E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103v8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 44.	LQFP48, 48-pin low-profile quad flat package outline	80
Figure 45.	Recommended footprint ⁽¹⁾	80
Figure 46.	LQFP100 P _D max vs. T _A	83

57

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No

Table 4.Timer feature comparison

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It

can also be seen as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.

- For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either 48 MHz or 72 MHz.
- 3. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz, 28 MHz or 56 MHz.

Figure 4. STM32F103xx performance line LQFP100 pinout

57

Pinouts and pin description

		Pin	S					(2)		Alternate f	unctions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level	Main function ⁽³⁾ (after reset)	Default	Remap
A3	-		-	1	-	PE2	I/O	FT	PE2	TRACECK	
B3	-		-	2	-	PE3	I/O	FT	PE3	TRACED0	
C3	-		-	3	-	PE4	I/O	FT	PE4	TRACED1	
D3	-		-	4	-	PE5	I/O	FT	PE5	TRACED2	
E3	-		-	5	-	PE6	I/O	FT	PE6	TRACED3	
B2	1	B2	1	6	-	V _{BAT}	S		V _{BAT}		
A2	2	A2	2	7	-	PC13-TAMPER- RTC ⁽⁴⁾	I/O		PC13 ⁽⁵⁾	TAMPER-RTC	
A1	3	A1	3	8	-	PC14-OSC32_IN ⁽⁴⁾	I/O		PC14 ⁽⁵⁾	OSC32_IN	
B1	4	B1	4	9	-	PC15- OSC32_OUT ⁽⁴⁾	I/O		PC15 ⁽⁵⁾	OSC32_OUT	
C2	-	-	-	10	-	V _{SS_5}	S		V _{SS_5}		
D2	-	-	-	11	-	V _{DD_5}	S		V _{DD_5}		
C1	5	C1	5	12	2	OSC_IN	Ι		OSC_IN		
D1	6	D1	6	13	3	OSC_OUT	0		OSC_OUT		
E1	7	E1	7	14	4	NRST	I/O		NRST		
F1	-	E3	8	15	-	PC0	I/O		PC0	ADC12_IN10	
F2	-	E2	9	16	-	PC1	I/O		PC1	ADC12_IN11	
E2	-	F2	10	17	-	PC2	I/O		PC2	ADC12_IN12	
F3	-	_(6)	11	18	-	PC3	I/O		PC3	ADC12_IN13	
G1	8	F1	12	19	5	V _{SSA}	S		V_{SSA}		
H1	-	-	-	20	-	V _{REF-}	S		V _{REF-}		
J1	-	G1 ⁽⁶⁾	-	21	-	V _{REF+}	S		V_{REF+}		
K1	9	H1	13	22	6	V _{DDA}	S		V_{DDA}		
G2	10	G2	14	23	7	PA0-WKUP	I/O		PA0	WKUP/ USART2_CTS ⁽⁷⁾ / ADC12_IN0/ TIM2_CH1_ETR ⁽⁷⁾	
H2	11	H2	15	24	8	PA1	I/O		PA1	USART2_RTS ⁽⁷⁾ / ADC12_IN1/ TIM2_CH2 ⁽⁷⁾	
J2	12	F3	16	25	9	PA2	I/O		PA2	USART2_TX ⁽⁷⁾ / ADC12_IN2/ TIM2_CH3 ⁽⁷⁾	

Table 5. Medium-density STM32F103xx pin definitions

		Pin	IS					(2)		Alternate f	unctions
LFBGA100	LQFP48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Leve	Main function ⁽³⁾ (after reset)	Default	Remap
D4	-	-	-	97	-	PE0	I/O	FT	PE0	TIM4_ETR	
C4	-	-	-	98	-	PE1	I/O	FT	PE1		
E5	47	D4	63	99	36	V _{SS_3}	S		V _{SS_3}		
F5	48	E4	64	100	1	V _{DD_3}	S		V _{DD_3}		

 Table 5.
 Medium-density STM32F103xx pin definitions (continued)

1. I = input, O = output, S = supply, HiZ = high impedance.

2. FT = 5 V tolerant.

- 3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 10*.
- 4. PC13, PC14 and PC15 are supplied through the power switch and since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 is restricted: only one I/O at a time can be used as an output, the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).
- 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available
 from the STMicroelectronics website: www.st.com.
- 8. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages, and C1 and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.

The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode.

4 Memory mapping

The memory map is shown in Figure 9.

Figure 9. Memory map

Doc ID 13587 Rev 10

5.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V	Input voltage on five volt tolerant pin ⁽²⁾	$V_{SS} - 0.3$	+5.5	V
V _{IN}	Input voltage on any other pin ⁽²⁾	$V_{SS} - 0.3$	V _{DD} +0.3	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins		50	m\/
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins		50	IIIV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5 Absolute max (electrical sen	.3.11: imum ratings isitivity)	

 Table 6.
 Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. $I_{INJ(PIN)}$ must never be exceeded (see *Table 7: Current characteristics*). This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by V_{IN} > V_{IN} max while a negative injection is induced by V_{IN} < V_{SS} .

