

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103v8h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SysTick timer

This timer is dedicated for OS, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

2.3.17 Universal synchronous/asynchronous receiver transmitter (USART)

One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

2.3.18 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

2.3.19 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.20 Universal serial bus (USB)

The STM32F103xx performance line embeds a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

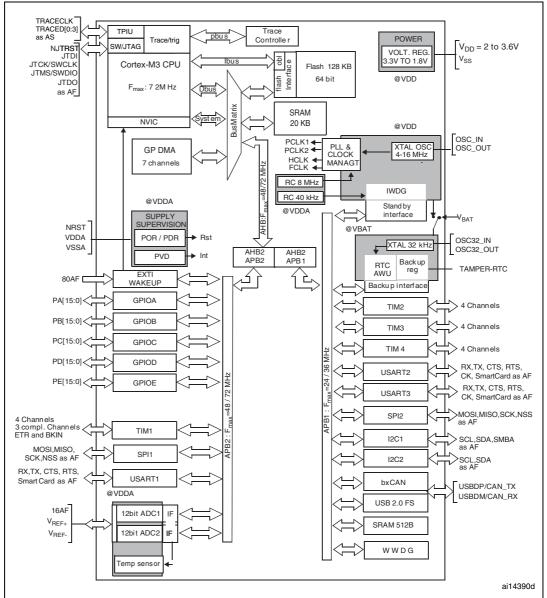


Figure 1. STM32F103xx performance line block diagram

1. $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

2. AF = alternate function on I/O port pin.

Pinouts and pin description

		Pin				y 51M32F103XX p		(2)		Alternate fu	unctions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A3	-		-	1	-	PE2	I/O	FT	PE2	TRACECK	
B3	-		-	2	-	PE3	I/O	FT	PE3	TRACED0	
C3	-		-	3	-	PE4	I/O	FT	PE4	TRACED1	
D3	-		-	4	-	PE5	I/O	FT	PE5	TRACED2	
E3	-		-	5	-	PE6	I/O	FT	PE6	TRACED3	
B2	1	B2	1	6	-	V _{BAT}	S		V _{BAT}		
A2	2	A2	2	7	-	PC13-TAMPER- RTC ⁽⁴⁾	I/O		PC13 ⁽⁵⁾	TAMPER-RTC	
A1	3	A1	3	8	-	PC14-OSC32_IN ⁽⁴⁾	I/O		PC14 ⁽⁵⁾	OSC32_IN	
B1	4	B1	4	9	-	PC15- OSC32_OUT ⁽⁴⁾	I/O		PC15 ⁽⁵⁾	OSC32_OUT	
C2	-	-	-	10	-	V _{SS_5}	S		V _{SS_5}		
D2	-	-	-	11	-	V _{DD_5}	S		V_{DD_5}		
C1	5	C1	5	12	2	OSC_IN	I		OSC_IN		
D1	6	D1	6	13	3	OSC_OUT	0		OSC_OUT		
E1	7	E1	7	14	4	NRST	I/O		NRST		
F1	-	E3	8	15	-	PC0	I/O		PC0	ADC12_IN10	
F2	-	E2	9	16	-	PC1	I/O		PC1	ADC12_IN11	
E2	-	F2	10	17	-	PC2	I/O		PC2	ADC12_IN12	
F3	-	_(6)	11	18	-	PC3	I/O		PC3	ADC12_IN13	
G1	8	F1	12	19	5	V _{SSA}	S		V _{SSA}		
H1	-	-	I	20	-	V _{REF-}	S		V _{REF-}		
J1	-	G1 ⁽⁶⁾	I	21	-	V _{REF+}	S		V_{REF+}		
K1	9	H1	13	22	6	V _{DDA}	S		V_{DDA}		
G2	10	G2	14	23	7	PA0-WKUP	I/O		PA0	WKUP/ USART2_CTS ⁽⁷⁾ / ADC12_IN0/ TIM2_CH1_ETR ⁽⁷⁾	
H2	11	H2	15	24	8	PA1	I/O		PA1	USART2_RTS ⁽⁷⁾ / ADC12_IN1/ TIM2_CH2 ⁽⁷⁾	
J2	12	F3	16	25	9	PA2	I/O		PA2	USART2_TX ⁽⁷⁾ / ADC12_IN2/ TIM2_CH3 ⁽⁷⁾	

