

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARMe Cortex@-M3Core Size32-Bit Single-CoreSpeed24MEzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEROM Size-Nufage - Supply (Vcc/Vdd)2V ~ 3.6VVoltage - Supply (Vcc/Vdd)Voltage - Supple - Que ConstructionOperating Temperature-Mounting TypeSurface MountProgram Grego-Surface Mount-Surface Mou		
Core Size32-Bit Single-CoreSpeed24MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-Nutage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Product Status	Active
Speed24MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, PDR, PVD, PWM, Temp Sensor, WDTNumber of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case8k-LQFPSurface Mount-	Core Processor	ARM® Cortex®-M3
ConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFP	Core Size	32-Bit Single-Core
PeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Speed	24MHz
Number of I/O37Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case88-LQFPSuppler Device Package-	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type8k-LQFPSuppler Device Package-	Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size&K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Number of I/O	37
EEPROM Size-RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Program Memory Size	128KB (128K x 8)
RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	EEPROM Size	·
Data ConvertersA/D 10x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	RAM Size	8K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Operating Temperature -40°C ~ 85°C (TA) Mounting Type Surface Mount Package / Case 48-LQFP Supplier Device Package -	Data Converters	A/D 10x12b; D/A 2x12b
Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package-	Oscillator Type	Internal
Package / Case 48-LQFP Supplier Device Package -	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package -	Mounting Type	Surface Mount
	Package / Case	48-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100cbt6b	Supplier Device Package	-
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100cbt6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

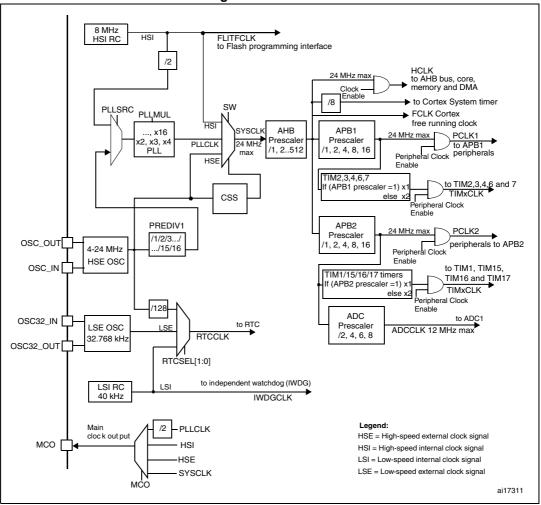
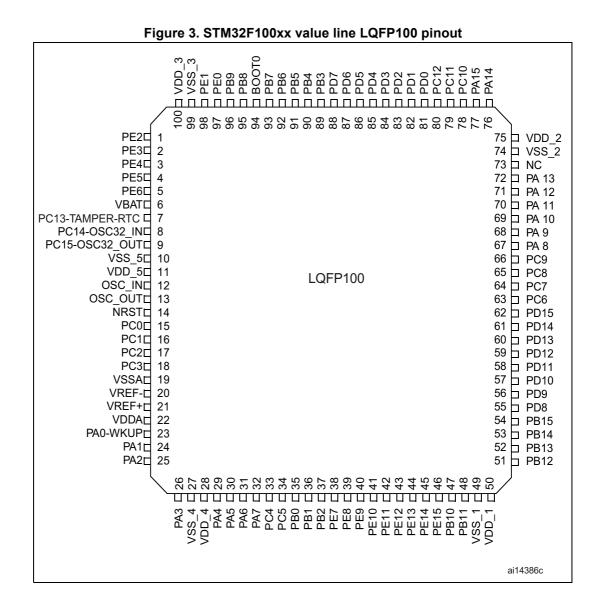



