

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100r4t6btr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F100xx features and peripheral counts	11
Table 3.	Timer feature comparison	17
Table 4.	Low & medium-density STM32F100xx pin definitions	24
Table 5.	Voltage characteristics	33
Table 6.	Current characteristics	34
Table 7.	Thermal characteristics.	34
Table 8.	General operating conditions	34
Table 9	Operating conditions at power-up / power-down	35
Table 10	Embedded reset and power control block characteristics	36
Table 11	Embedded internal reference voltage	37
Table 12	Maximum current consumption in Run mode, code with data processing	
	running from Flash	38
Table 13	Maximum current consumption in Run mode, code with data processing	
	running from RAM	38
Table 14	Maximum current consumption in Sleen mode, code running from Elash or RAM	30
Table 14.	Typical and maximum current consumptions in Stop and Standby modes	
Table 15.	Typical and maximum current consumptions in Stop and Standby modes	40
Table TO.	running from Elech	12
Table 17	Turning from Flash	43
	Peripheral ourrent consumption in Sleep mode, code furning from Flash of RAM	44
Table 10.		40
Table 19.		40
Table 20.		4/
Table 21.	HSE 4-24 MHZ OSCIIIator characteristics	
Table 22.	LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)	49
Table 23.		
Table 24.		
Table 25.	Low-power mode wakeup timings	51
Table 26.	PLL characteristics	52
Table 27.	Flash memory characteristics	53
Table 28.	Flash memory endurance and data retention	53
Table 29.	EMS characteristics	54
Table 30.	EMI characteristics	55
Table 31.	ESD absolute maximum ratings	55
Table 32.	Electrical sensitivities	56
Table 33.	I/O current injection susceptibility	56
Table 34.	I/O static characteristics	57
Table 35.	Output voltage characteristics	60
Table 36.	I/O AC characteristics	61
Table 37.	NRST pin characteristics	62
Table 38.	TIMx characteristics	63
Table 39.	I ² C characteristics	64
Table 40.	SCL frequency (f _{PCLK1} = 24 MHz, V _{DD} = 3.3 V)	65
Table 41.	SPI characteristics	66
Table 42.	ADC characteristics	69
Table 43.	R_{AIN} max for f_{ADC} = 12 MHz.	70
Table 44.	ADC accuracy - limited test conditions	70
Table 45.		70
	•	

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F100x4, STM32F100x6, STM32F100x8 and STM32F100xB microcontrollers.

In the rest of the document, the STM32F100x4 and STM32F100x6 are referred to as lowdensity devices while the STM32F100x8 and STM32F100xB are identified as mediumdensity devices.

This STM32F100xx datasheet should be read in conjunction with the low- and mediumdensity STM32F100xx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F100xx Flash programming manual*. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com.

Figure 2. Clock tree

1. To have an ADC conversion time of 1.2 $\mu s,$ APB2 must be at 24 MHz.

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16 & TIM17)

There are six synchronizable general-purpose timers embedded in the STM32F100xx devices (see *Table 3* for differences). Each general-purpose timers can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3, TIM4

STM32F100xx devices feature three synchronizable 4-channels general-purpose timers. These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2, TIM3, TIM4 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation

DocID16455 Rev 9

3 Pinouts and pin description

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 9*.

Symbol	Parameter	Conditions	Min	Мах	Unit	
		LQFP100	-	434		
D	Power dissipation at $T_A =$	LQFP64	-	444	m\\/	
PD	105 °C for suffix 7 ⁽²⁾	TFBGA64	-	308	IIIVV	
		LQFP48	-	363		
ΤΑ	Ambient temperature for 6	Maximum power dissipation	-40	85	ŝ	
	suffix version	Low power dissipation ⁽³⁾	-40	105	C	
	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	°C	
		Low power dissipation ⁽³⁾	-40	125	C	
TJ	lunction tomporature range	6 suffix version	-40	105	ŝ	
		7 suffix version	-40	125	-0	