Table 5. Medium-density STM32F103xx pin definitions

		Pin	IS					(2)		Alternate f	unctions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
K2	13	G3	17	26	10	PA3	I/O		PA3	USART2_RX ⁽⁷⁾ / ADC12_IN3/ TIM2_CH4 ⁽⁷⁾	
E4	-	C2	18	27	-	V _{SS_4}	S		V_{SS_4}		
F4	-	D2	19	28	-	V _{DD_4}	S		V _{DD_4}		
G3	14	НЗ	20	29	11	PA4	I/O		PA4	SPI1_NSS ⁽⁷⁾ / USART2_CK ⁽⁷⁾ / ADC12_IN4	
НЗ	15	F4	21	30	12	PA5	I/O		PA5	SPI1_SCK ⁽⁷⁾ / ADC12_IN5	
JЗ	16	G4	22	31	13	PA6	I/O		PA6	SPI1_MISO ⁽⁷⁾ / ADC12_IN6/ TIM3_CH1 ⁽⁷⁾	TIM1_BKIN
КЗ	17	H4	23	32	14	PA7	I/O		PA7	SPI1_MOSI ⁽⁷⁾ / ADC12_IN7/ TIM3_CH2 ⁽⁷⁾	TIM1_CH1N
G4	-	H5	24	33		PC4	I/O		PC4	ADC12_IN14	
H4	-	H6	25	34		PC5	I/O		PC5	ADC12_IN15	
J4	18	F5	26	35	15	PB0	I/O		PB0	ADC12_IN8/ TIM3_CH3 ⁽⁷⁾	TIM1_CH2N
K4	19	G5	27	36	16	PB1	I/O		PB1	ADC12_IN9/ TIM3_CH4 ⁽⁷⁾	TIM1_CH3N
G5	20	G6	28	37	17	PB2	I/O	FT	PB2/BOOT1		
H5	-	-	-	38	-	PE7	I/O	FT	PE7		TIM1_ETR
J5	-	-	-	39	-	PE8	I/O	FT	PE8		TIM1_CH1N
K5	-	-	-	40	-	PE9	I/O	FT	PE9		TIM1_CH1
G6	-	-	-	41	-	PE10	I/O	FT	PE10		TIM1_CH2N
H6	-	-	-	42	-	PE11	I/O	FT	PE11		TIM1_CH2
J6	-	-	-	43	-	PE12	I/O	FT	PE12		TIM1_CH3N
K6	-	-	-	44	-	PE13	I/O	FT	PE13		TIM1_CH3
G7	-	•	-	45	-	PE14	I/O	FT	PE14		TIM1_CH4
H7	-	-	-	46	-	PE15	I/O	FT	PE15		TIM1_BKIN
J7	21	G7	29	47	-	PB10	I/O	FT	PB10	I2C2_SCL/ USART3_TX ⁽⁷⁾	TIM2_CH3
K7	22	H7	30	48	-	PB11	I/O	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁷⁾	TIM2_CH4
E7	23	D6	31	49	18	V _{SS_1}	S		V_{SS_1}		

Table 5.	Medium-density	y STM32F103xx	pin definitions	(continued)	
----------	----------------	---------------	-----------------	-------------	--

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS} .

