

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100r6t6btr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 46. Table 47.	DAC characteristics
Table 48.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
	mechanical data
Table 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
	mechanical data
Table 50.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	grid array package mechanical data
Table 51.	TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Table 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 53.	Package thermal characteristics
Table 54.	Ordering information scheme
Table 55.	Document revision history

List of figures

Figure 1.	STM32F100xx value line block diagram	. 12
Figure 2.	Clock tree	
Figure 3.	STM32F100xx value line LQFP100 pinout	22
Figure 4.	STM32F100xx value line LQFP64 pinout	23
Figure 5.	STM32F100xx value line LQFP48 pinout	23
Figure 6.	STM32F100xx value line TFBGA64 ballout	
Figure 7.	Memory map	30
Figure 8.	Pin loading conditions	32
Figure 9.	Pin input voltage	32
Figure 10.	Power supply scheme.	
Figure 11.	Current consumption measurement scheme	
Figure 12.	Maximum current consumption in Run mode versus frequency (at 3.6 V) -	
U	code with data processing running from RAM, peripherals enabled.	39
Figure 13.	Maximum current consumption in Run mode versus frequency (at 3.6 V) -	
U	code with data processing running from RAM, peripherals disabled	39
Figure 14.	Typical current consumption on V _{BAT} with RTC on vs. temperature	
0.	at different V _{BAT} values	40
Figure 15.	Typical current consumption in Stop mode with regulator in Run mode	
5	versus temperature at \dot{V}_{DD} = 3.3 V and 3.6 V	41
Figure 16.	Typical current consumption in Stop mode with regulator	
0	in Low-power mode versus temperature at V _{DD} = 3.3 V and 3.6 V	41
Figure 17.	Typical current consumption in Standby mode	
- gane	versus temperature at V_{DD} = 3.3 V and 3.6 V	42
Figure 18.	High-speed external clock source AC timing diagram	
Figure 19.	Low-speed external clock source AC timing diagram	
Figure 20.	Typical application with an 8 MHz crystal.	
Figure 21.	Typical application with a 32.768 kHz crystal	
Figure 22.	Standard I/O input characteristics - CMOS port	
Figure 23.	Standard I/O input characteristics - TTL port	
Figure 24.	5 V tolerant I/O input characteristics - CMOS port	
Figure 25.	5 V tolerant I/O input characteristics - TTL port	
Figure 26.	I/O AC characteristics definition	
Figure 27.	Recommended NRST pin protection	
Figure 28.	I ² C bus AC waveforms and measurement circuit ⁽¹⁾	
Figure 29.	SPI timing diagram - slave mode and CPHA = 0	
Figure 30.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	
Figure 31.	SPI timing diagram - master mode ⁽¹⁾	68
Figure 32.	ADC accuracy characteristics	
Figure 33.	Typical connection diagram using the ADC	
Figure 34.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	72
Figure 35.	Power supply and reference decoupling (V_{REF+} connected to V_{DDA}).	72
Figure 36.	12-bit buffered /non-buffered DAC	
Figure 37.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline	
Figure 38.	LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat	
	recommended footprint.	78
Figure 39.	LQFP100 marking example (package top view)	79
Figure 40.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	
Figure 41.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	

higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop mode
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.2.12 Low-power modes

The STM32F100xx value line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.2.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, DAC, I²C, USART, all timers and ADC.

2.2.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.2.15 Timers and watchdogs

The STM32F100xx devices include an advanced-control timer, six general-purpose timers, two basic timers and two watchdog timers.

Table 3 compares the features of the advanced-control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	Yes
TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	Yes
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 3. Timer feature comparison

4 Memory mapping

The memory map is shown in Figure 7.

