

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Elect	rical ch	aracteristics	32
	5.1	Parame	eter conditions	32
		5.1.1	Minimum and maximum values	32
		5.1.2	Typical values	32
		5.1.3	Typical curves	32
		5.1.4	Loading capacitor	32
		5.1.5	Pin input voltage	32
		5.1.6	Power supply scheme	33
		5.1.7	Current consumption measurement	34
	5.2	Absolut	e maximum ratings	34
	5.3	Operati	ng conditions	35
		5.3.1	General operating conditions	35
		5.3.2	Operating conditions at power-up / power-down	36
		5.3.3	Embedded reset and power control block characteristics	36
		5.3.4	Embedded reference voltage	38
		5.3.5	Supply current characteristics	38
		5.3.6	External clock source characteristics	47
		5.3.7	Internal clock source characteristics	50
		5.3.8	PLL characteristics	52
		5.3.9	Memory characteristics	52
		5.3.10	EMC characteristics	53
		5.3.11	Absolute maximum ratings (electrical sensitivity)	55
		5.3.12	I/O port characteristics	56
		5.3.13	NRST pin characteristics	59
		5.3.14	TIM timer characteristics	60
		5.3.15	Communications interfaces	61
		5.3.16	CAN (controller area network) interface	66
		5.3.17	12-bit ADC characteristics	67
		5.3.18	Temperature sensor characteristics	71
6	Pack	age cha	racteristics	72
	6.1	Packag	e mechanical data	72
	6.2	Therma	Il characteristics	81
		6.2.1	Reference document	81
		6.2.2	Selecting the product temperature range	
7	Orde	ring info	ormation scheme	84
57			Doc ID 13587 Rev 10	3/91

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.

Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I²S and DAC, while remaining fully compatible with the other members of the STM32F103xx family.

The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

	Low-density devices		Medium-density devices		High-density devices			
Pinout	16 KB Flash	32 KB Flash ⁽¹⁾	64 KB Flash	128 KB Flash	256 KB Flash	384 KB Flash	512 KB Flash	
	6 KB RAM	10 KB RAM	20 KB RAM	20 KB RAM	48 KB RAM	64 KB RAM	64 KB RAM	
144					5 × USARTs			
100			3 × USARTs		4×16 -bit timers, $2 \times basic timers$ $3 \times SPIs$, $2 \times I^2Ss$, $2 \times I2Cs$			
64	2 × USART: 2 × 16-bit tir 1 × SPI, 1 ×	mers	3×16 -bit tim 2 × SPIs, 2 × CAN, 1 × PW	l ² Cs, USB,	USB, CAN, 2 3 × ADCs, 1	$2 \times PWM$ time $\times DAC, 1 \times S$ and 144 pins)	ers DIO	
48	CAN, 1 × PWM timer		2 × ADC					
36	2 × ADCs							

Table 3.STM32F103xx family

 For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer.

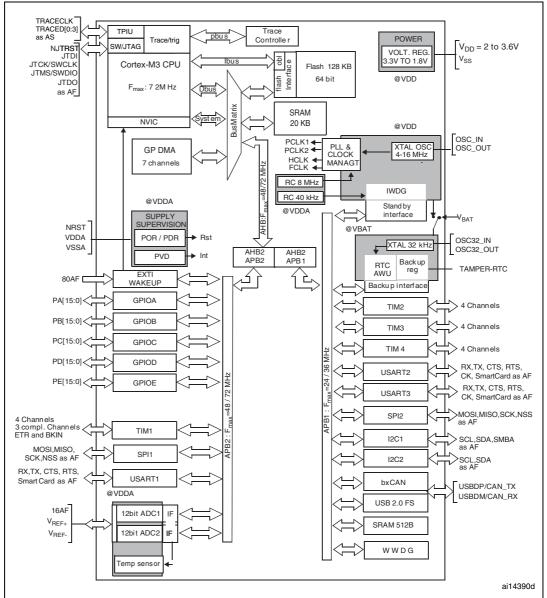
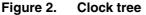
Table 4 compares the features of the advanced-control and general-purpose timers.

