clock characteristics modified.                                                                                                                                                                                                                                                      |
|             |          | <i>Figure 17</i> shows a typical curve (title modified). ACC <sub>HSI</sub> max values modified in <i>Table 24: HSI oscillator characteristics</i> .                                                                                                                                                                                                                               |
|             |          | TFBGA64 package added (see <i>Table 54</i> and <i>Table 42</i> ). Small text changes.                                                                                                                                                                                                                                                                                              |

## Table 58. Document revision history (continued)

