

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detans	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100r4t6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Overview

2.2.1 ARM[®] Cortex[®]-M3 core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F100xx value line family having an embedded ARM core, is therefore compatible with all ARM tools and software.

2.2.2 Embedded Flash memory

Up to 128 Kbytes of embedded Flash memory is available for storing programs and data.

2.2.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.4 Embedded SRAM

Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.2.5 Nested vectored interrupt controller (NVIC)

The STM32F100xx value line embeds a nested vectored interrupt controller able to handle up to 41 maskable interrupt channels (not including the 16 interrupt lines of $Cortex^{\mbox{\ensuremath{\mathbb{R}}}}$ -M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

DocID16455 Rev 9

2.2.18 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 12 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits.

Both SPIs can be served by the DMA controller.

2.2.19 HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

2.2.20 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.2.21 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to *Table 4: Low & medium-density STM32F100xx pin definitions*; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the STM32F10xxx reference manual for software considerations.

2.2.22 ADC (analog-to-digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

4 Memory mapping

The memory map is shown in Figure 7.

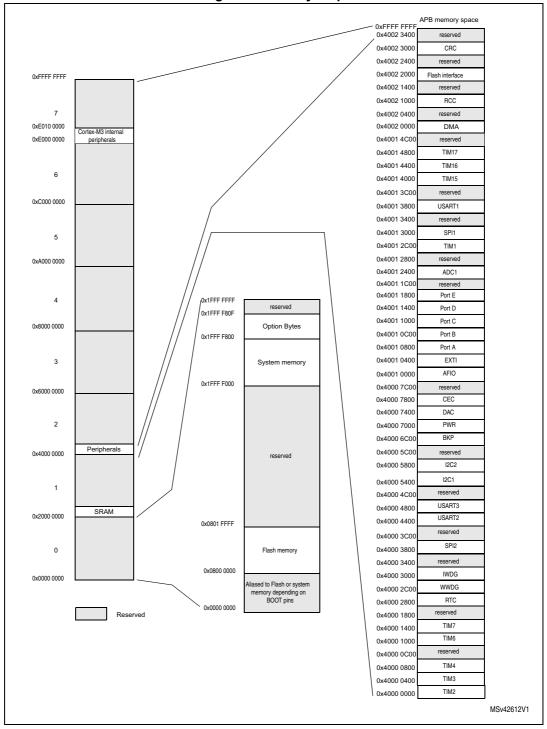


Figure 7. Memory map

DocID16455 Rev 9

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 9*.

5.3.4 Embedded reference voltage

The parameters given in *Table 11* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V		
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V		
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs		
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV		
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/°C		

Table 11. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 12* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Deremeter	Conditions	f _{HCLK}	Ма	Unit	
	Parameter			T _A = 85 °C	T _A = 105 °C	Unit
		External clock ⁽²⁾ , all peripherals enabled	24 MHz	15.4	15.7	
			16 MHz	11	11.5	
	Supply		8 MHz	6.7	6.9	m 1
IDD	current in Run mode	External clock ⁽²⁾ , all peripherals disabled	24 MHz	10.3	10.5	mA
			16 MHz	7.8	8.1	
			8 MHz	5.1	5.3	

Table 12. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results.

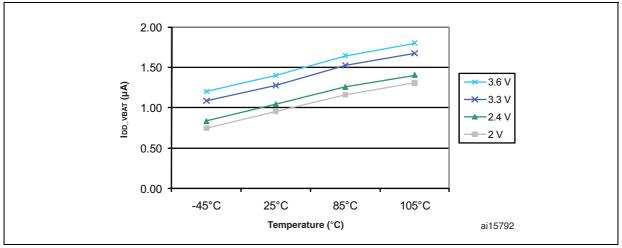
2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 13. Maximum current consumption in Run mode, code with data processing					
running from RAM					

Symbol	Parameter	Conditions	f	Ма	Unit	
	Farailieter		f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
		External clock ⁽²⁾ , all peripherals enabled	24 MHz	14.5	15	
			16 MHz	10	10.5	
	Supply current			8 MHz	6	6.3
'DD	IDD in Run mode	External clock ⁽²⁾ all peripherals disabled	24MHz	9.3	9.7	111/A
			16 MHz	6.8	7.2	
			8 MHz	4.4	4.7	

1. Guaranteed by characterization, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.



				M				
Symbol	Parameter	Conditions	V _{DD} / V _{BAT} = 2.0 V	V _{DD} / V _{BAT} = 2.4 V	V _{DD} / V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	23.5	24	190	350	
		Regulator in Low-Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	13.5	14	170	330	
I _{DD}	Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog ON	-	2.6	3.4	-	-	μA
		Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.4	3.2	-	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.7	2	4	5	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	0.9	1.1	1.4	1.9	2.2	