Figure 2. Clock tree

1. To have an ADC conversion time of 1.2 $\mu s,$ APB2 must be at 24 MHz.

3 Pinouts and pin description

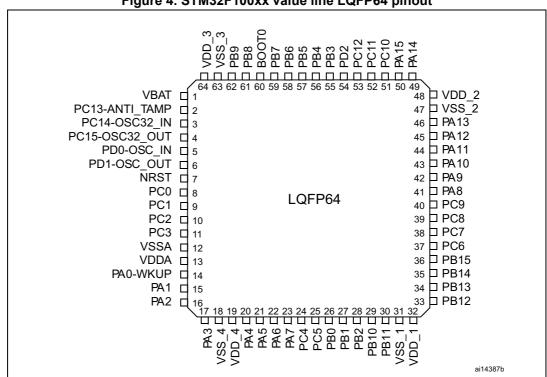
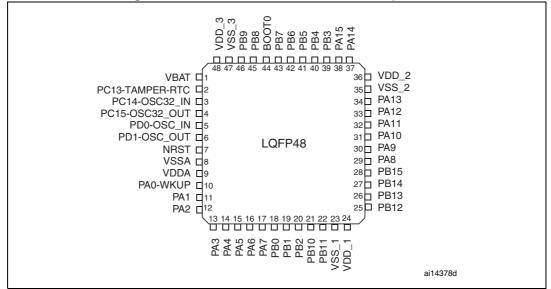



Figure 4. STM32F100xx value line LQFP64 pinout

Figure 5. STM32F100xx value line LQFP48 pinout

DocID16455 Rev 9

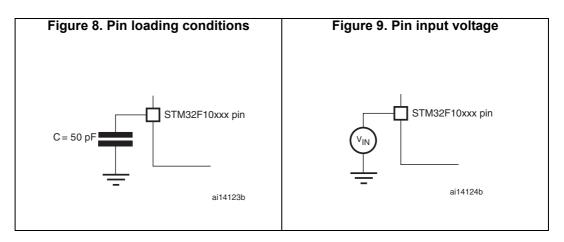
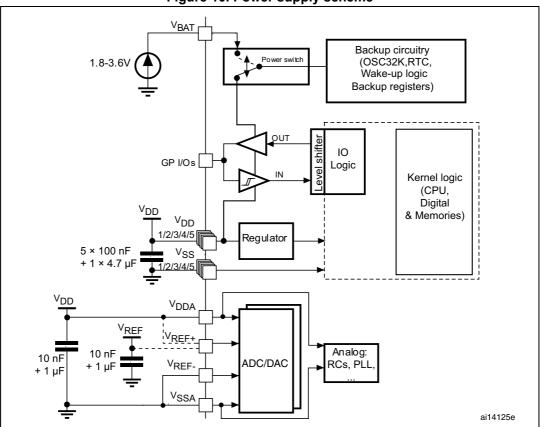

	1	2	3	4	5	6 IFBGA	7	8
A	• /PC14-, 0\&C32_lNT	, PC13-, AMPER-RT	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
в	, PC15-, OSC32_OUT	VBAT)	(PB8)	воото	(PD2)	(PC11)	(PC10)	(PA12)
C	OSC_IN	VSS_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	VDD_4	(PB6)	,VSS_3	Vss_2	,Vss_1;	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'VDD_3'	VDD_2'	, V _{DD_1} ,	(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	WREF+	PĄO-WKŲP	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	V _{DDA} ,	(PA1)	(PA4)	PA7	(PC4)	(PC5)	(PB11)	(PB12)
								Al1549

Figure 6. STM32F100xx value line TFBGA64 ballout


Table 4. Low & medium-density STM32F100xx pin definitions

	Pi	ns				2)		Alternate functions	
LQFP100	LQFP64	TFBGA64	LQFP48	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
1	-	-	-	PE2	I/O	FT	PE2	TRACECLK	-
2	-	-	-	PE3	I/O	FT	PE3	TRACED0	-
3	-	-	-	PE4	I/O	FT	PE4	TRACED1	-
4	-	-	-	PE5	I/O	FT	PE5	TRACED2	-
5	-	-	-	PE6	I/O	FT	PE6	TRACED3	-
6	1	B2	1	V _{BAT}	S	-	V _{BAT}	-	-
7	2	A2	2	PC13-TAMPER-RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-
8	3	A1	3	PC14-OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-

5.1.6 Power supply scheme

Caution: In *Figure 10*, the 4.7 μ F capacitor must be connected to V_{DD3}.

