

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100r4h6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5	Electr	rical cha	aracteristics
	5.1	Parame	ter conditions
		5.1.1	Minimum and maximum values
		5.1.2	Typical values
		5.1.3	Typical curves
		5.1.4	Loading capacitor
		5.1.5	Pin input voltage
		5.1.6	Power supply scheme
		5.1.7	Current consumption measurement
	5.2	Absolute	e maximum ratings
	5.3	Operatir	ng conditions
		5.3.1	General operating conditions
		5.3.2	Operating conditions at power-up / power-down
		5.3.3	Embedded reset and power control block characteristics
		5.3.4	Embedded reference voltage
		5.3.5	Supply current characteristics
		5.3.6	External clock source characteristics
		5.3.7	Internal clock source characteristics
		5.3.8	PLL characteristics
		5.3.9	Memory characteristics
		5.3.10	EMC characteristics
		5.3.11	Absolute maximum ratings (electrical sensitivity)
		5.3.12	I/O current injection characteristics
		5.3.13	I/O port characteristics
		5.3.14	NRST pin characteristics
		5.3.15	TIMx characteristics
		5.3.16	Communications interfaces
		5.3.17	12-bit ADC characteristics
		5.3.18	DAC electrical specifications
		5.3.19	Temperature sensor characteristics
6	Packa	age info	rmation
	6.1	LQFP10	00 package information
	6.2	LQFP64	package information
	6.3	TFBGA	64 package information
	6.4	LQFP48	B package information

Table 46. Table 47.	DAC characteristics
Table 48.	LQPF100 - 100-pin, 14 x 14 mm low-profile guad flat package
	mechanical data
Table 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
	mechanical data
Table 50.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	grid array package mechanical data
Table 51.	TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Table 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 53.	Package thermal characteristics
Table 54.	Ordering information scheme
Table 55.	Document revision history

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F100x4, STM32F100x6, STM32F100x8 and STM32F100xB microcontrollers.

In the rest of the document, the STM32F100x4 and STM32F100x6 are referred to as lowdensity devices while the STM32F100x8 and STM32F100xB are identified as mediumdensity devices.

This STM32F100xx datasheet should be read in conjunction with the low- and mediumdensity STM32F100xx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F100xx Flash programming manual*. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com.

2.2.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 18 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.2.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-24 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 24 MHz.

2.2.8 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.2.9 **Power supply schemes**

- V_{DD} = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: External analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC is used).

 V_{DDA} and V_{SSA} must be connected to V_{DD} and $V_{SS},$ respectively.

• V_{BAT} = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

2.2.10 Power supply supervisor

The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is

	Pi	ns						Alternate functions ⁽³⁾⁽⁴⁾	
LQFP100	LQFP64	TFBGA64	LQFP48	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
33	24	H5	-	PC4	I/O	-	PC4	ADC1_IN14	-
34	25	H6	-	PC5	I/O	-	PC5	ADC1_IN15	-
35	26	F5	18	PB0	I/O	-	PB0	ADC1_IN8/TIM3_CH3 ⁽¹²⁾	TIM1_CH2N
36	27	G5	19	PB1	I/O	-	PB1	ADC1_IN9/TIM3_CH4 ⁽¹²⁾	TIM1_CH3N
37	28	G6	20	PB2	I/O	FT	PB2/BOOT1	-	-
38	-	-	-	PE7	I/O	FT	PE7	-	TIM1_ETR
39	-	-	-	PE8	I/O	FT	PE8	-	TIM1_CH1N
40	-	-	-	PE9	I/O	FT	PE9	-	TIM1_CH1
41	-	-	-	PE10	I/O	FT	PE10	-	TIM1_CH2N
42	-	-	-	PE11	I/O	FT	PE11	-	TIM1_CH2
43	-	-	-	PE12	I/O	FT	PE12	-	TIM1_CH3N
44	-	-	-	PE13	I/O	FT	PE13	-	TIM1_CH3
45	-	-	-	PE14	I/O	FT	PE14	-	TIM1_CH4
46	-	-	-	PE15	I/O	FT	PE15	-	TIM1_BKIN
47	29	G7	21	PB10	I/O	FT	PB10	I2C2_SCL ⁽⁹⁾ /USART3_TX (12)	TIM2_CH3 / HDMI_CEC
48	30	H7	22	PB11	I/O	FT	PB11	I2C2_SDA ⁽⁹⁾ /USART3_RX ⁽ 12)	TIM2_CH4
49	31	D6	23	V _{SS_1}	S	-	V _{SS_1}	-	-
50	32	E6	24	V _{DD_1}	S	-	V _{DD_1}	-	-
51	33	H8	25	PB12	I/O	FT	PB12	SPI2_NSS ⁽¹⁰⁾ / I2C2_SMBA ⁽⁹⁾ / TIM1_BKIN ⁽¹²⁾ /USART3_C K ⁽¹²⁾	-
52	34	G8	26	PB13	I/O	FT	PB13	SPI2_SCK ⁽¹⁰⁾ /TIM1_CH1N ⁽¹²⁾ USART3_CTS ⁽¹²⁾	-
53	35	F8	27	PB14	I/O	FT	PB14	SPI2_MISO ⁽¹⁰⁾ / TIM1_CH2N ⁽¹²⁾ / USART3_RTS ⁽¹²⁾	TIM15_CH1
54	36	F7	28	PB15	I/O	FT	PB15	SPI2_MOSI ⁽¹⁰⁾ / TIM1_CH3N / TIM15_CH1N ⁽¹²⁾	TIM15_CH2
55	-	-	-	PD8	I/O	FT	PD8	-	USART3_TX
56	-	-	-	PD9	I/O	FT	PD9	-	USART3_RX

