

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100c6t6btr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 46. Table 47.	DAC characteristics
Table 48.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
	mechanical data
Table 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
	mechanical data
Table 50.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	grid array package mechanical data
Table 51.	TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Table 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 53.	Package thermal characteristics
Table 54.	Ordering information scheme
Table 55.	Document revision history

Their counters can be frozen in debug mode.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated for OS, but could also be used as a standard down counter. It features:

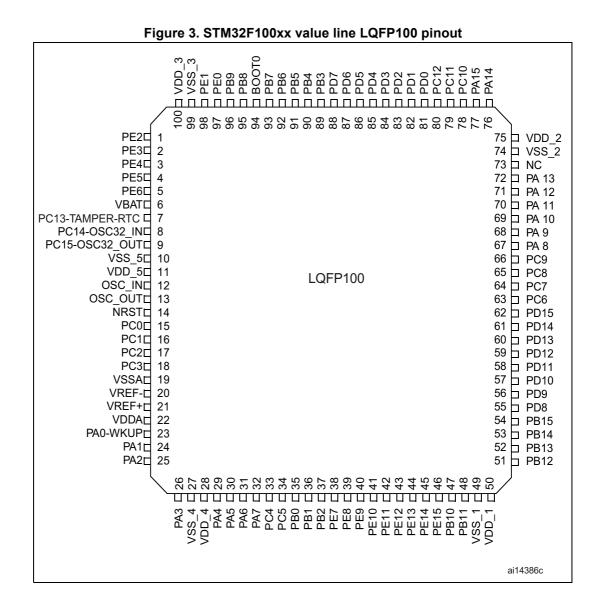
- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.2.16 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.

It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.

2.2.17 Universal synchronous/asynchronous receiver transmitter (USART)


The STM32F100xx value line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

The available USART interfaces communicate at up to 3 Mbit/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART interfaces can be served by the DMA controller.

3 Pinouts and pin description

	1	2	3	4	5	6 IFBGA	7	8
A	• /PC14-, 0\&C32_lNT	, PC13-, AMPER-RT	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
в	, PC15-, OSC32_OUT	VBAT)	(PB8)	воото	(PD2)	(PC11)	(PC10)	(PA12)
C	OSC_IN	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	,VSS_3	Vss_2	,VSS_1;	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'VDD_3'	VDD_2'	, V _{DD_1} ,	(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+	PĄO-WKŲP	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	V _{DDA} ,	(PA1)	(PA4)	PA7	(PC4)	(PC5)	(PB11)	(PB12)
								Al1549

Figure 6. STM32F100xx value line TFBGA64 ballout

Table 4. Low & medium-density STM32F100xx pin definitions

	Pi	ns				2)		Alternate functions ⁽³⁾⁽⁴⁾	
LQFP100	LQFP64	TFBGA64	LQFP48	Pin name	Type ⁽¹⁾	TAbe (1) end (1) end (1) end (1) end (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		Default	Remap
1	-	-	-	PE2	I/O	FT	PE2	TRACECLK	-
2	-	-	-	PE3	I/O	FT	PE3	TRACED0	-
3	-	-	-	PE4	I/O	FT	PE4	TRACED1	-
4	-	-	-	PE5	I/O	FT	PE5	TRACED2	-
5	-	-	-	PE6	I/O	FT	PE6	TRACED3	-
6	1	B2	1	V _{BAT}	S	-	V _{BAT}	-	-
7	2	A2	2	PC13-TAMPER-RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-
8	3	A1	3	PC14-OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-

1. I = input, O = output, S = supply, HiZ= high impedance.

- Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.
- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- PC13, PC14 and PC15 are supplied through the power switch and since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is restricted: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must *not* be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages and C1 and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
- 8. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.
- 9. I2C2 is not present on low-density value line devices.
- 10. SPI2 is not present on low-density value line devices.
- 11. TIM4 is not present on low-density value line devices.
- 12. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.

^{2.} FT= 5 V tolerant.

