

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rbh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Elect	rical ch	aracteristics	32
	5.1	Parame	eter conditions	32
		5.1.1	Minimum and maximum values	32
		5.1.2	Typical values	32
		5.1.3	Typical curves	32
		5.1.4	Loading capacitor	32
		5.1.5	Pin input voltage	32
		5.1.6	Power supply scheme	33
		5.1.7	Current consumption measurement	34
	5.2	Absolut	e maximum ratings	34
	5.3	Operati	ng conditions	35
		5.3.1	General operating conditions	35
		5.3.2	Operating conditions at power-up / power-down	36
		5.3.3	Embedded reset and power control block characteristics	36
		5.3.4	Embedded reference voltage	38
		5.3.5	Supply current characteristics	38
		5.3.6	External clock source characteristics	47
		5.3.7	Internal clock source characteristics	50
		5.3.8	PLL characteristics	52
		5.3.9	Memory characteristics	52
		5.3.10	EMC characteristics	53
		5.3.11	Absolute maximum ratings (electrical sensitivity)	55
		5.3.12	I/O port characteristics	56
		5.3.13	NRST pin characteristics	59
		5.3.14	TIM timer characteristics	60
		5.3.15	Communications interfaces	61
		5.3.16	CAN (controller area network) interface	66
		5.3.17	12-bit ADC characteristics	67
		5.3.18	Temperature sensor characteristics	71
6	Pack	age cha	racteristics	72
	6.1	Packag	e mechanical data	72
	6.2	Therma	Il characteristics	81
		6.2.1	Reference document	81
		6.2.2	Selecting the product temperature range	
7	Orde	ring info	ormation scheme	84
57			Doc ID 13587 Rev 10	3/91

ADC characteristics
R_{AIN} max for $f_{ADC} = 14$ MHz
ADC accuracy - limited test conditions
ADC accuracy
TS characteristics
VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data
LFBGA100 - low profile fine pitch ball grid array package mechanical data
LQPF100, 100-pin low-profile quad flat package mechanical data
LQFP64, 64-pin low-profile quad flat package mechanical data
TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data 78
LQFP48, 48-pin low-profile quad flat package mechanical data
Package thermal characteristics
Ordering information scheme

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.

Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I²S and DAC, while remaining fully compatible with the other members of the STM32F103xx family.

The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

	Low-dens	ity devices	Medium-den	sity devices	High-density devices			
Pinout	16 KB 32 KB Flash Flash ⁽¹⁾		64 KB Flash	128 KB Flash	256 KB Flash	384 KB Flash	512 KB Flash	
	6 KB RAM	10 KB RAM	20 KB RAM	20 KB RAM	48 KB RAM	64 KB RAM	64 KB RAM	
144					5 × USARTs			
100			3 × USABTs		4×16 -bit timers, $2 \times basic timers$ $3 \times SPIs$, $2 \times l^2Ss$, $2 \times l2Cs$			
64	2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I ² C, USB, CAN, 1 × PWM timer 2 × ADCs		3×16 -bit timers $2 \times SPIs$, $2 \times I^2Cs$, USB, CAN, $1 \times PWM$ timer		USB, CAN, $2 \times PWM$ timers $3 \times ADCs$, $1 \times DAC$, $1 \times SDIO$ FSMC (100 and 144 pins)			
48			2 × ADC					
36								

Table 3.STM32F103xx family

 For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	12, 13, 16-bit Up, 14 up/down, up/down		Any integer between 1 and 65536	Yes	4	No