Table 4. Low & me	dium-density STM32	F100xx pin definiti	ons (continued)
			· · · · · · · · · · · · · · · · · · ·

	Pi	ns				6		Alternate functions ⁽³⁾⁽⁴⁾	
LQFP100	LQFP64	TFBGA64	LQFP48	Pin name	Type ⁽¹⁾	I / O level ⁽²	Main function ⁽³⁾ (after reset)	Default	Remap
57	-	-	-	PD10	I/O	FT	PD10	-	USART3_CK
58	-	-	-	PD11	I/O	FT	PD11	-	USART3_CT S
59	-	-	-	PD12	I/O	FT	PD12	-	TIM4_CH1 (¹¹⁾ / USART3_RT S
60	-	-	-	PD13	I/O	FT	PD13	-	TIM4_CH2 ⁽¹¹
61	-	-	-	PD14	I/O	FT	PD14	-	TIM4_CH3 ⁽¹¹
62	-	-	-	PD15	I/O	FT	PD15	-	TIM4_CH4 ⁽¹¹
63	37	F6	-	PC6	I/O	FT	PC6	-	TIM3_CH1
64	38	E7	-	PC7	I/O	FT	PC7	-	TIM3_CH2
65	39	E8	-	PC8	I/O	FT	PC8	-	TIM3_CH3
66	40	D8	-	PC9	I/O	FT	PC9	-	TIM3_CH4
67	41	D7	29	PA8	I/O	FT	PA8	USART1_CK / MCO / TIM1_CH1	-
68	42	C7	30	PA9	I/O	FT	PA9	USART1_TX ⁽¹²⁾ / TIM1_CH2 / TIM15_BKIN	-
69	43	C6	31	PA10	I/O	FT	PA10	USART1_RX ⁽¹²⁾ / TIM1_CH3 / TIM17_BKIN	-
70	44	C8	32	PA11	I/O	FT	PA11	USART1_CTS / TIM1_CH4	-
71	45	B8	33	PA12	I/O	FT	PA12	USART1_RTS / TIM1_ETR	-
72	46	A8	34	PA13	I/O	FT	JTMS- SWDIO	-	PA13
73	-	-	-			No	t connected		-
74	47	D5	35	V _{SS_2}	S	-	V _{SS_2}	-	-
75	48	E5	36	V _{DD_2}	S	-	V_{DD_2}	-	-
76	49	A7	37	PA14	I/O	FT	JTCK/SWCL K	-	PA14
77	50	A6	38	PA15	I/O	FT	JTDI	-	TIM2_CH1_ ETR/ PA15/ SPI1_NSS
78	51	B7	-	PC10	I/O	FT	PC10	-	USART3_TX

Table 4. Low & medium-density STM32F100xx pin definitions (continued)

Figure 12. Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Figure 13. Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled

Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM

Symbol	Parameter	Conditions	£	Ма	Unit		
Cymbol	Farameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit	
		External clock ⁽²⁾ all peripherals enabled	24 MHz	9.6	10		
	Supply current in Sleep mode		16 MHz	7.1	7.5		
			8 MHz	4.5	4.8	m۸	
IDD		External clock ⁽²⁾ , all peripherals disabled	24 MHz	3.8	4	mA	
			16 MHz	3.3	3.5		
			8 MHz	2.7	3		

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
$C_{L1} \\ C_{L2}^{(3)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V_{DD} = 3.3 V V_{IN} = V_{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 21. HSE 4-24 MHz oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

- 2. Guaranteed by characterization results.
- 3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

1. R_{EXT} value depends on the crystal characteristics.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	60	kHz
$\Delta f_{LSI(T)}$	Temperature-related frequency drift ⁽²⁾	-9	-	9	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μΑ