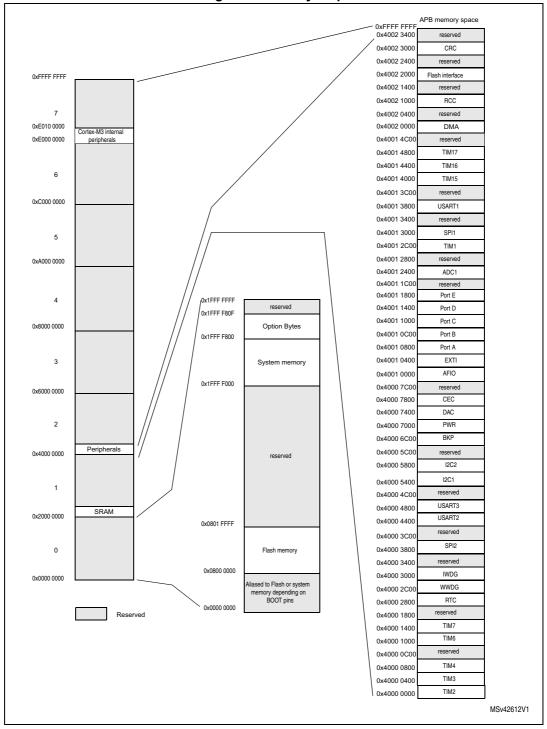
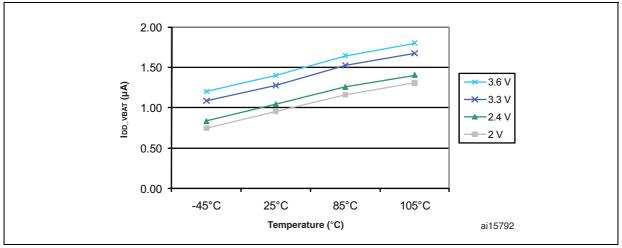


Figure 7. Memory map


DocID16455 Rev 9

				Typ ⁽¹⁾		M		
Symbol	Parameter	Conditions	V _{DD} / V _{BAT} = 2.0 V	V _{DD} / V _{BAT} = 2.4 V	V _{DD} / V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
Supply current in Stop mode		Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	23.5	24	190	350	
		Regulator in Low-Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	13.5	14	170	330	
		Low-speed internal RC oscillator and independent watchdog ON	-	2.6	3.4	-	-	μA
	current in Standby	Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.4	3.2	-	-	
	mode	Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.7	2	4	5	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	0.9	1.1	1.4	1.9	2.2	

Table 15. Typical and maximum current consu	motions in Stop and Standby modes
Table 15. Typical and maximum current consu	inplions in Slop and Standby modes

1. Typical values are measured at $T_A = 25$ °C.

Figure 14. Typical current consumption on $\rm V_{BAT}$ with RTC on vs. temperature at different $\rm V_{BAT}$ values

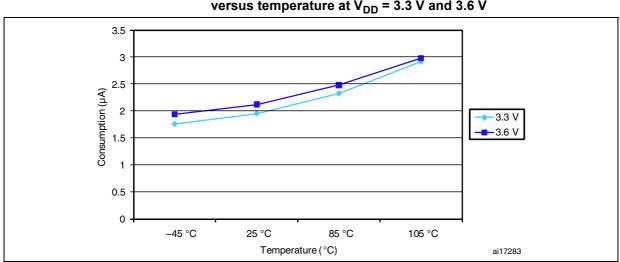


Figure 17. Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$

The parameters given in *Table 16* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

				Typical	values ⁽¹⁾	
Symbol F	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			24 MHz	7.3	2.6	
			16 MHz	5.2	2	
			8 MHz	2.8	1.3	
		Running on high-speed external clock with an	4 MHz	2	1.1	
	Supply	8 MHz crystal ⁽³⁾	2 MHz	1.5	1.1	
			1 MHz	1.25	1	
			500 kHz	1.1	1	
1	Supply current in		125 kHz	1.05	0.95	mA
I _{DD}	Sleep mode	Running on high-speed	24 MHz	6.65	1.9	
	moue		16 MHz	4.5	1.4	
			8 MHz	2.2	0.7	
			4 MHz	1.35	0.55	
		internal RC (HSI)	2 MHz	0.85	0.45	
			1 MHz	0.6	0.41	
			500 kHz	0.5	0.39	
			125 kHz	0.4	0.37	

Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency when $f_{HCLK} > 8$ MHz, the PLL is used when $f_{HCLK} > 8$ MHz.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 18*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 5.

Periph	neral	Current consumption (µA/MHz)
	DMA1	22.92
AHB (up to 24MHz)	CRC	2,08
	BusMatrix ⁽²⁾	4,17
	APB1-Bridge	2,92
	TIM2	18,75
	TIM3	17,92
	TIM4	18,33
	TIM6	5,00
	TIM7	5,42
	SPI2/I2S2	4,17
	USART2	12,08
APB1 (up to 24MHz)	USART3	12,92
	I2C1	10,83
	I2C2	10,83
	CEC	5,83
	DAC ⁽³⁾	8,33
	WWDG	2,50
	PWR	2,50
	BKP	3,33
	IWDG	7,50
	APB2-Bridge	3.75
	GPIOA	6,67
	GPIOB	6,25
	GPIOC	7,08
	GPIOD	6,67
	GPIOE	6,25
APB2 (up to 24MHz)	SPI1	4,17
	USART1	11,67
	TIM1	22,92
APB2 (up to 24MHz)	TIM15	14,58
	TIM16	11,67
	TIM17	10.83
	ADC1 ⁽⁴⁾	15.83

Table 18. Peripheral current consumption⁽¹⁾

1. f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK} , fAPB2 = f_{HCLK} , default prescaler value for each peripheral.