Table 4.Timer feature comparison

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It

Figure 4. STM32F103xx performance line LQFP100 pinout

STM32F103x8, STM32F103xB

57

		Pir	IS					(2)		Alternate functions	
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Leve	Main function ⁽³⁾ (after reset)	Default	Remap
A10	34	A8	46	72	25	PA13	I/O	FT	JTMS/SWDIO		PA13
F8	-	-	-	73	-			Not	connected		
E6	35	D5	47	74	26	V _{SS_2}	S		V _{SS_2}		
F6	36	E5	48	75	27	V _{DD_2}	S		V_{DD_2}		
A9	37	A7	49	76	28	PA14	I/O	FT	JTCK/SWCLK		PA14
A8	38	A6	50	77	29	PA15	I/O	FT	JTDI		TIM2_CH1_ETR/ PA15 /SPI1_NSS
B9	-	B7	51	78		PC10	I/O	FT	PC10		USART3_TX
B8	-	B6	52	79		PC11	I/O	FT	PC11		USART3_RX
C8	-	C5	53	80		PC12	I/O	FT	PC12		USART3_CK
D8	5	C1	5	81	2	PD0	I/O	FT	OSC_IN ⁽⁸⁾		CANRX
E8	6	D1	6	82	3	PD1	I/O	FT	OSC_OUT ⁽⁸⁾		CANTX
B7		B5	54	83	-	PD2	I/O	FT	PD2	TIM3_ETR	
C7	-	-	-	84	-	PD3	I/O	FT	PD3		USART2_CTS
D7	-	-	-	85	-	PD4	I/O	FT	PD4		USART2_RTS
B6	-	-	-	86	-	PD5	I/O	FT	PD5		USART2_TX
C6	-	-	-	87	-	PD6	I/O	FT	PD6		USART2_RX
D6	-	-	-	88	-	PD7	I/O	FT	PD7		USART2_CK
A7	39	A5	55	89	30	PB3	I/O	FT	JTDO		TIM2_CH2/PB3 TRACESWO SPI1_SCK
A6	40	A4	56	90	31	PB4	I/O	FT	JNTRST		TIM3_CH1/PB4/ SPI1_MISO
C5	41	C4	57	91	32	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2 / SPI1_MOSI
B5	42	D3	58	92	33	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ / TIM4_CH1 ⁽⁷⁾	USART1_TX
A5	43	C3	59	93	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / TIM4_CH2 ⁽⁷⁾	USART1_RX
D5	44	B4	60	94	35	BOOT0	Ι		BOOT0		
B4	45	B3	61	95	-	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁷⁾	I2C1_SCL / CANRX
A4	46	A3	62	96	-	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁷⁾	I2C1_SDA/ CANTX

Table 5. Medium-density STM32F103xx pin definitions (continued)

Symbol	Devemeter	Conditions		Ma	Unit		
Symbol	Parameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit	
			72 MHz	50	50.3		
			48 MHz	36.1	36.2		
		External clock ⁽²⁾ , all	36 MHz	28.6	28.7		
		peripherals enabled	24 MHz	19.9	20.1		
			16 MHz	14.7	14.9	I	
	Supply current in		8 MHz	8.6	8.9	m۸	
'DD	Run mode		72 MHz	32.8	32.9	mA	
			48 MHz	24.4	24.5		
		External clock ⁽²⁾ , all	36 MHz	19.8	19.9		
		peripherals disabled	24 MHz	13.9	14.2		
			16 MHz	10.7	11		
			8 MHz	6.8	7.1	1	

Table 13.Maximum current consumption in Run mode, code with data processing
running from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 14.Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	Conditions	f	Ма	Unit	
	Faraineter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Gint
			72 MHz	48	50	
			48 MHz	31.5	32	
		External clock ⁽²⁾ , all	36 MHz	24	25.5	
		peripherals enabled	24 MHz	17.5	18	
			16 MHz 12.5	13		
I	Supply		8 MHz	7.5	8	m۸
'DD	Run mode		72 MHz	29	29.5	
			48 MHz	20.5	21	
		External clock ⁽²⁾ , all	36 MHz	16	16.5	
		peripherals disabled	24 MHz	11.5	12	
			16 MHz	8.5	9	
			8 MHz	5.5	6	

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

1. Guaranteed by design, not tested in production.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	8	16	MHz
R _F	Feedback resistor			200		kΩ
$C_{L1} \\ C_{L2}^{(3)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$	R _S = 30 Ω		30		pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load			1	mA
9 _m	Oscillator transconductance	Startup	25			mA/V
t _{SU(HSE} ⁽⁵⁾	startup time	V _{DD} is stabilized		2		ms

 Table 22.
 HSE 4-16 MHz oscillator characteristics^{(1) (2)}

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Based on characterization, not tested in production.