Symbol	Parameter	Parameter Conditions		Max	Unit	
		LQFP100	-	434		
р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$	LQFP64	-	444	m\\/	
P _D	105 °C for suffix $7^{(2)}$	TFBGA64	-	308	mW	
		LQFP48	-	363		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
Та	suffix version	Low power dissipation ⁽³⁾	-40	105	C	
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	°C	
		Low power dissipation ⁽³⁾	-40	125	C	
TJ	Junction temperature range	6 suffix version	-40	105	С.	
	Sunction temperature range	7 suffix version	-40	125	0	

Table 8. General operating conditions (continued)

1. When the ADC is used, refer to *Table 42: ADC characteristics*.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 6.5: Thermal characteristics on page 89*).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.5: Thermal characteristics on page 89).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

Table 9. Operating	conditions at power-up	/ power-down
--------------------	------------------------	--------------

Symbol	Parameter	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate	0	~	us/V
	V _{DD} fall time rate	20	8	μ5/ V

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 10* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

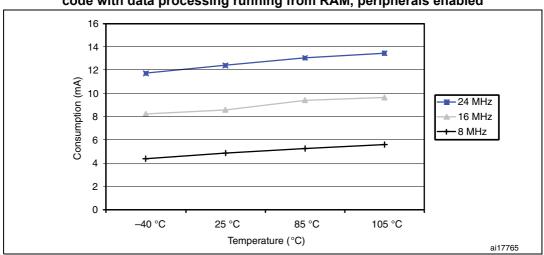


Figure 12. Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Figure 13. Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled

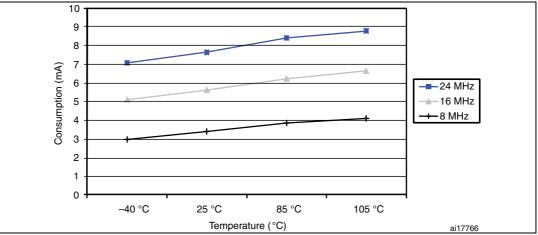


Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM

Symbol	Deremeter	Conditions	£	Ма	Unit	
Symbol	Parameter		f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Sleep mode	External clock ⁽²⁾ all peripherals enabled	24 MHz	9.6	10	
			16 MHz	7.1	7.5]
			8 MHz	4.5	4.8	m 4
IDD			24 MHz	3.8	4	mA
			16 MHz	3.3	3.5	
			8 MHz	2.7	3	

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

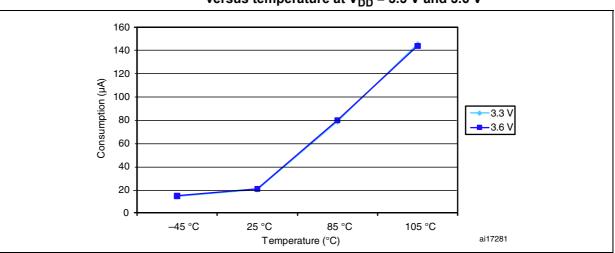
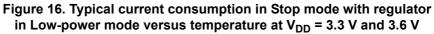
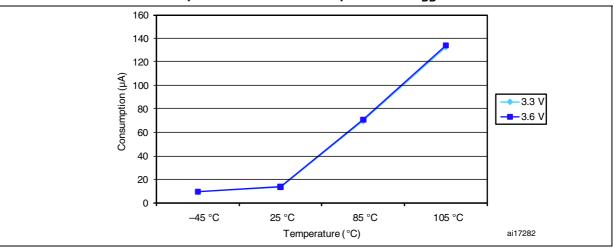




Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

For further details, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Caution: To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of C_L = 6 pF, and C_{stray} = 2 pF, then C_{L1} = C_{L2} = 8 pF.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
R _F	Feedback resistor		-	-	5	-	MΩ
$C_{L1} C_{L2}^{(2)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 KΩ		-	-	15	pF
l ₂	LSE driving current	V _{DD} = 3	.3 V V _{IN} = V _{SS}	-	-	1.4	μA
9 _m	Oscillator transconductance	-		5	-	-	µA/V
			T _A = 50 °C	-	1.5	-	
			T _A = 25 °C	-	2.5	-	
			T _A = 10 °C	-	4	-	
t (4)		V _{DD} is	T _A = 0 °C	-	6	-	
t _{SU(LSE)} ⁽⁴⁾	Startup time	stabilized	T _A = -10 °C	-	10	-	S
			T _A = -20 °C	-	17	-	
			T _A = -30 °C	-	32	-	
			T _A = -40 °C	-	60	-	

Table 22. LSE oscillator characteristics $(f_{LSE} = 32.768 \text{ kHz})^{(1)}$

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs above the table.