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 25* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Тур	Unit	
t _{WUSLEEP} (1)	Wakeup from Sleep mode	1.8	μs	
t (1)	Wakeup from Stop mode (regulator in run mode)	3.6	110	
'WUSTOP`	Wakeup from Stop mode (regulator in low-power mode)	5.4	μο	
twustdby ⁽¹⁾	t _{WUSTDBY} ⁽¹⁾ Wakeup from Standby mode			

Table 25. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
I _{DD}		Read mode f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	20	mA
	Supply current	Write / Erase modes f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 27.	Flash	memory	characteristics
-----------	-------	--------	-----------------

1. Guaranteed by design.

Symbol Parameter		Conditions	Value			Unit
		conditions	Min ⁽¹⁾	Тур	Мах	Onit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	-	-	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	-	-	
t _{RET} Data retention		1 kcycle ⁽²⁾ at T _A = 105 °C	10	-	-	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	-	-	

Table 28. Flash memory endurance and data retention

1. Based on characterization not tested in production.

2. Cycling performed over the whole temperature range.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 29*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, \text{T}_{\text{A}} = +25 \ ^{\circ}\text{C}, \\ \text{f}_{\text{HCLK}} = 24 \text{ MHz}, \text{ LQFP100} \\ \text{package, conforms to} \\ \text{IEC 61000-4-2} \end{array}$	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, \text{T}_{\text{A}} = +25 \ ^{\circ}\text{C}, \\ \text{f}_{\text{HCLK}} = 24 \ \text{MHz}, \ \text{LQFP100} \\ \text{package, conforms to} \\ \text{IEC 61000-4-4} \end{array}$	4A

Table 29. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

	Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
- arameter			Conditione	frequency band	8/24 MHz	onic
		N/		0.1 MHz to 30 MHz	9	
	S _{EMI} Peak level	LQFP100 package compliant with SAE J1752/3	30 MHz to 130 MHz	16	dBµV	
			130 MHz to 1GHz	19		
			SAE EMI Level	4	-	

Table 30. EMI characteristics

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 31. ESD absolute maximu	um ratings
-------------------------------	------------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-C101	111	500	v

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78 IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78	II level A

Table 32. Electrical sensitivities

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 26* and *Table 36*, respectively.

Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Мах	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	2 ⁽³⁾	MHz
10	t _{f(IO)out}	Output high to low level fall time		125 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm L} = 50 \text{pr}, V_{\rm DD} = 2 \text{V} 10 3.0 \text{V}$	125 ⁽³⁾	ns
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	10 ⁽³⁾	MHz
01	t _{f(IO)out} Output high to low level fall time			25 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	CL- 50 μr, VDD - 2 V to 5.6 V	25 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	24	MHz
		Output high to low level fall	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	
	t _{f(IO)out}		C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	
11			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	ne
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	1
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	ns

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 26*.

3. Guaranteed by design.

Figure 26. I/O AC characteristics definition

5.3.14 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 34).

Unless otherwise specified, the parameters given in Table 37 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	300	-	-	ns

Table 37. NRST pin characteristics

1. Guaranteed by design.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to 2. the series resistance must be minimum (~10% order).

Figure 28. I²C bus AC waveforms and measurement circuit⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

د (۲۵۱۰)(3)	I2C_CCR value		
I _{SCL} (кп <i>2)</i> (*/	R _P = 4.7 kΩ		
400	0x8011		
300	0x8016		
200	0x8021		
100	0x0064		
50	0x00C8		
20	0x01F4		

Table 40. SCL frequency $(f_{PCLK1} = 24 \text{ MHz}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external components used to design the application.

3. Guaranteed by design.

Figure 31. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

HDMI consumer electronics control (CEC)

Refer to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics.

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to perform a calibration after each power-up.

Figure 34. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. $V_{\text{REF+}}$ is available on 100-pin packages and on TFBGA64 packages. $V_{\text{REF-}}$ is available on 100-pin packages only.

Figure 35. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.18 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments	
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	$V_{\text{REF+}}$ must always be below V_{DDA}	
V _{SSA}	Ground	0	-	0	V	-	
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	-	
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω	
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at $V_{REF+} = 3.6 V$ and (0x155) and (0xEAB) at $V_{REF+} = 2.4 V$	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V		
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion of the DAC.	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V		
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs	
I _{DDA}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	380	μA	With no load, middle code (0x800) on the inputs With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs	
		-	-	480	μA		
DNL ⁽¹⁾	Differential non linearity Difference between two consecutive code-1LSB)	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration	
		-	-	±2	LSB	Given for the DAC in 12-bit configuration	
INL ⁽¹⁾	Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±1	LSB	Given for the DAC in 10-bit configuration	
		-	-	±4	LSB	Given for the DAC in 12-bit configuration	

Table 46. DAC characteristics

Device marking for LQFP100

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39.LQFP100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ССС	-	-	0.080	-	-	0.0031	

Table 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