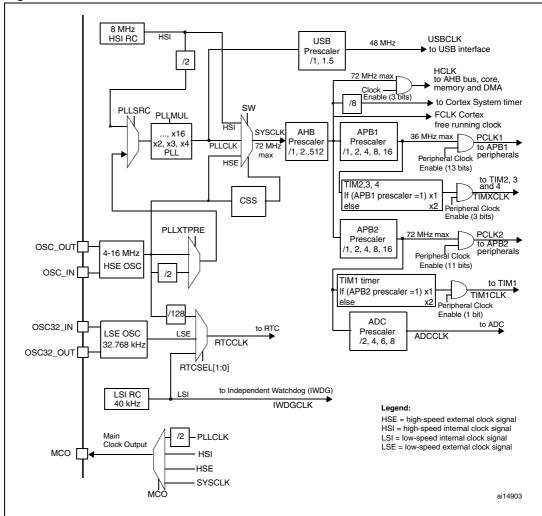
Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No

Table 4.Timer feature comparison

Advanced-control timer (TIM1)

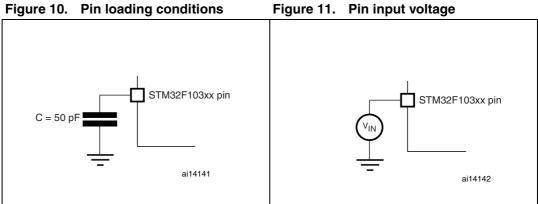
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It


Figure 1. STM32F103xx performance line block diagram

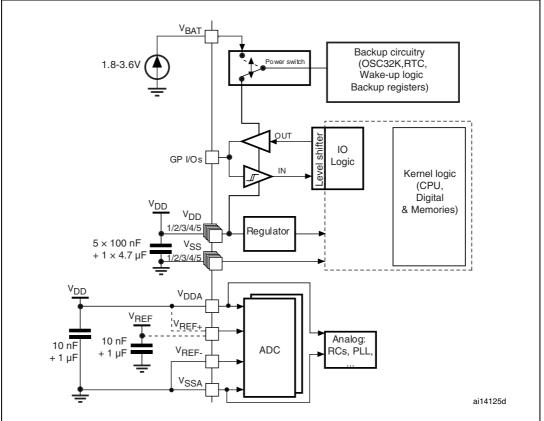
1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

2. AF = alternate function on I/O port pin.



1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.

- For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either 48 MHz or 72 MHz.
- 3. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz, 28 MHz or 56 MHz.



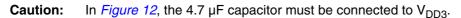


Figure 10. Pin loading conditions

Power supply scheme 5.1.6

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾	150	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	150	
I _{IO}	Output current sunk by any I/O and control pin	25	
	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRST pin	± 5	ШA
I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on HSE OSC_IN and LSE OSC_IN pins	± 5	
	Injected current on any other pin ⁽⁴⁾	± 5	
$\Sigma I_{INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁽⁴⁾	± 25	

Table 7.Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

3. Negative injection disturbs the analog performance of the device. See note in *Section 5.3.17: 12-bit ADC characteristics*.

4. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 8.Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9.General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	72	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	72	
V _{DD}	Standard operating voltage		2	3.6	V
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V
VDDA ⁽¹⁾	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v
V _{BAT}	Backup operating voltage		1.8	3.6	V

5.3.4 Embedded reference voltage

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	rameter Conditions		Тур	Max	Unit
V	Internal reference voltage	$-40 \ ^{\circ}\text{C} < \text{T}_{\text{A}} < +105 \ ^{\circ}\text{C}$	1.16	1.20	1.26	V
V _{REFINT}	internal relefence voltage	−40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage			5.1	17.1 ⁽²⁾	μs

Table 12. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}$

The parameters given in *Table 13*, *Table 14* and *Table 15* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions		Ма	Unit				
Symbol	Farameter	Conditions	^f HCLK	T _A = 85 °C	T _A = 105 °C	Unit			
			72 MHz	50	50.3				
			48 MHz	36.1	36.2				
		External clock ⁽²⁾ , all	36 MHz	28.6	28.7				
		peripherals enabled	peripherals enabled	peripherals enabled	peripherals enabled	24 MHz	19.9	20.1	
			16 MHz	14.7	14.9				
	Supply current in		8 MHz	8.6	8.9	mA			
IDD	Run mode		72 MHz	32.8	32.9	mA			
			48 MHz	24.4	24.5				
		External clock ⁽²⁾ , all	36 MHz	19.8	19.9				
		peripherals disabled	24 MHz	13.9	14.2				
			16 MHz	10.7	11				
			8 MHz	6.8	7.1	1			