Table 15. Typical and maximum current consu	motions in Stop and Standby modes
Table 15. Typical and maximum current consu	inplions in Slop and Standby modes

1. Typical values are measured at $T_A = 25$ °C.

Figure 14. Typical current consumption on $\rm V_{BAT}$ with RTC on vs. temperature at different $\rm V_{BAT}$ values

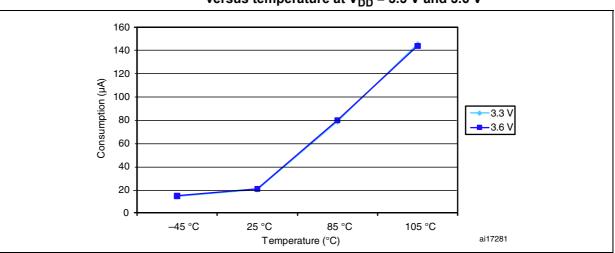
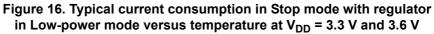
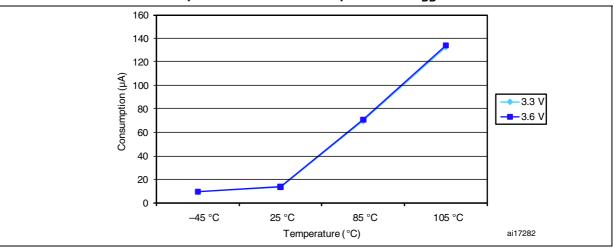
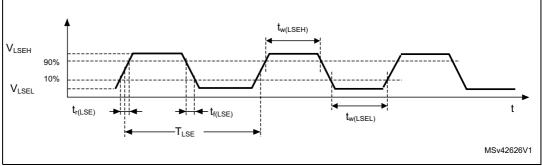




Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Low-speed external user clock generated from an external source


The characteristics given in *Table 20* result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 8*.

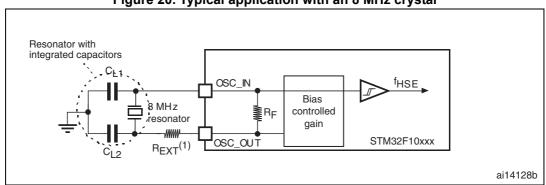
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage ⁽¹⁾		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage ⁽¹⁾		V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle ⁽¹⁾		30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 20. Low-speed external user clock characteristics

1. Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).



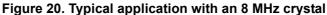

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{OSC_IN}	Oscillator frequency	-	4	8	24	MHz		
R _F	Feedback resistor	-	-	200	-	kΩ		
C _{L1} C _{L2} ⁽³⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$ R _S = 30 Ω		-	30	-	pF		
i ₂	HSE driving current	V _{DD} = 3.3 V V _{IN} = V _{SS} with 30 pF load	-	-	1	mA		
9 _m	Oscillator transconductance Startup		25	-	-	mA/V		
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	2	-	ms		

Table 21. HSE 4-24 MHz oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

- 2. Guaranteed by characterization results.
- 3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

1. R_{EXT} value depends on the crystal characteristics.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
I _{DD}		Read mode f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	20	mA
	Supply current	Write / Erase modes f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V_{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 27	. Flash	memory	characteristics
----------	---------	--------	-----------------

1. Guaranteed by design.

Symbol	Parameter	Conditions		Unit		
		Conditions	Min ⁽¹⁾	Тур	Max	Onit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	-	-	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	-	-	
t _{RET}	t _{RET} Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	-	-	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	-	-	

Table 28. Flash memory endurance and data retention

1. Based on characterization not tested in production.

2. Cycling performed over the whole temperature range.

5.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	ons Min		Мах	Unit	
M	Standard I/O input low level voltage		-0.3	-	0.28*(V _{DD} -2 V)+0.8 V	V	
V _{IL}	I/O FT ⁽¹⁾ input low level voltage	-	-0.3	-	0.32*(V _{DD} -2 V)+0.75 V		
	Standard I/O input high level voltage		0.41*(V _{DD} -2 V) +1.3 V	-	V _{DD} +0.3		
V _{IH}	I/O FT ⁽¹⁾ input high level voltage	$V_{DD} > 2 V$	0.42*(\/2\+1.\/		5.5		
		V _{DD} ≤2 V	0.42*(V _{DD} –2)+1 V	-	5.2]	
V _{hys}	Standard I/O Schmitt trigger voltage hysteresis ⁽²⁾	-	200	-	-	mV	
nyo	I/O FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾	-	-	mV	
1	Input leakage	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	±1		
l _{lkg}	current ⁽⁴⁾	V _{IN} = 5 V I/O FT	-	-	3	- μΑ	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ	
CIO	I/O pin capacitance	-	-	5	-	pF	

1. FT = 5V tolerant. To sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by design.

- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 22* and *Figure 23* for standard I/Os, and in *Figure 24* and *Figure 25* for 5 V tolerant I/Os.