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

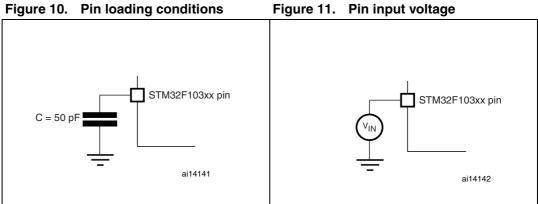
5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

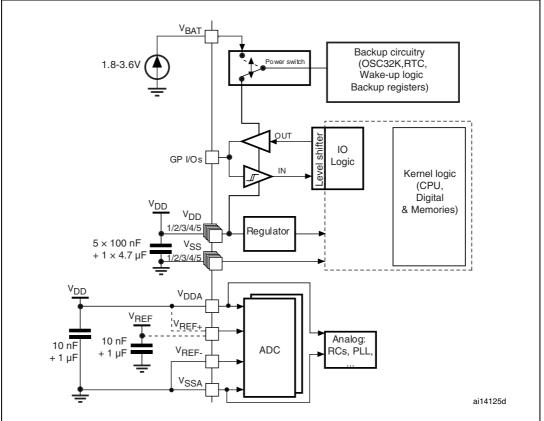
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.


5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.



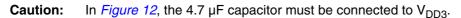
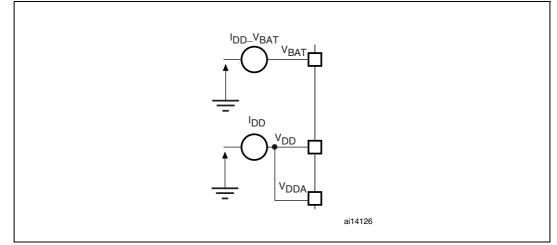


Figure 10. Pin loading conditions

Power supply scheme 5.1.6



5.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit	
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0		
V _{IN}	Input voltage on five volt tolerant pin ⁽²⁾	$V_{SS} - 0.3$	+5.5	V	
	Input voltage on any other pin ⁽²⁾	$V_{SS}-0.3$	V _{DD} +0.3		
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins		50	mV	
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins		50	IIIV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5.3.11: Absolute maximum ratings (electrical sensitivity)			

 Table 6.
 Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. $I_{INJ(PIN)}$ must never be exceeded (see *Table 7: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by V_{IN} > V_{IN} max while a negative injection is induced by V_{IN} < V_{SS} .

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

	nigh speed external user block bhardblenstibis					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		0	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$		V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}		$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		16			ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾				20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾			5		pF
DuCy _(HSE)	Duty cycle		45		55	%
ΙL	OSC_IN Input leakage current	$\begin{array}{c} V_{SS} \leq V_{IN} \leq V_{D} \\ & \text{D} \end{array}$			±1	μA

 Table 20.
 High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 9*.

Table 21.	Low-speed external user clock characteristics
-----------	---

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450			
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾				50	ns
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾			5		pF
DuCy _(LSE)	Duty cycle		30		70	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_D$			±1	μA

	Lon ponor mode nanoup	lininge		
Symbol	Parameter	Conditions	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	Wakeup on HSI RC clock	1.8	μs
. (1)	Wakeup from Stop mode (regulator in run mode) HSI RC wakeup time = 2 µs		3.6	110
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in low power mode)	HSI RC wakeup time = 2 μ s, Regulator wakeup from LP mode time = 5 μ s	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	HSI RC wakeup time = 2 μ s, Regulator wakeup from power down time = 38 μ s	50	μs

Table 26. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Test conditions		Unit		
Symbol	Parameter	Test conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
4	PLL input clock ⁽²⁾		1	8.0	25	MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock		16		72	MHz
t _{LOCK}	PLL lock time				200	μs

Table 27. PLL characteristics

1. Based on characterization, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +105 °C	20		40	ms
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20		40	ms

 Table 28.
 Flash memory characteristics

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 32. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$ conforming to JESD22-C101	11	500	v

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 33.Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

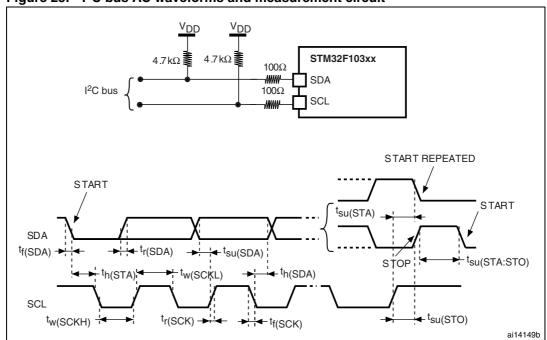


Figure 25. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Table 40. SCL frequency $(f_{PCLK1} = 36 \text{ MHz.}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

f ((tH=)	I2C_CCR value
f _{SCL} (kHz)	R_P = 4.7 k Ω
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