Table 8. General operating conditions (continued)

1. When the ADC is used, refer to *Table 42: ADC characteristics*.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 6.5: Thermal characteristics on page 89*).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.5: Thermal characteristics on page 89).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

Table 9. Operating	conditions at power-up	/ power-down
--------------------	------------------------	--------------

Symbol	Parameter	Min	Max	Unit	
+	V _{DD} rise time rate	0	8	uc//	
۷DD	V _{DD} fall time rate	20	8	μ5/ ν	

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 10* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Note: It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

				Typ ⁽¹⁾			Мах	
Symbol	Parameter	Conditions	V _{DD} / V _{BAT} = 2.0 V	V _{DD} / V _{BAT} = 2.4 V	V _{DD} / V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD} S S S S S S S S S S S S S S S S S S	Supply current in Stop mode	Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	23.5	24	190	350	
		Regulator in Low-Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	13.5	14	170	330	
	Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog ON	-	2.6	3.4	-	-	μA
		Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.4	3.2	-	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.7	2	4	5	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	0.9	1.1	1.4	1.9	2.2	

Table 15 Typica	al and maximum cu	irrent consumptions	in Ston a	nd Standby modes
		in one consumptions	ini otop ui	na otanaby moaco

1. Typical values are measured at $T_A = 25$ °C.

Figure 14. Typical current consumption on $\rm V_{BAT}$ with RTC on vs. temperature at different $\rm V_{BAT}$ values

Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Periphe	eral	Current consumption (µA/MHz)
	DMA1	22.92
AHB (up to 24MHz)	CRC	2,08
	BusMatrix ⁽²⁾	4,17
	APB1-Bridge	2,92
	TIM2	18,75
	TIM3	17,92
	TIM4	18,33
	TIM6	5,00
	TIM7	5,42
	SPI2/I2S2	4,17
	USART2	12,08
APB1 (up to 24MHz)	USART3	12,92
	I2C1	10,83
	I2C2	10,83
	CEC	5,83
	DAC ⁽³⁾	8,33
	WWDG	2,50
	PWR	2,50
	ВКР	3,33
	IWDG	7,50
	APB2-Bridge	3.75
	GPIOA	6,67
	GPIOB	6,25
	GPIOC	7,08
	GPIOD	6,67
	GPIOE	6,25
APB2 (up to 24MHz)	SPI1	4,17
	USART1	11,67
	TIM1	22,92
	TIM15	14,58
	TIM16	11,67
	TIM17	10.83
	ADC1 ⁽⁴⁾	15.83

Table 18. Peripheral current consumption⁽¹⁾

1. f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK} , fAPB2 = f_{HCLK} , default prescaler value for each peripheral.

2. The BusMatrix is automatically active when at least one master is ON.

- 3. When DAC_OUT1 or DAC_OU2 is enabled a current consumption equal to 0,5 mA must be added
- Specific conditions for ADC: f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption equal to 0, 1mA must be added.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 19* result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	24	MHz
V _{HSEH}	OSC_IN input pin high level voltage ⁽¹⁾		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage ⁽¹⁾	-	V_{SS}	-	0.3V _{DD}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle ⁽¹⁾	-	45	-	55	%
ΙL	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

Table 19. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	60	kHz
$\Delta f_{LSI(T)}$	Temperature-related frequency drift ⁽²⁾	-9	-	9	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μΑ

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 25* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter		Unit	
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs	
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6		
	Wakeup from Stop mode (regulator in low-power mode)	5.4	μο	
twustdby ⁽¹⁾	Wakeup from Standby mode	50	μs	

Table 25. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 29*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 24 MHz, LQFP100 package, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_{A} = +25 \text{ °C},$ f _{HCLK} = 24 MHz, LQFP100 package, conforms to IEC 61000-4-4	4A

Table 29. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

5.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 33

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	_	
I _{INJ}	Injected current on all FT pins		+0	mA	
	Injected current on any other pin	-5	+5		

Table 33. I/O current injection susceptibility

Figure 24. 5 V tolerant I/O input characteristics - CMOS port

Figure 25. 5 V tolerant I/O input characteristics - TTL port

Output driving current

The GPIOs (general-purpose inputs/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 6*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 6*).