- 3. For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Figure 21. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics. Typical value is in the range of 5 to 6R_S.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

		- J-		
Symbol	Parameter	Conditions	Тур	Unit
$t_{WUSLEEP}^{(1)}$	Wakeup from Sleep mode	Wakeup on HSI RC clock	1.8	μs
twustop ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	HSI RC wakeup time = 2 µs	3.6	10
	Wakeup from Stop mode (regulator in low power mode)	HSI RC wakeup time = 2 μ s, Regulator wakeup from LP mode time = 5 μ s	5.4	μο
twustdby ⁽¹⁾	Wakeup from Standby mode	HSI RC wakeup time = 2 μ s, Regulator wakeup from power down time = 38 μ s	50	μs

Table 26. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symphol	Devemeter	Test conditions		Unit		
Symbol	Parameter	rest conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
f _{PLL_IN}	PLL input clock ⁽²⁾		1	8.0	25	MHz
	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock		16		72	MHz
t _{LOCK}	PLL lock time				200	μs

Table 27. PLL characteristics

1. Based on characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40$ to +105 °C	20		40	ms
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20		40	ms

 Table 28.
 Flash memory characteristics

Table 30. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{HCLK} = 72 \text{ MHz}$ conforms to IEC 1000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 72 MHz conforms to IEC 1000-4-4	4A

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f	Unit	
	i arameter	Conditions	frequency band	8/48 MHz	8/72 MHz	Onic
		V 22VT 25°C	0.1 to 30 MHz	12	12	
S _{EMI} Peak level	Poak loval	V _{DD} = 3.3 v, 1 _A =25 C, LQFP100 package compliant with SAE J 1752/3	30 to 130 MHz	22	19	dBµV
	reak level		130 MHz to 1GHz	23	29	
			SAE EMI Level	4	4	-

Table 31. EMI characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed V_{OL}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 7*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 7*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port		0.4		
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} = +0.00$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4		V	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port		0.4	v	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	2.4			
V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	l _{IO} = +20 mA		1.3	V	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		v	
V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA		0.4	V	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4		v	

Table 35. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

3. Based on characterization data, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 36*, respectively.

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		2	MHz
10	t _{f(IO)out}	Output high to low level fall time			125 ⁽³⁾	
	t _{r(IO)out}	Output low to high level rise time	$D_{\rm L} = 30 {\rm pr}, v_{\rm DD} = 2 v_{\rm cl} 0.0 v_{\rm cl}$		125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		10	MHz
01	t _{f(IO)out}	Output high to low level fall time			25 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	$U_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	115
	F _{max(IO)out}		$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		50	MHz
		Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		30	MHz
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		20	MHz
	t _{f(IO)out}	Output high to low	$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	
11			$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	ne
			$C_{L} = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		8 ⁽³⁾	
			$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$		12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10		ns

 Table 36.
 I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 23*.

3. Guaranteed by design, not tested in production.

5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 34*).

Unless otherwise specified, the parameters given in *Table 37* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2		V_{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse		300			ns

Table 37. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

5.3.15 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter Standard mode I ² C ⁽¹⁾ Fast mode I ² C ⁽¹⁾		e I ² C ⁽¹⁾⁽²⁾	Unit		
Symbol	Falameter	Min	Max	Min	Max	Onit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μο
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μS
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF

Table 39.	l ² C	characteristics
-----------	------------------	-----------------

1. Guaranteed by design, not tested in production.

2. f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I²C frequency.

3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 42. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

Table 54.TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package
mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Тур	Min	Max	Тур	Min	Мах
А			1.200			0.0472
A1		0.150			0.0059	
A2	0.785			0.0309		
A3	0.200			0.0079		
A4			0.600			0.0236
b	0.300	0.250	0.350	0.0118	0.0098	0.0138
D	5.000	4.850	5.150	0.1969	0.1909	0.2028
D1	3.500			0.1378		
E	5.000	4.850	5.150	0.1969	0.1909	0.2028
E1	3.500			0.1378		
е	0.500			0.0197		
F	0.750			0.0295		
ddd		0.080			0.0031	
eee	0.150			0.0059		
fff		0.050			0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Non solder mask defined (NSMD) pads are recommended