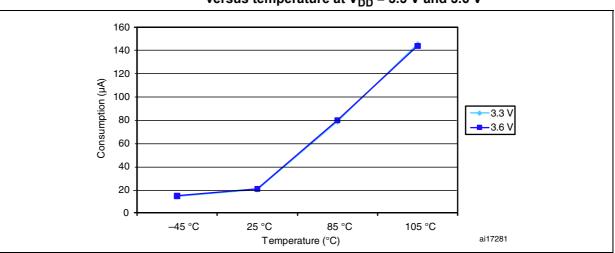
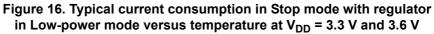
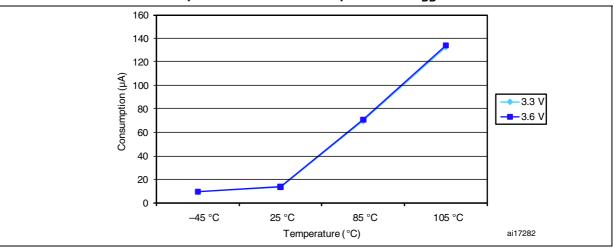




Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

For further details, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Caution: To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of C_L = 6 pF, and C_{stray} = 2 pF, then C_{L1} = C_{L2} = 8 pF.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
R _F	Feedback resistor		-	-	5	-	MΩ
$C_{L1} C_{L2}^{(2)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S	-	-	15	pF	
l ₂	LSE driving current	V _{DD} = 3	-	-	1.4	μA	
9 _m	Oscillator transconductance		5	-	-	µA/V	
		V _{DD} is stabilized	T _A = 50 °C	-	1.5	-	
			T _A = 25 °C	-	2.5	-	- S
			T _A = 10 °C	-	4	-	
t (4)			T _A = 0 °C	-	6	-	
t _{SU(LSE)} ⁽⁴⁾	Startup time		T _A = -10 °C	-	10	-	
			T _A = -20 °C	-	17	-	
			T _A = -30 °C	-	32	-	
			T _A = -40 °C	-	60	-	

Table 22. LSE oscillator characteristics $(f_{LSE} = 32.768 \text{ kHz})^{(1)}$

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs above the table.

- The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details
- 4. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
		Read mode f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	20	mA
I _{DD}	Supply current	Write / Erase modes f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V_{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 27	. Flash	memory	characteristics
----------	---------	--------	-----------------

1. Guaranteed by design.

Symbol	Parameter	Conditions		Value	Unit	
Symbol	Farameter	Conditions	Min ⁽¹⁾	Тур	Max	Onit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	-	-	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	-	-	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	-	-	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	-	-	

Table 28. Flash memory endurance and data retention

1. Based on characterization not tested in production.

2. Cycling performed over the whole temperature range.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{HCLK}] 8/24 MHz	Unit
		$V_{DD} = 3.6 \text{ V}, T_A = 25^{\circ}\text{C},$ LQFP100 package compliant with SAE J1752/3	0.1 MHz to 30 MHz	9	
c c	Peak level		30 MHz to 130 MHz	16	dBµV
S _{EMI}	Peak level		130 MHz to 1GHz	19	
			SAE EMI Level	4	-

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 31.	ESD	absolute	maximum	ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-C101	Ш	500	v

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78 IC latch-up standard.

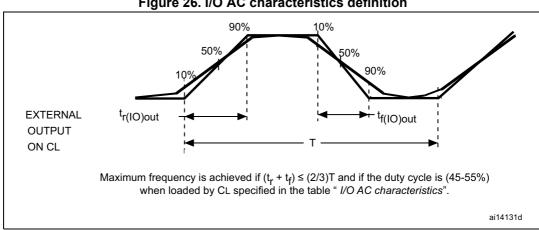
Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78	II level A

Table 32. Electrical sensitivities

Output voltage levels

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ I _{IO} = +8 mA,	-	0.4	V
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40$ mA, 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾ I _{IO} = +8 mA	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	2.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	l _{IO} = +20 mA ⁽⁴⁾	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	v


1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data, not tested in production.

