

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFQFN Exposed Pad
Supplier Device Package	36-VFQFPN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103tbu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	luction	
2	Descr	ription .	9
	2.1	Device of	overview
	2.2	Full com	npatibility throughout the family
	2.3	Overvie	w 12
		2.3.1	ARM® CortexTM-M3 core with embedded Flash and SRAM12
		2.3.2	Embedded Flash memory12
		2.3.3	CRC (cyclic redundancy check) calculation unit
		2.3.4	Embedded SRAM
		2.3.5	Nested vectored interrupt controller (NVIC)
		2.3.6	External interrupt/event controller (EXTI)
		2.3.7	Clocks and startup
		2.3.8	Boot modes
		2.3.9	Power supply schemes
		2.3.10	Power supply supervisor
		2.3.11	Voltage regulator
		2.3.12	Low-power modes
		2.3.13	DMA
		2.3.14	RTC (real-time clock) and backup registers
		2.3.15	Timers and watchdogs
		2.3.16	I^2C bus $\ldots \ldots \ldots 17$
		2.3.17	Universal synchronous/asynchronous receiver transmitter (USART) $\$ 17
		2.3.18	Serial peripheral interface (SPI)17
		2.3.19	Controller area network (CAN)17
		2.3.20	Universal serial bus (USB) 17
		2.3.21	GPIOs (general-purpose inputs/outputs)
		2.3.22	ADC (analog-to-digital converter)
		2.3.23	Temperature sensor
		2.3.24	Serial wire JTAG debug port (SWJ-DP) 18
3	Pinou	its and j	pin description 21
4	Memo	ory map	ping

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F103x8 and STM32F103xB medium-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family, please refer to *Section 2.2: Full compatibility throughout the family*.

The medium-density STM32F103xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.

For information on the Cortex[™]-M3 core please refer to the Cortex[™]-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F103x8 and STM32F103xB performance line family incorporates the highperformance ARM Cortex[™]-M3 32-bit RISC core operating at a 72 MHz frequency, highspeed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 20 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs, an USB and a CAN.

The STM32F103xx medium-density performance line family operates from a 2.0 to 3.6 V power supply. It is available in both the -40 to +85 °C temperature range and the -40 to +105 °C extended temperature range. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F103xx medium-density performance line family includes devices in six different package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the STM32F103xx medium-density performance line microcontroller family suitable for a wide range of applications:

- Motor drive and application control
- Medical and handheld equipment
- PC peripherals gaming and GPS platforms
- Industrial applications: PLC, inverters, printers, and scanners
- Alarm systems, Video intercom, and HVAC

Figure 1 shows the general block diagram of the device family.

2.1 Device overview

	Peripheral	STM32F103Tx	STM32	F103Cx	STM32F103Rx		STM32F103Vx		
Flash	n - Kbytes	64	64	128	64 128		64	128	
SRAI	M - Kbytes	20	20	20	2	0	2	20	
ers	General-purpose	3	3	3	:	3	:	3	
Timers	Advanced-control	1	-	1		1	-	1	
L	SPI	1	2	2	2	2		2	
Communication	l ² C	1	2	2	2	2	2	2	
unic	USART	2	3	3	3 3		3		
omn	USB	1	1	1	1		-	1	
S	CAN	1	1	1	1		1		
GPIC)s	26	3	7	5	1	8	0	
12-bi	t synchronized ADC	2	2	2 2		2	2		
Num	ber of channels	10 channels	10 cha	annels	16 cha	annels	16 cha	annels	
CPU	frequency			72	MHz				
Oper	ating voltage			2.0 to	9.6 V				
Oper	ating temperatures	Ambient tempera Junction tempera					(see <i>Tab</i>	ole 9)	
Pack	ages	VFQFPN36	LQF	P48	LQFP64, TFBGA64		LQFP100, LFBGA100		

Table 2. STM32F103xx medium-density device features and peripheral counts

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.

Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I²S and DAC, while remaining fully compatible with the other members of the STM32F103xx family.