Table 13.Maximum current consumption in Run mode, code with data processing
running from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 14.Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	r Conditions	4	Ма	Unit		
Symbol Paramet	Farameter		HCLK	^f HCLK	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	48	50		
			48 MHz	31.5	32		
		External clock ⁽²⁾ , all	36 MHz	24	25.5		
		peripherals enabled	peripherals enabled	24 MHz	17.5	18	
			16 MHz	12.5	13		
	Supply current in		8 MHz	7.5	8	mA	
I _{DD}	Run mode	External clock ⁽²⁾ , all peripherals disabled	72 MHz	29	29.5	IIIA	
			48 MHz	20.5	21		
			36 MHz	16	16.5		
			24 MHz	11.5	12		
			16 MHz	8.5	9		
			8 MHz	5.5	6		

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 19*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 6

	Peripheral	Typical consumption at 25 °C	Unit
	TIM2	1.2	
APB1	TIM3	1.2	
	TIM4	0.9	
	SPI2	0.2	
	USART2	0.35	mA
APDI	USART3	0.35	ША
	I2C1	0.39	
	I2C2	0.39	
	USB	0.65	
	CAN	0.72	
	GPIO A	0.47	
	GPIO B	0.47	
	GPIO C	0.47	
	GPIO D	0.47	
APB2	GPIO E	0.47	
APDZ	ADC1 ⁽²⁾	1.81	mA
	ADC2	1.78	
	TIM1	1.6	
	SPI1	0.43	
	USART1	0.85	

 Table 19.
 Peripheral current consumption⁽¹⁾

1. $f_{HCLK} = 72 \text{ MHz}, f_{APB1} = f_{HCLK}/2, f_{APB2} = f_{HCLK}$, default prescaler value for each peripheral.

 Specific conditions for ADC: f_{HCLK} = 56 MHz, f_{APB1} = f_{HCLK}/2, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2/4}, ADON bit in the ADC_CR2 register is set to 1.

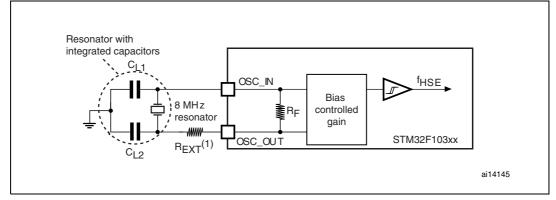

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency		4	8	16	MHz
R _F	Feedback resistor			200		kΩ
$C_{L1} \\ C_{L2}^{(3)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$	R _S = 30 Ω		30		pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load			1	mA
9 _m	Oscillator transconductance	Startup	25			mA/V
t _{SU(HSE} ⁽⁵⁾	startup time	V _{DD} is stabilized		2		ms

 Table 22.
 HSE 4-16 MHz oscillator characteristics^{(1) (2)}

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

- 3. For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Figure 21. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics. Typical value is in the range of 5 to 6R_S.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

- Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6 \text{ pF}$, and $C_{stray} = 2 \text{ pF}$, then $C_{L1} = C_{L2} = 8 \text{ pF}$.

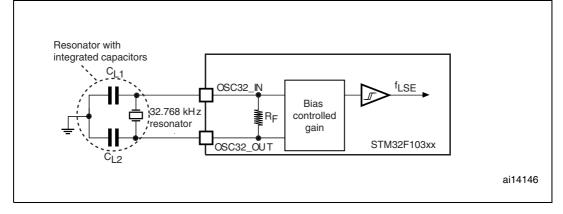

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor			5		MΩ
C _{L1} C _{L2} ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ			15	pF
l ₂	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}			1.4	μA
9 _m	Oscillator Transconductance		5			μA/V
$t_{\rm SU(LSE)}^{(4)}$	startup time	V_{DD} is stabilized		3		s

Table 23. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Based on characterization, not tested in production.