Figure 26. I/O AC characteristics definition

5.3.14 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 34).

Unless otherwise specified, the parameters given in Table 37 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	v
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	300	-	-	ns

Table 37.	NRST	pin	characteristics
10010 011		P	0110100100100

1. Guaranteed by design.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to 2. the series resistance must be minimum (~10% order).

5.3.16 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 8*.

The STM32F100xx value line I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard r	node l ² C ⁽¹⁾	Fast mode	Unit	
Symbol	Faidilleter	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 39, I ² C	characterist	ics
----------------------------	--------------	-----

1. Guaranteed by design.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 8*.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{scк}		Master mode	-	12	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	12	MHz
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}	-	
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 24 MHz, presc = 4	50	60	
t _{su(MI)} (1)	Data input setup time	Master mode	5	-	
t _{su(MI)} (1) t _{su(SI)} (1)		Slave mode	5	-	
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-	
t _{h(SI)} ⁽¹⁾		Slave mode	4	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 24 MHz	0	3t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	2	10	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	
t _{h(SO)} ⁽¹⁾		Slave mode (after enable edge)	15	-	1
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	2	-	1

1. Guaranteed by characterization results.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

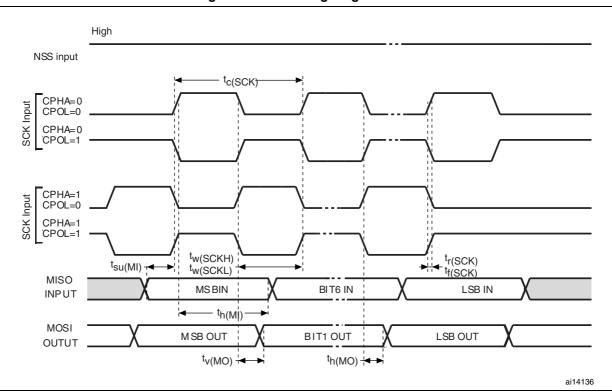


Figure 31. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

HDMI consumer electronics control (CEC)

Refer to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics.

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{DDA}	Power supply	-	2.4	-	3.6	V
V_{REF^+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	12	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)		f _{ADC} = 12 MHz	-	-	705	kHz
f _{TRIG} ⁽²⁾	External trigger frequency	-	-	-	17	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range	-	0 (V _{SSA} tied to ground)	-	V_{REF} +	V
$R_{AIN}^{(2)}$	External input impedance	See <i>Equation 1</i> and <i>Table 43</i> for details	-	-	50	κΩ
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	κΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
• (2)	Calibratian time	f _{ADC} = 12 MHz	6.9		μs	
t _{CAL} ⁽²⁾	Calibration time	-	8	3		1/f _{ADC}
↓ (2)	Injection trigger conversion	f _{ADC} = 12 MHz	-	-	0.25	μs
t _{lat} (2)	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t (2)	Regular trigger conversion	f _{ADC} = 12 MHz	-	-	0.166	μs
t _{latr} (2)	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
+ (2)	O annu lin a time a	6 40 MUL	0.125	-	20.0	μs
t _S ⁽²⁾	Sampling time	f _{ADC} = 12 MHz	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	T ()	f _{ADC} = 12 MHz	1.17	-	21	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	-	14 to 252 (t _S for sa successive approx	for sampling +12.5 for approximation)		1/f _{ADC}

Table 42. ADC characteristic	CS
------------------------------	----

1. Based on characterization results, not tested in production.

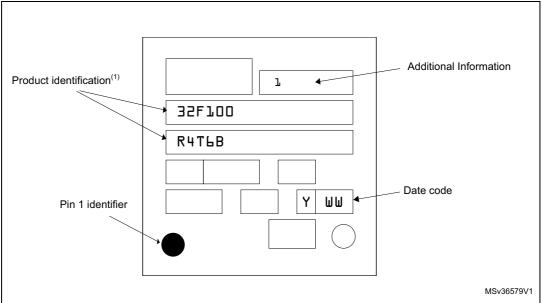
2. Guaranteed by design.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to *Table 4: Low & medium-density STM32F100xx pin definitions* and *Figure 6* for further details.