The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

	Low-dens	ity devices	Medium-den	sity devices	High-density devices				
Pinout	16 KB 32 KB Flash Flash ⁽¹⁾		64 KB Flash	128 KB Flash	256 KB Flash	384 KB Flash	512 KB Flash		
	6 KB RAM	10 KB RAM	20 KB RAM	20 KB RAM	48 KB RAM	64 KB RAM	64 KB RAM		
144					5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I^2 Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 1 × DAC, 1 × SDIO FSMC (100 and 144 pins)				
100			3 × USARTs						
64	2 × USART: 2 × 16-bit tir 1 × SPI, 1 ×	mers	3×16 -bit tim 2 × SPIs, 2 × CAN, 1 × PW	l ² Cs, USB,					
48	CAN, 1 × P		2 × ADC						
36	2 × ADCs								

Table 3.STM32F103xx family

 For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.

in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Refer to Table 11: Embedded reset and power control block characteristics for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop mode
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

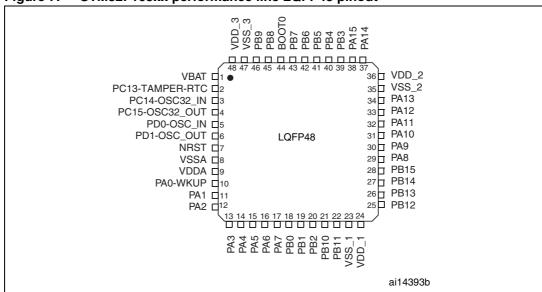
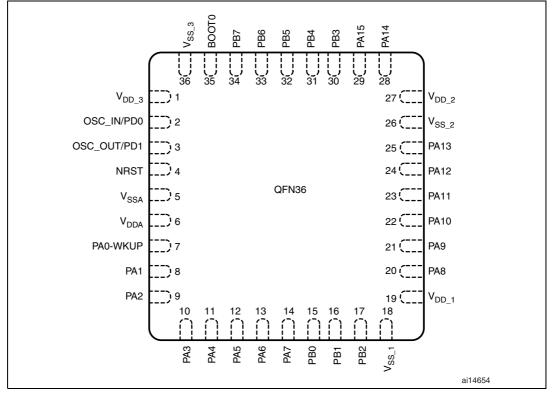

igure	1	2	3	4	5	6	7	8
A	• /PC14- O\\$C32_IN	, PC13-, AMPER-RT	C (PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	,Ρ́C15-`, OŚC32_ΟUT	VBAT	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)
С	OSC_IN	Vss_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	VSS_3	VSS_2	, VSS_1,	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	WDD_3'	VDD_2'	VDD_1	(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+i	PĄO-WKŲP	(PA3)	PA6	(PB1)	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	PA7	(PC4)	(PC5)	(PB11)	(PB12)
								AI15494

Figure 6. STM32F103xx performance line TFBGA64 ballout



5

		Pin	IS					(2)		Alternate f	unctions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
K2	13	G3	17	26	10	PA3	I/O		PA3	USART2_RX ⁽⁷⁾ / ADC12_IN3/ TIM2_CH4 ⁽⁷⁾	
E4	-	C2	18	27	-	V _{SS_4}	S		V_{SS_4}		
F4	-	D2	19	28	-	V _{DD_4}	S		V _{DD_4}		
G3	14	НЗ	20	29	11	PA4	I/O		PA4	SPI1_NSS ⁽⁷⁾ / USART2_CK ⁽⁷⁾ / ADC12_IN4	
НЗ	15	F4	21	30	12	PA5	I/O		PA5	SPI1_SCK ⁽⁷⁾ / ADC12_IN5	
JЗ	16	G4	22	31	13	PA6	I/O		PA6	SPI1_MISO ⁽⁷⁾ / ADC12_IN6/ TIM3_CH1 ⁽⁷⁾	TIM1_BKIN
КЗ	17	H4	23	32	14	PA7	I/O		PA7	SPI1_MOSI ⁽⁷⁾ / ADC12_IN7/ TIM3_CH2 ⁽⁷⁾	TIM1_CH1N
G4	-	H5	24	33		PC4	I/O		PC4	ADC12_IN14	
H4	-	H6	25	34		PC5	I/O		PC5	ADC12_IN15	
J4	18	F5	26	35	15	PB0	I/O		PB0	ADC12_IN8/ TIM3_CH3 ⁽⁷⁾	TIM1_CH2N
K4	19	G5	27	36	16	PB1	I/O		PB1	ADC12_IN9/ TIM3_CH4 ⁽⁷⁾	TIM1_CH3N
G5	20	G6	28	37	17	PB2	I/O	FT	PB2/BOOT1		
H5	-	-	-	38	-	PE7	I/O	FT	PE7		TIM1_ETR
J5	-	-	-	39	-	PE8	I/O	FT	PE8		TIM1_CH1N
K5	-	-	-	40	-	PE9	I/O	FT	PE9		TIM1_CH1
G6	-	-	-	41	-	PE10	I/O	FT	PE10		TIM1_CH2N
H6	-	-	-	42	-	PE11	I/O	FT	PE11		TIM1_CH2
J6	-	-	-	43	-	PE12	I/O	FT	PE12		TIM1_CH3N
K6	-	-	-	44	-	PE13	I/O	FT	PE13		TIM1_CH3
G7	-	•	-	45	-	PE14	I/O	FT	PE14		TIM1_CH4
H7	-	-	-	46	-	PE15	I/O	FT	PE15		TIM1_BKIN
J7	21	G7	29	47	-	PB10	I/O	FT	PB10	I2C2_SCL/ USART3_TX ⁽⁷⁾	TIM2_CH3
K7	22	H7	30	48	-	PB11	I/O	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁷⁾	TIM2_CH4
E7	23	D6	31	49	18	V _{SS_1}	S		V_{SS_1}		

