

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103cbt7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADC characteristics
R_{AIN} max for $f_{ADC} = 14$ MHz
ADC accuracy - limited test conditions
ADC accuracy
TS characteristics
VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data
LFBGA100 - low profile fine pitch ball grid array package mechanical data
LQPF100, 100-pin low-profile quad flat package mechanical data
LQFP64, 64-pin low-profile quad flat package mechanical data
TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data 78
LQFP48, 48-pin low-profile quad flat package mechanical data
Package thermal characteristics
Ordering information scheme

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No

Table 4.Timer feature comparison

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It

can also be seen as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated for OS, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

2.3.17 Universal synchronous/asynchronous receiver transmitter (USART)

One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

2.3.18 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

2.3.19 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.20 Universal serial bus (USB)

The STM32F103xx performance line embeds a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

Figure 4. STM32F103xx performance line LQFP100 pinout

	1	2	3	4	5	6	7	8
A	• /PC14-, 0\\$C32_lN	, PC13-; FAMPER-RT	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	, PC15-, OS(C32_OUT	VBAT	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)
С	OSC_IN	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	'VSS_3'	VSS_2	, VSS_1,	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'V _{DD_3} '	'V _{DD_2} '	, VDD_1,	(PC7)	(PC8)
F	(V _{SSA})	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+	PÁO-WKŲP	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
								Al1549

Figure 6. STM32F103xx performance line TFBGA64 ballout

4 Memory mapping

The memory map is shown in Figure 9.

Figure 9. Memory map

Doc ID 13587 Rev 10

Symbol	Parameter Conditions			Ma	Unit				
Symbol	Symbol Parameter	Conditions	Conditions T _{HCLK}		T _A = 105 °C	Unit			
			72 MHz	50	50.3				
			48 MHz	36.1	36.2				
		External clock ⁽²⁾ , all	36 MHz	28.6	28.7				
		peripherals enabled	peripherals enabled	peripherals enabled	peripherals enabled	24 MHz	19.9	20.1	
			16 MHz	14.7	14.9	mA			
	Supply current in		8 MHz	8.6	8.9				
'DD	Run mode		72 MHz	32.8	32.9				
			48 MHz	24.4	24.5				
		External clock ⁽²⁾ , all	36 MHz	19.8	19.9				
		peripherals disabled	24 MHz	13.9	14.2				
			16 MHz	10.7	11				
			8 MHz	6.8	7.1	1			

Table 13.Maximum current consumption in Run mode, code with data processing
running from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 14.Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	Conditions	f	Ма	ax ⁽¹⁾	Unit
Symbol	Faraineter	Conumons	HCLK	T _A = 85 °C	T _A = 105 °C	Onit
			72 MHz	48	50	
			48 MHz	31.5	32	
		External clock ⁽²⁾ , all	36 MHz	24	25.5	
		peripherals enabled	24 MHz	17.5	18	
				16 MHz	12.5	13
I	Supply			8 MHz	7.5	8
'DD	Run mode	mode	72 MHz	29	29.5	
		48 MHz	20.5	21		
		External clock ⁽²⁾ , all	36 MHz	16	16.5	
		peripherals disabled	24 MHz	11.5	12	
			16 MHz	8.5	9	
			8 MHz	5.5	6	

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Ту					
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit			
			72 MHz	14.4	5.5				
			48 MHz	9.9	3.9				
			36 MHz	7.6	3.1				
			24 MHz	5.3	2.3				
			16 MHz	3.8	1.8				
		External clock ⁽³⁾	8 MHz	2.1	1.2				
			4 MHz	1.6	1.1				
						2 MHz	1.3	1	
						1 MHz	1.11	0.98	
			500 kHz 1.04 0.96	0.96					
	Supply		125 kHz	0.98	0.95	m۸			
'DD	Sleep mode	lode	64 MHz	12.3	4.4	ШA			
			48 MHz	9.3	3.3				
			36 MHz	7	2.5				
			24 MHz	4.8	1.8				
		Running on high speed internal RC	16 MHz	3.2	1.2				
		(HSI), AHB prescaler	8 MHz	1.6	0.6				
		used to reduce the frequency	4 MHz	1	0.5				
			2 MHz	0.72	0.47				
			1 MHz	0.56	0.44				
			500 kHz	0.49	0.42				
			125 kHz	0.43	0.41				

Table 18.Typical current consumption in Sleep mode, code running from Flash or
RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		0	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}		$0.3V_{DD}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		16			ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾				20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾			5		pF
DuCy _(HSE)	Duty cycle		45		55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \le V_{IN} \le V_D$			±1	μA

 Table 20.
 High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

Table 21.	Low-speed external user clock characteristics
-----------	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450			20
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾				50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾			5		pF
DuCy _(LSE)	Duty cycle		30		70	%
١ _L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{D}$			±1	μA

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 36*, respectively.