4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 42*.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{I_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$


The above formula (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Device marking for LQFP64

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 42. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol		millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах		
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
E3	-	5.500	-	-	0.2165	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

Table 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

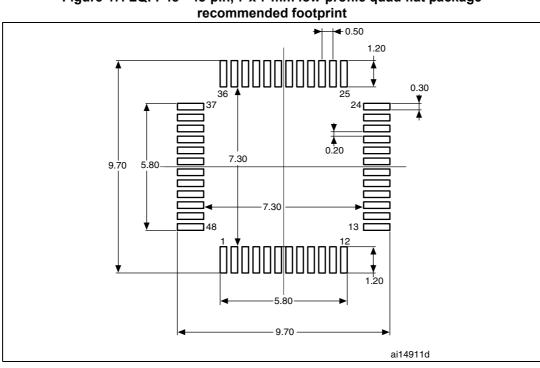


Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package

1. Dimensions are expressed in millimeters.

6.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 54: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F10xxx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example: high-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax =} 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

P_{Dmax =} 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 53* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 54: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = _{20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ s: $P_{Dmax} = -124 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID16455 Rev 9

7 Ordering information scheme

Table 54. Ordering information scheme

Example:	STM32 F 100 C 6	Т	6	В	ххх
Device femily					
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = General-purpose					
Device subfamily					
100 = value line					
Pin count					
C = 48 pins					
R = 64 pins					
V = 100 pins					
Flash memory size					
4 = 16 Kbytes of Flash memory					
6 = 32 Kbytes of Flash memory					
8 = 64 Kbytes of Flash memory					
B = 128 Kbytes of Flash memory					
Package					
T = LQFP					
H = BGA					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C					
7 = Industrial temperature range, -40 to 105 °C					
Internal code					
В					
Options					

xxx = programmed parts

TR = tape and real

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

Date	Revision	Changes
		Revision history corrected.
30-Mar-2010	3	Updated Table 6: Current characteristics Values and note updated in Table 16: Typical current consumption in Run mode, code with data processing running from Flash and Table 17: Typical current consumption in Sleep mode, code running from Flash or RAM.
		Updated Table 15: Typical and maximum current consumptions in Stop and Standby modes Added Figure 14: Typical current consumption on VBAT with RTC on vs. temperature at different VBAT values Typical consumption for ADC1 corrected in Table 18: Peripheral
		<i>current consumption.</i> <i>Maximum current consumption</i> and <i>Typical current consumption</i> : frequency conditions corrected. <i>Output driving current</i> corrected. Updated <i>Table 30: EMI characteristics</i> f _{ADC} max corrected in <i>Table 42: ADC characteristics</i> . Small text changes.
06-May-2010	4	Updated Table 31: ESD absolute maximum ratings on page 55 and Table 32: Electrical sensitivities on page 56 Updated Table 44: ADC accuracy - limited test conditions on page 70 and Table 45: ADC accuracy on page 70
12-Jul-2010	5	Updated Table 24: LSI oscillator characteristics on page 51 Updated Table 44: ADC accuracy - limited test conditions on page 70 and Table 45: ADC accuracy on page 70
04-Apr-2011	6	Updated <i>Figure 2: Clock tree</i> to add FLITF clock Updated footnotes below <i>Table 5: Voltage characteristics on page 33</i> and <i>Table 6: Current characteristics on page 34</i> Updated tw min in <i>Table 19: High-speed external user clock</i> <i>characteristics on page 46</i> Updated startup time in <i>Table 22: LSE oscillator characteristics (fLSE</i> = 32.768 kHz) on page 49 Updated <i>Table 23: HSI oscillator characteristics on page 50</i> Added Section 5.3.12: I/O current injection characteristics on page 56 Updated <i>Table 34: I/O static characteristics on page 57</i> Corrected TTL and CMOS designations in <i>Table 35: Output voltage</i> <i>characteristics on page 60</i> Removed note on remapped characteristics from <i>Table 41: SPI</i> <i>characteristics on page 66</i>

Table 55. Document revision history (continued)