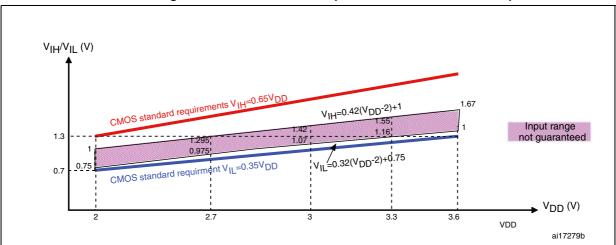
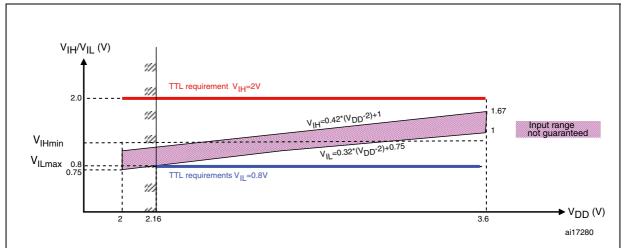



Figure 24. 5 V tolerant I/O input characteristics - CMOS port

Figure 25. 5 V tolerant I/O input characteristics - TTL port

Output driving current

The GPIOs (general-purpose inputs/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 6*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 6*).

5.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.32	1.41	1.50	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 47. TS characteristics

1. Guaranteed by characterization results.

2. Guaranteed by design.

3. Shortest sampling time can be determined in the application by multiple iterations.

0	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 48. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

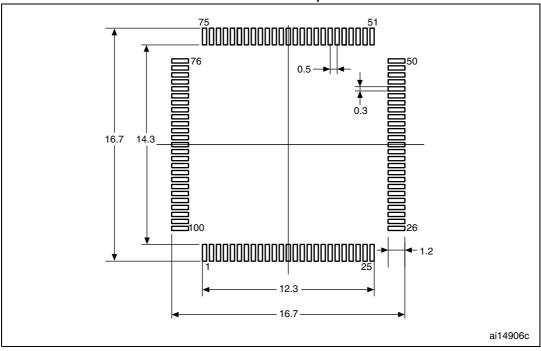
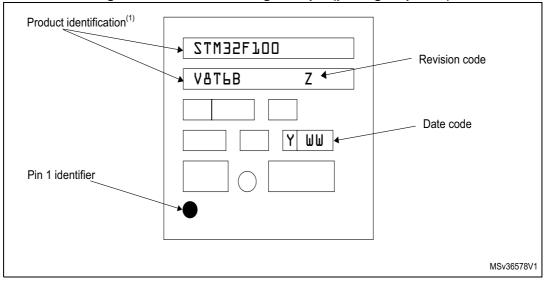


Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are in millimeters.



Device marking for LQFP100

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39.LQFP100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.4 LQFP48 package information

SEATING PLANE A2 F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b <u>ш</u> ш Ē ----------£ 48 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622	

6.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 54: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F10xxx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example: high-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax =} 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

P_{Dmax =} 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 53* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 54: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = _{20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ s: $P_{Dmax} = -124 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID16455 Rev 9

8 Revision history

Date	Revision	Changes		
12-Oct-2009	1	Initial release.		
26-Feb-2010	2	 TFBGA64 package added (see Table 50 and Table 41). Note 5 modified in Table 4: Low & medium-density STM32F100xx pin definitions. I_{INJ(PIN)} modified in Table 6: Current characteristics. Conditions removed from Table 25: Low-power mode wakeup timings. Notes modified in Table 34: I/O static characteristics. Figure 27: Recommended NRST pin protection modified. Note modified in Table 39: I/O static characteristics. Figure 28: I2C bus AC waveforms and measurement circuit(1) modified. Table 46: DAC characteristics modified. Figure 36: 12-bit buffered /non-buffered DAC added. TIM2, TIM3, TIM4 and TIM15, TIM16 and TIM17 updated. HDMI-CEC electrical characteristics added. Values added to: Table 12: Maximum current consumption in Run mode, code with data processing running from Flash Table 13: Maximum current consumption in Sleep mode, code running from Flash or RAM Table 15: Typical and maximum current consumptions in Stop and Standby modes Table 18: Peripheral current consumption Table 29: EMS characteristics Table 19: Characteristics Table 19: TS characteristics Table 19: TS characteristics Table 19: TS characteristics Figure 12: Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Figure 13: Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled Figure 15: Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 16: Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 16: Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V 		