1. R_P = External pull-up resistance, $f_{SCL} = I^2C$ speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{I_{S}}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 46. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	1.2
7.5	0.54	10
13.5	0.96	19
28.5	2.04	41
41.5	2.96	60
55.5	3.96	80
71.5	5.11	104
239.5	17.1	350

1. Based on characterization, not tested in production.

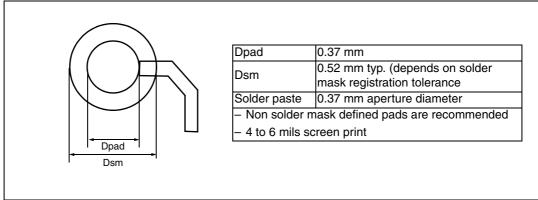
Table 47. ADC accuracy - limited test conditions^{(1) (2)}

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	f _{PCLK2} = 56 MHz,	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, \text{ R}_{AIN} < 10 \text{ k}\Omega,$	±1	±1.5	
EG	Gain error	V _{DDA} = 3 V to 3.6 V T₄ = 25 °C	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	ADC calibration	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in *Section 5.3.12* does not affect the ADC accuracy.

3. Based on characterization, not tested in production.


6 Package characteristics

6.1 Package mechanical data

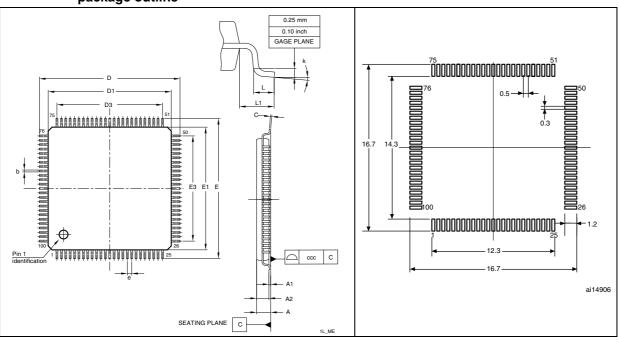
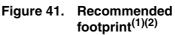

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 38. LQFP100, 100-pin low-profile quad flat package outline⁽¹⁾

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Table 52. LQPF100, 100-pin low-profile quad flat package mechanical data


O h l	millimeters			inches ⁽¹⁾			
Symbol -	Тур	Min	Мах	Тур	Min	Мах	
А			1.6			0.063	
A1		0.05	0.15		0.002	0.0059	
A2	1.4	1.35	1.45	0.0551	0.0531	0.0571	
b	0.22	0.17	0.27	0.0087	0.0067	0.0106	
С		0.09	0.2		0.0035	0.0079	
D	16	15.8	16.2	0.6299	0.622	0.6378	
D1	14	13.8	14.2	0.5512	0.5433	0.5591	
D3	12			0.4724			
Е	16	15.8	16.2	0.6299	0.622	0.6378	
E1	14	13.8	14.2	0.5512	0.5433	0.5591	
E3	12			0.4724			
е	0.5			0.0197			
L	0.6	0.45	0.75	0.0236	0.0177	0.0295	
L1	1			0.0394			
k	3.5°	0.0°	7.0°	3.5°	0.0°	7.0°	
CCC		0.08			0.0031	•	

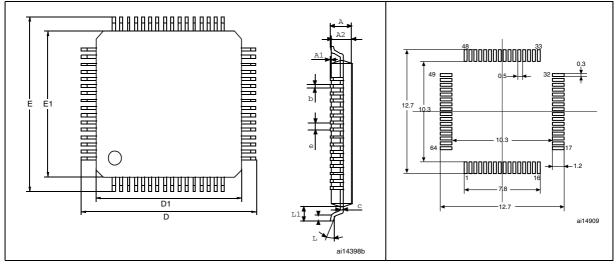

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 39. Recommended footprint $^{(1)(2)}$