- The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details
- 4. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Low-speed internal (LSI) RC oscillator

Table 24. LSI oso	illator characteristics ⁽¹⁾)
-------------------	--	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI}	Frequency	30	40	60	kHz
$\Delta f_{LSI(T)}$	Temperature-related frequency drift ⁽²⁾	-9	-	9	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 25* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	
^I WUSTOP ⁽¹⁾	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 25. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{HCLK}] 8/24 MHz	Unit
		eak level $V_{DD} = 3.6 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C},$ LQFP100 package compliant with SAE J1752/3	0.1 MHz to 30 MHz	9	
c c	Dook lovel		30 MHz to 130 MHz	16	dBµV
SEMI	S _{EMI} Peak level		130 MHz to 1GHz	19	
			SAE EMI Level	4	-

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 31.	ESD	absolute	maximum	ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$ conforming to JESD22-C101	Ш	500	v

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78 IC latch-up standard.

Symbol Parameter		Conditions	Class	
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78	II level A	

Table 32. Electrical sensitivities

5.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
M	Standard I/O input low level voltage		-0.3	-	0.28*(V _{DD} -2 V)+0.8 V	
V _{IL}	I/O FT ⁽¹⁾ input low level voltage	-	-0.3	-	0.32*(V _{DD} -2 V)+0.75 V	
	Standard I/O input high level voltage		0.41*(V _{DD} -2 V) +1.3 V	-	V _{DD} +0.3	V
V _{IH}	I/O FT ⁽¹⁾ input high	$V_{DD} > 2 V$	0.42*(\/2\+1.\/		5.5	_
	level voltage	V _{DD} ≤2 V	0.42*(V _{DD} –2)+1 V	-	5.2	
V _{hys} Standard I/O Schmitt		-	200	-	-	mV
Tiy5	I/O FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾	-	-	mV
1	Input leakage	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	±1	
l _{lkg}	urrent ⁽⁴⁾	V _{IN} = 5 V I/O FT		3	- μΑ	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ
CIO	I/O pin capacitance	-	-	5	-	pF

1. FT = 5V tolerant. To sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by design.

- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* and *Figure 23* for standard I/Os, and in *Figure 24* and *Figure 25* for 5 V tolerant I/Os.

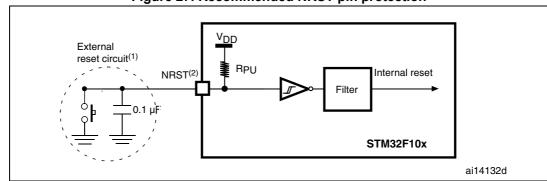


Figure 27. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 37. Otherwise the reset will not be taken into account by the device.

5.3.15 TIMx characteristics

The parameters given in Table 38 are guaranteed by design.

Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit		
t mu	Timer resolution time	-	1	-	t _{TIMxCLK}		
t _{res(TIM)}		f _{TIMxCLK} = 24 MHz	41.7	-	ns		
f	Timer external clock		0	f _{TIMxCLK} /2	MHz		
f _{EXT}	frequency on CHx ⁽²⁾	f _{TIMxCLK} = 24 MHz	0	12	MHz		
Res _{TIM}	Timer resolution	-	-	16	bit		
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}		
^t COUNTER	when the internal clock is selected	f _{TIMxCLK} = 24 MHz	-	2730	μs		
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}		
		f _{TIMxCLK} = 24 MHz	-	178	s		

Table 38. TIMx characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM15, TIM16 and TIM17 timers.

2. CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3 and TIM4, to the CH1 to CH2 for TIM15, and to CH1 for TIM16 and TIM17.