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		2	MHz
10	t _{f(IO)out}	Output high to low level fall time			125 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	$D_{\rm L} = 30 {\rm pr}, v_{\rm DD} = 2 v_{\rm cl} 0.0 v_{\rm cl}$		125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		10	MHz
01	t _{f(IO)out}	Output high to low level fall time			25 ⁽³⁾	20
	t _{r(IO)out} Output low level rise ti	Output low to high level rise time	$C_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	115
			$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		50	MHz
	F _{max(IO)out}	t Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		30	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		20	MHz
	t _{f(IO)out}	Output high to low	$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	
11			$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	ne
			$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10		ns

 Table 36.
 I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 23*.

3. Guaranteed by design, not tested in production.

Figure 25. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 40. SCL frequency $(f_{PCLK1} = 36 \text{ MHz.}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

f. (//H=)	I2C_CCR value
ISCL (KIIZ)	R_P = 4.7 k Ω
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

1. R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

······································						
Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit	
ET	Total unadjusted error	f FC MUR	±2	±5		
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, \text{ R}_{AIN} < 10 \text{ k}\Omega,$	±1.5	±2.5		
EG	Gain error	$V_{DDA} = 2.4 \text{ V to } 3.6 \text{ V}$	±1.5	±3	LSB	
ED	Differential linearity error	Measurements made after	±1	±2		
EL	Integral linearity error		±1.5	±3		

Table 48. ADC $accuracy^{(1)}(2)(3)$

1. ADC DC accuracy values are measured after internal calibration.

2. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in *Section 5.3.12* does not affect the ADC accuracy.

4. Based on characterization, not tested in production.

Figure 30. ADC accuracy characteristics

Figure 33. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.18 Temperature sensor characteristics

Table 49. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾ Startup time		4		10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature			17.1	μs

1. Based on characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

1. Drawing is not to scale.

2. The back-side pad is not internally connected to the V_{SS} or V_{DD} power pads.

3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should also be soldered to the PCB.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
A	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1		0.020	0.050		0.0008	0.0020
A2		0.650	1.000		0.0256	0.0394
A3		0.250			0.0098	
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
E	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0197	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
ddd	0.080		0.0031			

Table 50. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 35. Recommended footprint (dimensions in mm)⁽¹⁾⁽²⁾⁽³⁾

Figure 44. LQFP48, 48-pin low-profile quad flat package outline⁽¹⁾

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Table 55.	LQFP48, 48-pin	low-profile q	uad flat packa	ge mechanical data
				U

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Тур	Min	Мах	Тур	Min	Мах
A			1.600			0.0630
A1		0.050	0.150		0.0020	0.0059
A2	1.400	1.350	1.450	0.0551	0.0531	0.0571
b	0.220	0.170	0.270	0.0087	0.0067	0.0106
с		0.090	0.200		0.0035	0.0079
D	9.000	8.800	9.200	0.3543	0.3465	0.3622
D1	7.000	6.800	7.200	0.2756	0.2677	0.2835
D3	5.500			0.2165		
E	9.000	8.800	9.200	0.3543	0.3465	0.3622
E1	7.000	6.800	7.200	0.2756	0.2677	0.2835
E3	5.500			0.2165		
е	0.500			0.0197		
L	0.600	0.450	0.750	0.0236	0.0177	0.0295
L1	1.000			0.0394		
k	3.5°	0°	7 °	3.5°	0°	7 °
CCC		0.080	•		0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Using the values obtained in *Table 56* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- $T_{Jmax} = 115 \ ^{\circ}C + (46 \ ^{\circ}C/W \times 134 \ mW) = 115 \ ^{\circ}C + 6.2 \ ^{\circ}C = 121.2 \ ^{\circ}C$

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 57: Ordering information scheme*).