- 2. Refer to the note and caution paragraphs above the table.
- 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Figure 22. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Doc ID 13587 Rev 10

	Ten benet mene handab			
Symbol	Parameter	Conditions	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode Wakeup on HSI RC clock		1.8	μs
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	HSI RC wakeup time = 2 µs	3.6	110
	Wakeup from Stop mode (regulator in low power mode)	HSI RC wakeup time = 2 μ s, Regulator wakeup from LP mode time = 5 μ s	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	HSI RC wakeup time = 2 μ s, Regulator wakeup from power down time = 38 μ s	50	μs

Table 26. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Test conditions		Value		
Symbol	Parameter	Test conditions	Min ⁽¹⁾ Typ Max			
f	PLL input clock ⁽²⁾		1	8.0	25	MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock		16		72	MHz
t _{LOCK}	PLL lock time				200	μs

Table 27. PLL characteristics

1. Based on characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Symbol	Parameter Conditions I		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs		
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +105 °C	20		40	ms		
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20		40	ms		

 Table 28.
 Flash memory characteristics

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 36*, respectively.

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		2	MHz
10	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V		125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm DD} = 2$ v to 3.0 v		125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 2 eV		25 ⁽³⁾	20
t _{r(IO)out}	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	ns
	F _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		50	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		30	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		20	MHz
			$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	ns
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10		ns

 Table 36.
 I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 23*.

3. Guaranteed by design, not tested in production.

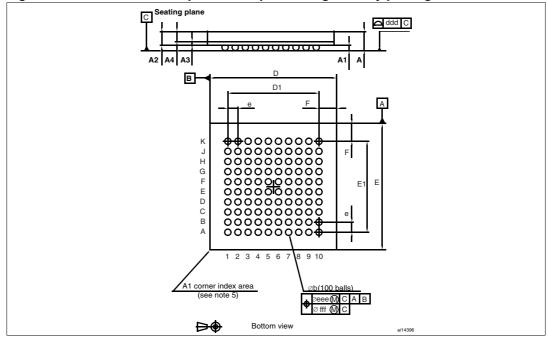


Figure 36. LFBGA100 - low profile fine pitch ball grid array package outline

1. Drawing is not to scale.

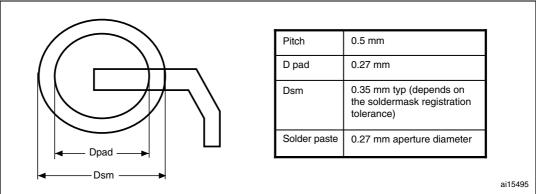
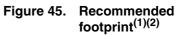
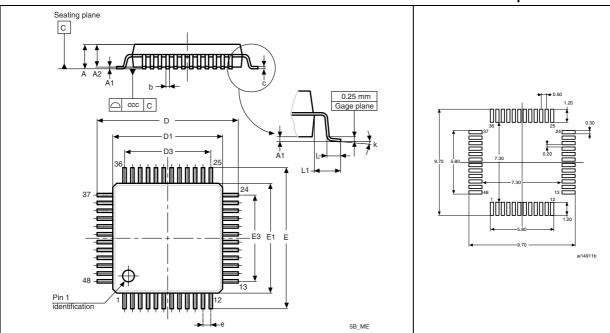

Dim	mm			inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
A			1.700			0.0669	
A1	0.270			0.0106			
A2		1.085			0.0427		
A3		0.30			0.0118		
A4			0.80			0.0315	
b	0.45	0.50	0.55	0.0177	0.0197	0.0217	
D	9.85	10.00	10.15	0.3878	0.3937	0.3996	
D1		7.20			0.2835		
E	9.85	10.00	10.15	0.3878	0.3937	0.3996	
E1		7.20			0.2835		
e		0.80			0.0315		
F		1.40			0.0551		
ddd			0.12			0.0047	
eee			0.15			0.0059	
fff			0.08			0.0031	
N (number of balls)			1	00			

Table 51. LFBGA100 - low profile fine pitch ball grid array package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.




