E·XFL

Details

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No

Table 4.Timer feature comparison

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It

can also be seen as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.3.21 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

I/Os on APB2 with up to 18 MHz toggling speed

2.3.22 ADC (analog-to-digital converter)

Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single shunt

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

2.3.23 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.24 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

Figure 1. STM32F103xx performance line block diagram

1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

2. AF = alternate function on I/O port pin.

	1	2	3	4	5	6	7	8
A	• /PC14-, 0\\$C32_lN	, PC13-; FAMPER-RT	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	, PC15-, OS(C32_OUT	VBAT	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)
С	OSC_IN	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	'VSS_3'	VSS_2	, VSS_1,	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'V _{DD_3} '	'V _{DD_2} '	, VDD_1,	(PC7)	(PC8)
F	(V _{SSA})	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+	PÁO-WKŲP	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
								Al1549

Figure 6. STM32F103xx performance line TFBGA64 ballout

STM32F103x8, STM32F103xB

57

		Pir	IS					(2)		Alternate functions	
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Leve	Main function ⁽³⁾ (after reset)	Default	Remap
A10	34	A8	46	72	25	PA13	I/O	FT	JTMS/SWDIO		PA13
F8	-	-	-	73	-			Not	connected		
E6	35	D5	47	74	26	V _{SS_2}	S		V _{SS_2}		
F6	36	E5	48	75	27	V _{DD_2}	S		V_{DD_2}		
A9	37	A7	49	76	28	PA14	I/O	FT	JTCK/SWCLK		PA14
A8	38	A6	50	77	29	PA15	I/O	FT	JTDI		TIM2_CH1_ETR/ PA15 /SPI1_NSS
B9	-	B7	51	78		PC10	I/O	FT	PC10		USART3_TX
B8	-	B6	52	79		PC11	I/O	FT	PC11		USART3_RX
C8	-	C5	53	80		PC12	I/O	FT	PC12		USART3_CK
D8	5	C1	5	81	2	PD0	I/O	FT	OSC_IN ⁽⁸⁾		CANRX
E8	6	D1	6	82	3	PD1	I/O	FT	OSC_OUT ⁽⁸⁾		CANTX
B7		B5	54	83	-	PD2	I/O	FT	PD2	TIM3_ETR	
C7	-	-	-	84	-	PD3	I/O	FT	PD3		USART2_CTS
D7	-	-	-	85	-	PD4	I/O	FT	PD4		USART2_RTS
B6	-	-	-	86	-	PD5	I/O	FT	PD5		USART2_TX
C6	-	-	-	87	-	PD6	I/O	FT	PD6		USART2_RX
D6	-	-	-	88	-	PD7	I/O	FT	PD7		USART2_CK
A7	39	A5	55	89	30	PB3	I/O	FT	JTDO		TIM2_CH2/PB3 TRACESWO SPI1_SCK
A6	40	A4	56	90	31	PB4	I/O	FT	JNTRST		TIM3_CH1/PB4/ SPI1_MISO
C5	41	C4	57	91	32	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2 / SPI1_MOSI
B5	42	D3	58	92	33	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ / TIM4_CH1 ⁽⁷⁾	USART1_TX
A5	43	C3	59	93	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / TIM4_CH2 ⁽⁷⁾	USART1_RX
D5	44	B4	60	94	35	BOOT0	Ι		BOOT0		
B4	45	B3	61	95	-	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁷⁾	I2C1_SCL / CANRX
A4	46	A3	62	96	-	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁷⁾	I2C1_SDA/ CANTX

Table 5. Medium-density STM32F103xx pin definitions (continued)

Figure 10. Pin loading conditions

Power supply scheme 5.1.6

5.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V	Input voltage on five volt tolerant pin ⁽²⁾	$V_{SS} - 0.3$	+5.5	V
♥ IN	Input voltage on any other pin ⁽²⁾	$V_{SS} - 0.3$	V _{DD} +0.3	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins		50	m\/
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins		50	IIIV
V _{ESD(HBM)}	VESD(HBM) Electrostatic discharge voltage (human body model)		.3.11: imum ratings isitivity)	

 Table 6.
 Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. $I_{INJ(PIN)}$ must never be exceeded (see *Table 7: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by V_{IN} > V_{IN} max while a negative injection is induced by V_{IN} < V_{SS} .

Symbol	Ratings	Max.	Unit		
I _{VDD}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	150			
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ⁽¹⁾				
I _{IO}	Output current sunk by any I/O and control pin	25			
	Output current source by any I/Os and control pin	- 25	m 1		
	Injected current on NRST pin	± 5			
I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on HSE OSC_IN and LSE OSC_IN pins	± 5			
	Injected current on any other pin ⁽⁴⁾	± 5			
$\Sigma I_{\rm INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁽⁴⁾	± 25			

Table 7.Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

3. Negative injection disturbs the analog performance of the device. See note in *Section 5.3.17: 12-bit ADC characteristics*.

4. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 8.Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
Т _Ј	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9.General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	72	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	72	
V _{DD}	Standard operating voltage		2	3.6	V
V (1)	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	М
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v
V _{BAT}	Backup operating voltage		1.8	3.6	V

Symbol	Paramotor	Conditions	f .	Max ⁽¹⁾		Unit
Symbol	Falailletei	Contaitions	HCLK	T _A = 85 °C	T _A = 105 °C	Onit
			72 MHz	30	32	
			48 MHz	20	20.5	
		External clock ⁽²⁾ , all	36 MHz	15.5	16	
	Supply current in	peripherals enabled	24 MHz	11.5	12	
			16 MHz	8.5	9	
1			8 MHz	5.5	6	m۸
'DD	Sleep mode		72 MHz	7.5	8	шА
			48 MHz	6	6.5	
		External clock ⁽²⁾ , all	36 MHz	5	5.5	
		peripherals disabled	24 MHz	4.5	5	
			16 MHz	4	4.5	
			8 MHz	3	4	

Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. based on characterization, tested in production at $V_{\text{DD}\ \text{max}},\,f_{\text{HCLK}}$ max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Ту	o ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit	
		7	72 MH	72 MHz	14.4	5.5	
			48 MHz	9.9	3.9		
			36 MHz	7.6	3.1		
			24 MHz	5.3	2.3		
			16 MHz	3.8	1.8		
		External clock ⁽³⁾	8 MHz	2.1	1.2		
			4 MHz	1.6	1.1		
			2 MHz	1.3	1		
			1 MHz	1.11	0.98	~ ^	
			500 kHz	1.04	0.96		
	Supply		125 kHz	0.98	0.95		
'DD	Sleep mode		64 MHz	12.3	4.4	ШA	
			48 MHz	9.3	3.3		
			36 MHz	7	2.5		
			24 MHz	4.8	1.8		
		Running on high speed internal RC	16 MHz	3.2	1.2		
		(HSI), AHB prescaler	8 MHz	1.6	0.6		
		used to reduce the frequency	4 MHz	1	0.5		
			2 MHz	0.72	0.47		
			1 MHz	0.56	0.44		
			500 kHz	0.49	0.42		
			125 kHz	0.43	0.41		

Table 18.Typical current consumption in Sleep mode, code running from Flash or
RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

- Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6 \text{ pF}$, and $C_{stray} = 2 \text{ pF}$, then $C_{L1} = C_{L2} = 8 \text{ pF}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor			5		MΩ
C _{L1} C _{L2} ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ			15	pF
l ₂	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}			1.4	μA
9 _m	Oscillator Transconductance		5			μA/V
t _{SU(LSE)} ⁽⁴⁾	startup time	V_{DD} is stabilized		3		S

Table 23. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Based on characterization, not tested in production.

- 2. Refer to the note and caution paragraphs above the table.
- 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Figure 22. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Doc ID 13587 Rev 10

Symbol	Parameter	Conditions	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	Wakeup on HSI RC clock	1.8	μs
twustop ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	HSI RC wakeup time = 2 µs	3.6	110
	Wakeup from Stop mode (regulator in low power mode)	HSI RC wakeup time = 2 μ s, Regulator wakeup from LP mode time = 5 μ s	5.4	μο
twustdby ⁽¹⁾	Wakeup from Standby mode	HSI RC wakeup time = 2 μ s, Regulator wakeup from power down time = 38 μ s	50	μs

Table 26. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symphol	ol Parameter PLL input clock ⁽²⁾ PLL input clock duty cycle RLL multiplier output clock	Test conditions		Value		
Symbol	Parameter	rest conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾		1	8.0	25	MHz
'PLL_IN	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock		16		72	MHz
t _{LOCK}	PLL lock time				200	μs

Table 27. PLL characteristics

1. Based on characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40$ to +105 °C	20		40	ms
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20		40	ms

 Table 28.
 Flash memory characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed V_{OL}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 7*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 7*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port		0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} = +0.00$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4		v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port		0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	2.4		v
V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	l _{IO} = +20 mA		1.3	V
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		v
V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA		0.4	V
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4		v

Table 35. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

3. Based on characterization data, not tested in production.

Figure 25. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 40. SCL frequency (f_{PCLK1} = 36 MHz., V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

f. (//H=)	I2C_CCR value		
ISCL (NI12)	R_P = 4.7 k Ω		
400	0x801E		
300	0x8028		
200	0x803C		
100	0x00B4		
50	0x0168		
20	0x0384		

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

Figure 31. Typical connection diagram using the ADC

1. Refer to Table 45 for the values of R_{AIN} , R_{ADC} and C_{ADC} .

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 32* or *Figure 33*, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

Figure 33. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.18 Temperature sensor characteristics

Table 49. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4		10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature			17.1	μs

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 36. LFBGA100 - low profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Dim	mm			inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
A			1.700			0.0669	
A1	0.270			0.0106			
A2		1.085			0.0427		
A3		0.30			0.0118		
A4			0.80			0.0315	
b	0.45	0.50	0.55	0.0177	0.0197	0.0217	
D	9.85	10.00	10.15	0.3878	0.3937	0.3996	
D1		7.20			0.2835		
E	9.85	10.00	10.15	0.3878	0.3937	0.3996	
E1		7.20			0.2835		
е		0.80			0.0315		
F		1.40			0.0551		
ddd			0.12			0.0047	
eee			0.15			0.0059	
fff			0.08			0.0031	
N (number of balls)	100						

Table 51. LFBGA100 - low profile fine pitch ball grid array package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 57: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 8 I/Os used at the same time in output at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: $P_{INTmax} = 175 \text{ mW}$ and $P_{IOmax} = 272 \text{ mW}$:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Thus: $P_{Dmax} = 447 \text{ mW}$

Using the values obtained in *Table 56* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 57: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ Thus: $P_{Dmax} = 134 \text{ mW}$