2. 4 to 6 mils solder paste screen printing process

6.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 57: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 8 I/Os used at the same time in output at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: $P_{INTmax} = 175 \text{ mW}$ and $P_{IOmax} = 272 \text{ mW}$:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Thus: $P_{Dmax} = 447 \text{ mW}$

Using the values obtained in *Table 56* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 57: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ Thus: $P_{Dmax} = 134 \text{ mW}$

Date	Revision	Changes
22-Nov-2007	4	Document status promoted from preliminary data to datasheet. The STM32F103xx is USB certified. Small text changes. <i>Power supply schemes on page</i> 13 modified. Number of communication peripherals corrected for STM32F103Tx and number of GPIOs corrected for LQFP package in Table 2: STM32F103xx medium- density device features and peripheral counts. Main function and default alternate function modified for PC14 and PC15 in, <i>Note</i> 5 added and Remap column added in <i>Table</i> 5: <i>Medium- density STM32F103xx pin definitions</i> . <i>V</i> _{DD} –V _{SS} ratings and <i>Note</i> 1 modified in <i>Table</i> 6: <i>Voltage characteristics</i> , <i>Note</i> 1 modified in <i>Table</i> 7: <i>Current characteristics</i> . <i>Note</i> 1 and <i>Note</i> 2 added in <i>Table</i> 11: <i>Embedded reset and power</i> <i>control block characteristics</i> . I _{DD} value at 72 MHz with peripherals enabled modified in <i>Table</i> 14: <i>Maximum current consumption in Run mode</i> , <i>code with data</i> <i>processing running from RAM</i> . I _{DD} value at 72 MHz with peripherals enabled modified in <i>Table</i> 15: <i>Maximum current consumption in Sleep mode</i> , <i>code running from</i> <i>Flash or RAM on page</i> 41. I _{DD} vBart typical value at 2.4 V modified and I _{DD} vBart maximum values added in <i>Table</i> 16: <i>Typical and maximum current consumptions in Stop</i> <i>and Standby modes</i> . Note added in <i>Table</i> 17 <i>on</i> page 44 and <i>Table</i> 18 <i>on</i> page 45. ADC1 and ADC2 consumption and notes modified in <i>Table</i> 19: <i>Peripheral current consumption</i> . t _{SU(HSE)} and t _{SU(LSE)} conditions modified in <i>Table</i> 22 and <i>Table</i> 23, respectively. Maximum values removed from <i>Table</i> 26: Low-power mode wakeup <i>timings</i> . t _{RET} conditions modified in <i>Table</i> 29: <i>Flash memory</i> endurance <i>and data retention</i> . <i>Figure</i> 12: <i>Power supply scheme</i> corrected. <i>Figure</i> 17: <i>Typical current consumption</i> in <i>Stop</i> mode with regulator in Low-power mode versus temperature at <i>V_{DD}</i> = 3.3 V and 3.6 V added. Note removed below <i>Figure</i> 26: <i>SPI timing</i> diagram - <i>slave</i> mode and <i>CPHA = 0</i> . Note added below <i>Figure</i> 27: <i>SPI timing</i> diagram - <i>sla</i>

Table 58. Document revision history (continued)

Date	Revision	Changes
23-Apr-2009	10	 I/O information clarified on page 1. <i>Figure 3: STM32F103xx performance line LFBGA100 ballout</i> modified. <i>Figure 9: Memory map</i> modified. <i>Table 4: Timer feature comparison</i> added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in <i>Table 5: Medium-density STM32F103xx pin definitions</i>.
		P _D for LFBGA100 corrected in <i>Table 9: General operating conditions</i> .
		Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM.
		Table 20: High-speed external user clock characteristics and Table 21:Low-speed external user clock characteristics modified.
		<i>Figure 17</i> shows a typical curve (title modified). ACC _{HSI} max values modified in <i>Table 24: HSI oscillator characteristics</i> .
		TFBGA64 package added (see <i>Table 54</i> and <i>Table 42</i>). Small text changes.

Table 58. Document revision history (continued)