5.3.12 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.5		0.8	
VIH	Standard IO input high level voltage	TTL ports	2		V _{DD} +0.5	V
	IO FT ⁽¹⁾ input high level voltage		2		5.5V	
V _{IL}	Input low level voltage	CMOS porte	-0.5		0.35 V _{DD}	V
V _{IH}	Input high level voltage	CINCS ports	0.65 V _{DD}		V _{DD} +0.5	v
V	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾		200			mV
V hys	IO FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾			mV
L.	Input loakage current ⁽⁴⁾	$V_{SS} \le V_{IN} \le V_{DD}$ Standard I/Os			±1	
'lkg	input leakage current V	V _{IN} = 5 V I/O FT			3	μΑ
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ
C _{IO}	I/O pin capacitance			5		pF

Table 34.I/O static characteristics

1. FT = Five-volt tolerant.

2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:

- For V_{IH}:
 - if V_{DD} is in the [2.00 V 3.08 V] range: CMOS characteristics but TTL included
 - if V_{DD} is in the [3.08 V 3.60 V] range: TTL characteristics but CMOS included
- For V_{IL}:
 - if V_{DD} is in the [2.00 V 2.28 V] range: TTL characteristics but CMOS included
 - if V_{DD} is in the [2.28 V 3.60 V] range: CMOS characteristics but TTL included

5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 34*).

Unless otherwise specified, the parameters given in *Table 37* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2		V_{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse		300			ns

Table 37. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 24. Recommended NRST pin protection

- 2. The reset network protects the device against parasitic resets.
- 3. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in *Table 37*. Otherwise the reset will not be taken into account by the device.

5.3.14 TIM timer characteristics

The parameters given in *Table 38* are guaranteed by design.

Refer to *Section 5.3.12: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t (THE)	Timer resolution time		1		t _{TIMxCLK}
res(TIM)		$count \qquad \frac{conditions}{f_{TIMxCLK} = 72 \text{ MH}}$	13.9		ns
f _{FXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXI	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution			16	bit
+	16-bit counter clock period		1	65536	t _{TIMxCLK}
COUNTER	selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t	Maximum possible count			65536 × 65536	t _{TIMxCLK}
'MAX_COUNT		f _{TIMxCLK} = 72 MHz		59.6	s

Table 38. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

5.3.15 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

The STM32F103xx performance line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Paramotor	Standard r	node l ² C ⁽¹⁾	Fast mode	Unit	
Symbol	Falameter	Min	Max	Min	Max	Onit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μο
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μS
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF

Table 39.	l ² C	characteristics
-----------	------------------	-----------------

1. Guaranteed by design, not tested in production.

2. f_{PCLK1} must be higher than 2 MHz to achieve the maximum standard mode I²C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I²C frequency.

3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

Refer to *Section 5.3.12: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

 Table 41.
 SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPL clock frequency	Master mode	0	18	MЦэ
1/t _{c(SCK)}	SFT Clock frequency	Slave mode	0	18	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 t _{PCLK}		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	73		
t _{w(SCKH)} (2) t _{w(SCKL)} (2)	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
+ (2)	Data input setup time	SPI1	1		
^t su(MI) `´	Master mode	SPI2	5		
t _{su(SI)} ⁽²⁾	Data input setup time Slave mode		1		
• (2)	Data input hold time	SPI1	1		
^t h(MI) `´	Master mode	SPI2	5		ns
t _{h(SI)} ⁽²⁾	Data input hold time Slave mode		3		
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access	Slave mode, f _{PCLK} = 36 MHz, presc = 4	0	55	
	une	Slave mode, f _{PCLK} = 24 MHz	0	4 t _{PCLK}	
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	10		
t _{v(SO)} (2)(1)	Data output valid time	Slave mode (after enable edge)		25	
t _{v(MO)} ⁽²⁾⁽¹⁾	Data output valid time	Master mode (after enable edge)		3	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	25		
t _{h(MO)} ⁽²⁾		Master mode (after enable edge)	4		

1. Remapped SPI1 characteristics to be determined.

2. Based on characterization, not tested in production.

3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

6.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 57: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), $I_{DDmax} = 50$ mA, $V_{DD} = 3.5$ V, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8$ mA, $V_{OL} = 0.4$ V and maximum 8 I/Os used at the same time in output at low level with $I_{OL} = 20$ mA, $V_{OL} = 1.3$ V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: $P_{INTmax} = 175 \text{ mW}$ and $P_{IOmax} = 272 \text{ mW}$:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Thus: $P_{Dmax} = 447 \text{ mW}$

Using the values obtained in *Table 56* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 57: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ Thus: $P_{Dmax} = 134 \text{ mW}$

Date	Revision	Changes
23-Apr-2009	10	 I/O information clarified on page 1. <i>Figure 3: STM32F103xx performance line LFBGA100 ballout</i> modified. <i>Figure 9: Memory map</i> modified. <i>Table 4: Timer feature comparison</i> added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in <i>Table 5: Medium-density STM32F103xx pin definitions</i>.
		P _D for LFBGA100 corrected in <i>Table 9: General operating conditions</i> .
		Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM.
		Table 20: High-speed external user clock characteristics and Table 21:Low-speed external user clock characteristics modified.
		<i>Figure 17</i> shows a typical curve (title modified). ACC _{HSI} max values modified in <i>Table 24: HSI oscillator characteristics</i> .
		TFBGA64 package added (see <i>Table 54</i> and <i>Table 42</i>). Small text changes.

Table 58. Document revision history (continued)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 13587 Rev 10