Figure 46. LQFP100 P_D max vs. T_A

8 Revision history

Table 58.	Document re	vision history
-----------	-------------	----------------

Date	Revision	Changes
01-jun-2007	1	Initial release.
		Flash memory size modified in <i>Note 7</i> , <i>Note 4</i> , <i>Note 7</i> , <i>Note 8</i> and BGA100 pins added to <i>Table 5: Medium-density STM32F103xx pin definitions. Figure 3: STM32F103xx performance line LFBGA100 ballout</i> added.
		T _{HSE} changed to T _{LSE} in <i>Figure 20: Low-speed external clock source</i> <i>AC timing diagram.</i> V _{BAT} ranged modified in <i>Power supply schemes.</i>
		$t_{SU(LSE)}$ changed to $t_{SU(HSE)}$ in <i>Table 22: HSE 4-16 MHz oscillator characteristics</i> . I _{DD(HSI)} max value added to <i>Table 24: HSI oscillator characteristics</i> .
	2	Sample size modified and machine model removed in <i>Electrostatic discharge (ESD)</i> .
00 101 0007		Number of parts modified and standard reference updated in <i>Static latch-up.</i> 25 °C and 85 °C conditions removed and class name modified in <i>Table 33: Electrical sensitivities.</i> R _{PU} and R _{PD} min and max values added to <i>Table 34: I/O static characteristics.</i> R _{PU} min and max values added to <i>Table 37: NRST pin characteristics.</i>
20-001-2007		Figure 25: I ² C bus AC waveforms and measurement circuit and Figure 24: Recommended NRST pin protection corrected.
		Notes removed below Table 9, Table 37, Table 43.
		I _{DD} typical values changed in <i>Table 11: Maximum current consumption in Run and Sleep modes. Table 38: TIMx characteristics</i> modified.
		t _{STAB} , V _{REF+} value, t _{lat} and f _{TRIG} added to <i>Table 45: ADC characteristics</i> .
		In <i>Table 29: Flash memory endurance and data retention</i> , typical endurance and data retention for $T_A = 85$ °C added, data retention for $T_A = 25$ °C removed.
		V _{BG} changed to V _{REFINT} in <i>Table 12: Embedded internal reference voltage</i> . Document title changed. <i>Controller area network (CAN)</i> section modified.
		Figure 12: Power supply scheme modified.
		Features on page 1 list optimized. Small text changes.

Date	Revision	Changes
		Figure 2: Clock tree on page 20 added. Maximum T _J value given in <i>Table 8: Thermal characteristics on</i>
		CRC feature added (see <i>CRC</i> (cyclic redundancy check) calculation unit on page 9 and Figure 9: Memory map on page 31 for address).
		I _{DD} modified in <i>Table 16: Typical and maximum current consumptions in Stop and Standby modes</i> .
		ACC _{HSI} modified in <i>Table 24: HSI oscillator characteristics on page 51</i> , note 2 removed.
		P_D , T_A and T_J added, t_{prog} values modified and t_{prog} description clarified in <i>Table 28: Flash memory characteristics on page 52</i> .
		t _{RET} modified in Table 29: Flash memory endurance and data retention.
14-Mar-2008	5	V _{NF(NRST)} unit corrected in <i>Table 37: NRST pin characteristics on page 59</i> .
		Table 41: SPI characteristics on page 63 modified.
		IVREF added to Table 45: ADC characteristics on page 67.
		<i>Table 47: ADC accuracy - limited test conditions</i> added. <i>Table 48: ADC accuracy</i> modified.
		LQFP100 package specifications updated (see <i>Section 6: Package characteristics on page 72</i>).
		Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36
		footprints added (see <i>Figure 39</i> , <i>Figure 41</i> , <i>Figure 45</i> and <i>Figure 35</i>).
		Section 6.2: Thermal characteristics on page 81 modified,
		Appendix A: Important notes on page 81 removed.
		Small text changes. Figure 9: Memory map clarified.
		In Table 29: Flash memory endurance and data retention:
		 N_{END} tested over the whole temperature range
21-Mar-2008	6	- cycling conditions specified for t _{RET}
		V_{RET} from modified at $T_{\text{A}} = 55$ C V_{RET} from Slope and T, modified in Table 49: TS characteristics
		CRC feature removed.
		CRC feature added back. Small text changes. <i>Section 1: Introduction</i> modified. <i>Section 2.2: Full compatibility throughout the family</i> added.
	7	I_{DD} at T_A max = 105 °C added to Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 42.
		I _{DD_VBAT} removed from <i>Table 21: Typical current consumption in Standby mode on page 47.</i>
00 May 0000		Values added to Table 40: SCL frequency (f_{PCLK1} = 36 MHz., V_{DD} = 3.3 V) on page 62.
22-Way-2008		<i>Figure 26: SPI timing diagram - slave mode and CPHA = 0 on page 64</i> modified. <i>Equation 1</i> corrected.
		t_{RET} at T_A = 105 °C modified in <i>Table 29: Flash memory endurance and data retention on page 53.</i>
		V_{USB} added to <i>Table 43: USB DC electrical characteristics on page 66. Figure 46: LQFP100 P_D max vs. T_A on page 83</i> modified.
		Axx option added to <i>Table 57: Ordering information scheme on page 84</i> .

 Table 58.
 Document revision history (continued)

Doc ID 13587 Rev 10

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 13587 Rev 10