Figure 40. LQFP64, 64-pin low-profile quad flat package Figure 40. Containe⁽¹⁾

1. Drawing is not to scale.

2. Dimensions are in millimeters.

Table 53.	LQFP64, 64-pin low-p	rofile quad flat package mechanical data

Dim	mm			inches ⁽¹⁾		
Dim.	Min	Тур	Max	Min	Тур	Max
А			1.60			0.0630
A1	0.05		0.15	0.0020		0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09		0.20	0.0035		0.0079
D		12.00			0.4724	
D1		10.00			0.3937	
Е		12.00			0.4724	
E1		10.00			0.3937	
е		0.50			0.0197	
θ	0°	3.5°	7 °	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00			0.0394	
N	Number of pins					
IN			(64		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

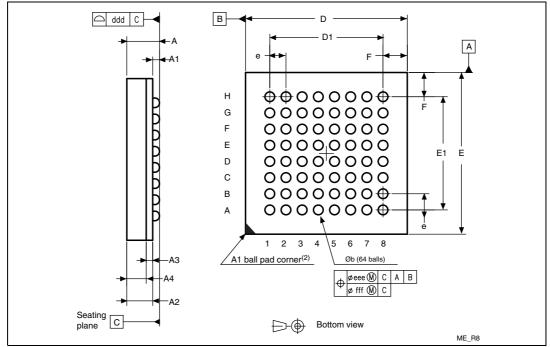
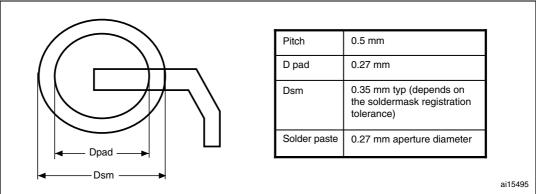


Figure 42. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.


Table 54.TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package
mechanical data

Gumbal	millimeters			inches ⁽¹⁾			
Symbol	Тур	Min	Max	Тур	Min	Max	
A			1.200			0.0472	
A1		0.150			0.0059		
A2	0.785			0.0309			
A3	0.200			0.0079			
A4			0.600			0.0236	
b	0.300	0.250	0.350	0.0118	0.0098	0.0138	
D	5.000	4.850	5.150	0.1969	0.1909	0.2028	
D1	3.500			0.1378			
E	5.000	4.850	5.150	0.1969	0.1909	0.2028	
E1	3.500			0.1378			
е	0.500			0.0197			
F	0.750			0.0295			
ddd		0.080			0.0031		
eee	0.150		0.0059				
fff		0.050			0.0020		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Non solder mask defined (NSMD) pads are recommended

2. 4 to 6 mils solder paste screen printing process

Date	Revision	Changes
		I/O information clarified <i>on page 1</i> . <i>Figure 3: STM32F103xx performance line LFBGA100 ballout</i> modified. <i>Figure 9: Memory map</i> modified. <i>Table 4: Timer feature comparison</i> added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in <i>Table 5: Medium-density STM32F103xx</i> <i>pin definitions</i> .
23-Apr-2009	10	P _D for LFBGA100 corrected in <i>Table 9: General operating conditions</i> . Note modified in <i>Table 13: Maximum current consumption in Run</i> <i>mode, code with data processing running from Flash</i> and <i>Table 15:</i> <i>Maximum current consumption in Sleep mode, code running from</i> <i>Flash or RAM</i> .
		Table 20: High-speed external user clock characteristics and Table 21:Low-speed external user clock characteristics modified.
		<i>Figure 17</i> shows a typical curve (title modified). ACC _{HSI} max values modified in <i>Table 24: HSI oscillator characteristics</i> .
		TFBGA64 package added (see <i>Table 54</i> and <i>Table 42</i>). Small text changes.

Table 58. Document revision history (continued)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 13587 Rev 10