Figure 27. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 37. Otherwise the reset will not be taken into account by the device.

5.3.15 TIMx characteristics

The parameters given in Table 38 are guaranteed by design.

Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
^t res(TIM)		f _{TIMxCLK} = 24 MHz	41.7	-	ns
f	Timer external clock frequency on CHx ⁽²⁾		0	f _{TIMxCLK} /2	MHz
'EXT		f _{TIMxCLK} = 24 MHz	0	12	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
^t COUNTER	when the internal clock is selected	f _{TIMxCLK} = 24 MHz	-	2730	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 24 MHz	-	178	S

Table 38. TIMx characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM15, TIM16 and TIM17 timers.

2. CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3 and TIM4, to the CH1 to CH2 for TIM15, and to CH1 for TIM16 and TIM17.

5.3.16 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 39* are derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 8*.

The STM32F100xx value line I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit	
Symbol	Falameter	Min	Max	Min	Мах	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	116	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 39, IFC characteristic	Table	39.	I ² C	chara	cteristic
------------------------------	-------	-----	------------------	-------	-----------

1. Guaranteed by design.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are in millimeters.

Date	Revision	Changes
30-Mar-2010	3	Revision history corrected. Updated <i>Table 6: Current characteristics</i> Values and note updated in <i>Table 16: Typical current consumption in</i> <i>Run mode, code with data processing running from Flash</i> and <i>Table 17: Typical current consumption in Sleep mode, code running</i> <i>from Flash or RAM.</i> Updated <i>Table 15: Typical and maximum current consumptions in Stop</i> <i>and Standby modes</i> Added <i>Figure 14: Typical current consumption on VBAT with RTC on</i> <i>vs. temperature at different VBAT values</i> Typical consumption for ADC1 corrected in <i>Table 18: Peripheral</i> <i>current consumption.</i> <i>Maximum current consumption</i> and <i>Typical current consumption:</i> frequency conditions corrected. <i>Output driving current</i> corrected. Updated <i>Table 30: EMI characteristics</i> <i>f_{ADC}</i> max corrected in <i>Table 42: ADC characteristics.</i> Small text changes.
06-May-2010	4	Updated Table 31: ESD absolute maximum ratings on page 55 and Table 32: Electrical sensitivities on page 56 Updated Table 44: ADC accuracy - limited test conditions on page 70 and Table 45: ADC accuracy on page 70
12-Jul-2010	5	Updated Table 24: LSI oscillator characteristics on page 51 Updated Table 44: ADC accuracy - limited test conditions on page 70 and Table 45: ADC accuracy on page 70
04-Apr-2011	6	Updated <i>Figure 2: Clock tree</i> to add FLITF clock Updated footnotes below <i>Table 5: Voltage characteristics on page 33</i> and <i>Table 6: Current characteristics on page 34</i> Updated tw min in <i>Table 19: High-speed external user clock</i> <i>characteristics on page 46</i> Updated startup time in <i>Table 22: LSE oscillator characteristics (fLSE</i> = 32.768 kHz) on page 49 Updated <i>Table 23: HSI oscillator characteristics on page 50</i> Added Section 5.3.12: I/O current injection characteristics on page 56 Updated <i>Table 34: I/O static characteristics on page 57</i> Corrected TTL and CMOS designations in <i>Table 35: Output voltage</i> <i>characteristics on page 60</i> Removed note on remapped characteristics from <i>Table 41: SPI</i> <i>characteristics on page 66</i>

Table 55. Document revision history (continued)