Table 5.	Medium-density	y STM32F103xx	pin definitions	(continued)	
----------	----------------	---------------	-----------------	-------------	--

STM32F103x8, STM32F103xB

57

		Pir	IS					(2)		Alternate	functions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A10	34	A8	46	72	25	PA13	I/O	FT	JTMS/SWDIO		PA13
F8	-	-	-	73	-			Not	connected		
E6	35	D5	47	74	26	V _{SS_2}	S		V _{SS_2}		
F6	36	E5	48	75	27	V _{DD_2}	S		V _{DD_2}		
A9	37	A7	49	76	28	PA14	I/O	FT	JTCK/SWCLK		PA14
A8	38	A6	50	77	29	PA15	I/O	FT	JTDI		TIM2_CH1_ETR/ PA15 /SPI1_NSS
B9	-	B7	51	78		PC10	I/O	FT	PC10		USART3_TX
B8	-	B6	52	79		PC11	I/O	FT	PC11		USART3_RX
C8	-	C5	53	80		PC12	I/O	FT	PC12		USART3_CK
D8	5	C1	5	81	2	PD0	I/O	FT	OSC_IN ⁽⁸⁾		CANRX
E8	6	D1	6	82	3	PD1	I/O	FT	OSC_OUT ⁽⁸⁾		CANTX
B7		B5	54	83	-	PD2	I/O	FT	PD2	TIM3_ETR	
C7	-	-	-	84	-	PD3	I/O	FT	PD3		USART2_CTS
D7	-	-	-	85	-	PD4	I/O	FT	PD4		USART2_RTS
B6	-	-	-	86	-	PD5	I/O	FT	PD5		USART2_TX
C6	-	-	-	87	-	PD6	I/O	FT	PD6		USART2_RX
D6	-	-	-	88	-	PD7	I/O	FT	PD7		USART2_CK
A7	39	A5	55	89	30	PB3	I/O	FT	JTDO		TIM2_CH2/PB3 TRACESWO SPI1_SCK
A6	40	A4	56	90	31	PB4	I/O	FT	JNTRST		TIM3_CH1/PB4/ SPI1_MISO
C5	41	C4	57	91	32	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2 / SPI1_MOSI
B5	42	D3	58	92	33	PB6	I/O	FT	PB6	l2C1_SCL ⁽⁷⁾ / TIM4_CH1 ⁽⁷⁾	USART1_TX
A5	43	C3	59	93	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / TIM4_CH2 ⁽⁷⁾	USART1_RX
D5	44	B4	60	94	35	BOOT0	Ι		BOOT0		
B4	45	B3	61	95	-	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁷⁾	I2C1_SCL / CANRX
A4	46	A3	62	96	-	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁷⁾	I2C1_SDA/ CANTX

Table 5. Medium-density STM32F103xx pin definitions (continued)

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS} .

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾	150	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	150	
1	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRST pin	± 5	ШA
I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on HSE OSC_IN and LSE OSC_IN pins	± 5	
	Injected current on any other pin ⁽⁴⁾	± 5	
$\Sigma I_{INJ(PIN)}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁽⁴⁾	± 25	

Table 7.Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

3. Negative injection disturbs the analog performance of the device. See note in *Section 5.3.17: 12-bit ADC characteristics*.

4. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Table 8.Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9.General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	72	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	72	
V _{DD}	Standard operating voltage		2	3.6	V
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V
V DDA`´	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v
V _{BAT}	Backup operating voltage		1.8	3.6	V

Symbol	Parameter	Conditions		Ма	ax ⁽¹⁾	Unit	
Symbol	Falameter	Conditions	^f HCLK	T _A = 85 °C	T _A = 105 °C	Onic	
			72 MHz	50	50.3		
			48 MHz	36.1	36.2		
		External clock ⁽²⁾ , all	36 MHz	28.6	28.7		
	Supply current in	peripherals enabled	24 MHz	19.9	20.1	- mA	
			16 MHz	14.7	14.9		
			8 MHz	8.6	8.9		
IDD	Run mode		72 MHz	32.8	32.9		
			48 MHz	24.4	24.5		
		External clock ⁽²⁾ , all	36 MHz	19.8	19.9		
		peripherals disabled	24 MHz	13.9	14.2		
			16 MHz	10.7	11		
			8 MHz	6.8	7.1		

Table 13.Maximum current consumption in Run mode, code with data processing
running from Flash

1. Based on characterization, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 14.Maximum current consumption in Run mode, code with data processing
running from RAM

Symbol	Parameter	Conditions	fhclk	Ма	Unit	
	Falametei			T _A = 85 °C	T _A = 105 °C	Onit
	Supply current in Run mode	Supply current in Run mode External clock ⁽²⁾ , all 1 8 7 4 5 5 5 5 5 5 5 5 5 7 4 7 4 7 4 7 4 7	72 MHz	48	50	
			48 MHz	31.5	32	
			36 MHz	24	25.5	
			24 MHz	17.5	18	
			16 MHz	12.5	13	
1			8 MHz	7.5	8	mA
IDD			72 MHz	29	29.5	
			48 MHz	20.5	21	
			36 MHz	16	16.5	
			24 MHz	11.5	12	
			16 MHz	8.5	9	
			8 MHz	5.5	6	

1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

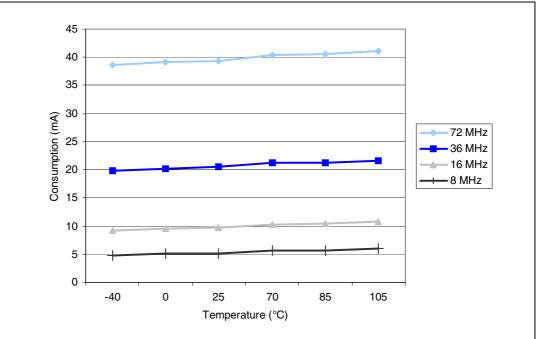
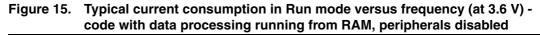
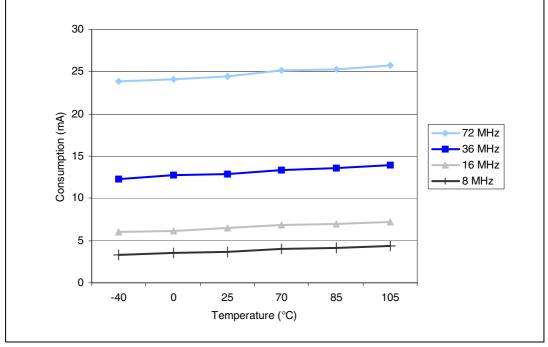
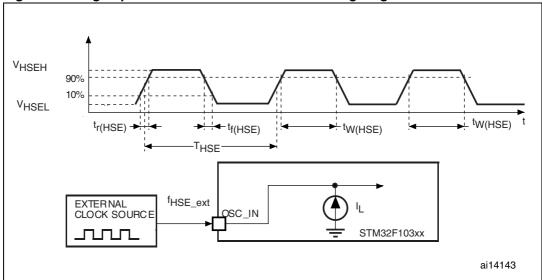




Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

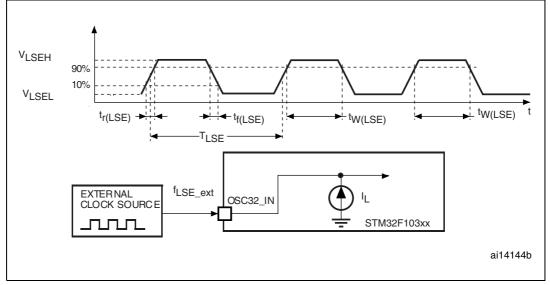
	Parameter	Conditions	fhclk	Туј		
Symbol				All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	14.4	5.5	
			48 MHz	9.9	3.9	
			36 MHz	7.6	3.1	
			24 MHz	5.3	2.3	
			16 MHz	3.8	1.8	
		External clock ⁽³⁾	8 MHz	2.1	1.2	
	Supply current in Sleep mode		4 MHz	1.6	1.1	
			2 MHz	1.3	1	- mA
			1 MHz	1.11	0.98	
			500 kHz	1.04	0.96	
			125 kHz	0.98	0.95	
I _{DD}		Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency	64 MHz	12.3	4.4	
			48 MHz	9.3	3.3	
			36 MHz	7	2.5	
			24 MHz	4.8	1.8	
			16 MHz	3.2	1.2	
			8 MHz	1.6	0.6	
			4 MHz	1	0.5	
			2 MHz	0.72	0.47	
			1 MHz	0.56	0.44	
			500 kHz	0.49	0.42	
			125 kHz	0.43	0.41	

Table 18.Typical current consumption in Sleep mode, code running from Flash or
RAM


1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.



1. Guaranteed by design, not tested in production.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

5.3.15 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit
Symbol	Falameter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μS
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μS
C _b	Capacitive load for each bus line		400		400	pF

Table 39. I ²	C characteristi	cs
--------------------------	-----------------	----

1. Guaranteed by design, not tested in production.

2. f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I²C frequency.

3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{I_{S}}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 46. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	1.2
7.5	0.54	10
13.5	0.96	19
28.5	2.04	41
41.5	2.96	60
55.5	3.96	80
71.5	5.11	104
239.5	17.1	350

1. Based on characterization, not tested in production.

Table 47. ADC accuracy - limited test conditions^{(1) (2)}

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	f _{PCLK2} = 56 MHz,	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, \text{ R}_{AIN} < 10 \text{ k}\Omega,$	±1	±1.5	
EG	Gain error	V _{DDA} = 3 V to 3.6 V T₄ = 25 °C		±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	ADC calibration	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in *Section 5.3.12* does not affect the ADC accuracy.

3. Based on characterization, not tested in production.

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

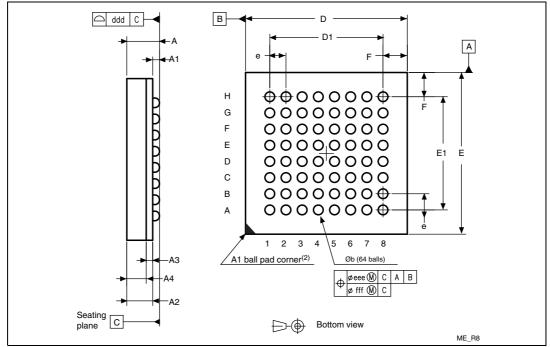


Figure 42. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

Table 54.TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package
mechanical data

Quanta d	millimeters			inches ⁽¹⁾			
Symbol	Тур	Min	Max	Тур	Min	Max	
A			1.200			0.0472	
A1		0.150			0.0059		
A2	0.785			0.0309			
A3	0.200			0.0079			
A4			0.600			0.0236	
b	0.300	0.250	0.350	0.0118	0.0098	0.0138	
D	5.000	4.850	5.150	0.1969	0.1909	0.2028	
D1	3.500			0.1378			
E	5.000	4.850	5.150	0.1969	0.1909	0.2028	
E1	3.500			0.1378			
е	0.500			0.0197			
F	0.750			0.0295			
ddd		0.080			0.0031		
eee	0.150			0.0059			
fff		0.050			0.0020		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6.2 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 9: General operating conditions on page 35*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max \times \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 56. Package thermal characteristics

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LFBGA100 - 10 × 10 mm / 0.8 mm pitch	44	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
Θ _{JA}	Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	C/vv
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch	18	

6.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