1. Non solder mask defined (NSMD) pads are recommended

2. 4 to 6 mils solder paste screen printing process

Figure 44. LQFP48, 48-pin low-profile quad flat package outline⁽¹⁾

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Table 55.	LQFP48, 48-pin low-profile quad flat package mechanical data
-----------	--

Cumbal		millimeters		inches ⁽¹⁾		
Symbol	Тур	Min	Max	Тур	Min	Мах
A			1.600			0.0630
A1		0.050	0.150		0.0020	0.0059
A2	1.400	1.350	1.450	0.0551	0.0531	0.0571
b	0.220	0.170	0.270	0.0087	0.0067	0.0106
с		0.090	0.200		0.0035	0.0079
D	9.000	8.800	9.200	0.3543	0.3465	0.3622
D1	7.000	6.800	7.200	0.2756	0.2677	0.2835
D3	5.500			0.2165		
E	9.000	8.800	9.200	0.3543	0.3465	0.3622
E1	7.000	6.800	7.200	0.2756	0.2677	0.2835
E3	5.500			0.2165		
е	0.500			0.0197		
L	0.600	0.450	0.750	0.0236	0.0177	0.0295
L1	1.000			0.0394		
k	3.5°	0°	7°	3.5°	0°	7°
ссс	0.080 0.0031					

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Date	Revision	Changes
18-Oct-2007	3	STM32F103CBT6, STM32F103T6 and STM32F103T8 root part numbers added (see Table 2: STM32F103xx medium-density device features and peripheral counts) VFQFPN36 package added (see Section 6: Package characteristics). All packages are ECOPACK® compliant. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see Section 6: Package characteristics). Table 25: Medium-density STM32F103xx pin definitions updated and clarified. Table 26: Low-power mode wakeup timings updated. T _A min corrected in Table 12: Embedded internal reference voltage. Note 2 added below Table 22: HSE 4-16 MHz oscillator characteristics. VESD(CDM) value added to Table 32: ESD absolute maximum ratings. Note 3 added and V _{OH} parameter description modified in Table 35: Output voltage characteristics. Note 1 and Table 46: R _{AIN} max for I _{ADC} = 14 MHz added to Section 5.3.17: 12-bit ADC characteristics. Figure 30: ADC accuracy characteristics updated. Note 1 modified below Figure 31: Typical connection diagram using the ADC. Electrostatic discharge (ESD) on page 55 modified. Number of TIM4 channels modified in Figure 1: STM32F103xx performance line block diagram. Maximum current consumption Table 13, Table 14 and Table 15 updated. V _{INE} modified in Table 30: EMS characteristics. Values corrected, note 2 modified and note 3 removed in Table 26: Low-power mode wakeup timings. Table 48: ADC accuracy updated. tvpD modified in Table 10: Operating conditions at power-up / power-down. V _{FESD} value added in Table 26: Low-power mode wakeup timings. Table 16: Typical values added for V _{DD} /V _{BAT} = 2.4 V, Note 2 modified, Note 2 added. Table 21: Typical values added for V _{DD} /V _{BAT} = 2.4 V, Note 2 modified, Note 2 added. Table 21: Typical values added for V _{DD} /V _{BAT} = 2.4 V, Note 2 modified, Note 2 added. Table 21: Typical values added for V _{DD} /V _{BAT} = 2.4 V, Note 2 modified, Note 2 added. Table 24: HSI oscillator characteristics. V _{pren} added to Table 28: Flash memory characteristics. V _{pren} added to Table 28: Fla

Table 58. Document revision history (continued)

Doc ID 13587 Rev 10

Date	Revision	Changes
		I/O information clarified <i>on page 1</i> . <i>Figure 3: STM32F103xx performance line LFBGA100 ballout</i> modified. <i>Figure 9: Memory map</i> modified. <i>Table 4: Timer feature comparison</i> added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in <i>Table 5: Medium-density STM32F103xx</i> <i>pin definitions</i> .
23-Apr-2009	10	P _D for LFBGA100 corrected in <i>Table 9: General operating conditions</i> . Note modified in <i>Table 13: Maximum current consumption in Run</i> <i>mode, code with data processing running from Flash</i> and <i>Table 15:</i> <i>Maximum current consumption in Sleep mode, code running from</i> <i>Flash or RAM</i> .
		Table 20: High-speed external user clock characteristics and Table 21:Low-speed external user clock characteristics modified.
		<i>Figure 17</i> shows a typical curve (title modified). ACC _{HSI} max values modified in <i>Table 24: HSI oscillator characteristics</i> .
		TFBGA64 package added (see <i>Table 54</i> and <i>Table 42</i>). Small text changes.

Table 58. Document revision history (continued)