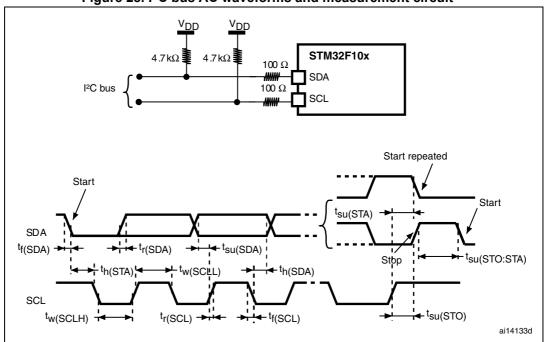


Figure 28. I²C bus AC waveforms and measurement circuit⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

£ ((-11->(3)	I2C_CCR value
f _{SCL} (kHz) ⁽³⁾	R _P = 4.7 kΩ
400	0x8011
300	0x8016
200	0x8021
100	0x0064
50	0x00C8
20	0x01F4

Table 40. SCL frequency $(f_{PCLK1} = 24 \text{ MHz}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external components used to design the application.

3. Guaranteed by design.

5.3.19 Temperature sensor characteristics

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.32	1.41	1.50	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 47. TS characteristics

1. Guaranteed by characterization results.

2. Guaranteed by design.

3. Shortest sampling time can be determined in the application by multiple iterations.

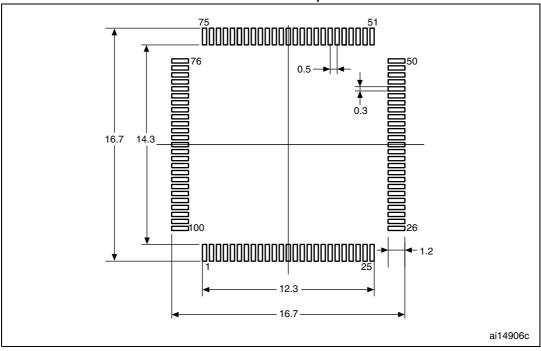
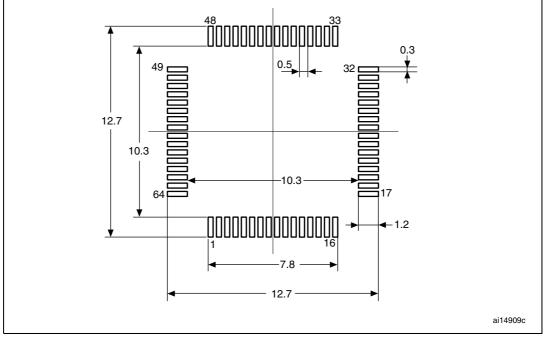


Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

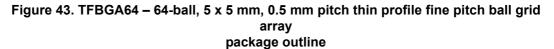
1. Dimensions are in millimeters.

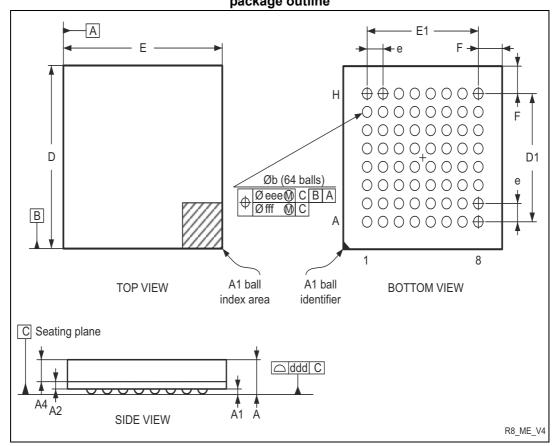


Ok.a.l	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.





1. Dimensions are in millimeters.

6.3 **TFBGA64** package information

^{1.} Drawing is not to scale.

Table 50. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.200	-	-	0.0472	
A1	0.150	-	-	0.0059	-	-	
A2	-	0.200	-	-	0.0079	-	
A4	-	-	0.600	-	-	0.0236	
b	0.250	0.300	0.350	0.0098	0.0118	0.0138	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	-	3.500	-	-	0.1378	-	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	

6.4 LQFP48 package information

SEATING PLANE A2 F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b **CHE** <u>ш</u> ш Ē ----------£ 48 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package						
mechanical data						

	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622

6.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 8: General operating conditions on page 34*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}}$ max represents the maximum power dissipation on output pins where:

$$\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
Q _{JA}	Thermal resistance junction-ambient LQFP 100 - 14 × 14 mm / 0.5 mm pitch	46		
	Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W	
	Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch	65		
	Thermal resistance junction-ambient LQFP 48 - 7 × 7 mm / 0.5 mm pitch	55		

Table 53. Package thermal characteristics

6.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