2. The BusMatrix is automatically active when at least one master is ON.

- 3. When DAC_OUT1 or DAC_OU2 is enabled a current consumption equal to 0,5 mA must be added
- Specific conditions for ADC: f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption equal to 0, 1mA must be added.

Low-speed internal (LSI) RC oscillator

Table 24. LSI oso	illator characteristics ⁽¹⁾)
-------------------	--	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI}	Frequency	30	40	60	kHz
$\Delta f_{LSI(T)}$	Temperature-related frequency drift ⁽²⁾	-9	-	9	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μΑ

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 25* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	
'WUSTOP'	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 25. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (1 KB) erase time	T _A = -40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
		Read mode f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	20	mA
I _{DD}	Supply current	Write / Erase modes f _{HCLK} = 24 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V_{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 27	. Flash	memory	characteristics
----------	---------	--------	-----------------

1. Guaranteed by design.

Symbol Parameter		Conditions	Value			Unit
		Conditions	Min ⁽¹⁾	Тур	Max	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	-	-	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	-	-	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	-	-	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	-	-	

Table 28. Flash memory endurance and data retention

1. Based on characterization not tested in production.

2. Cycling performed over the whole temperature range.

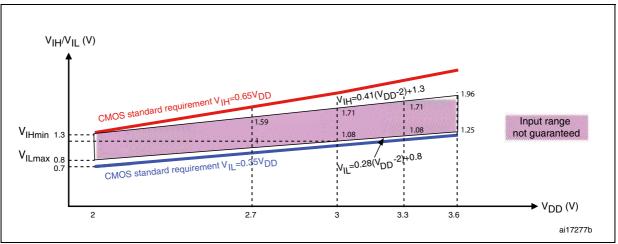
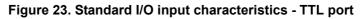
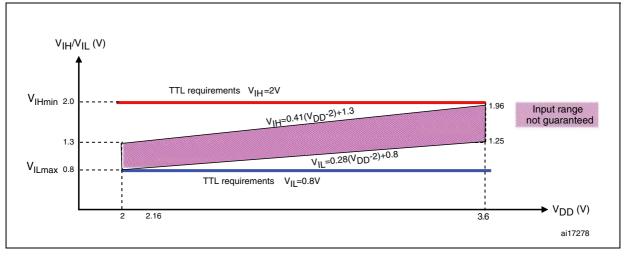




Figure 22. Standard I/O input characteristics - CMOS port

Output voltage levels

Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ I _{IO} = +8 mA,	-	0.4	V
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40$ mA, 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾ I _{IO} = +8 mA	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +20 mA ⁽⁴⁾	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	v

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 6* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data, not tested in production.

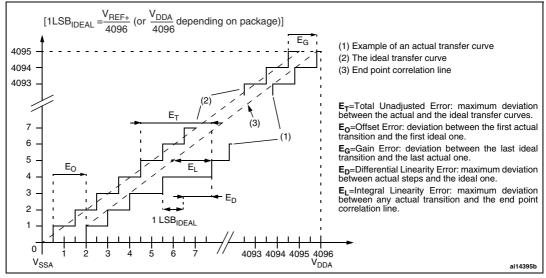
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V_{DDA}	Power supply	-	2.4	-	3.6	V
V_{REF^+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	12	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)		f _{ADC} = 12 MHz	-	-	705	kHz
f _{TRIG} ⁽²⁾	External trigger frequency	-	-	-	17	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range	-	0 (V _{SSA} tied to ground)	-	V_{REF} +	V
$R_{AIN}^{(2)}$	External input impedance	See <i>Equation 1</i> and <i>Table 43</i> for details	-	-	50	κΩ
$R_{ADC}^{(2)}$	Sampling switch resistance	-	-	-	1	κΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
(2)	Calibratian time	f _{ADC} = 12 MHz	6.9		μs	
t _{CAL} ⁽²⁾	Calibration time	-	83		1/f _{ADC}	
t _{lat} ⁽²⁾ Injection trigg	Injection trigger conversion	f _{ADC} = 12 MHz	-	-	0.25	μs
		-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t _{latr} ⁽²⁾ Regular t latency	Regular trigger conversion	f _{ADC} = 12 MHz	-	-	0.166	μs
		-	-	-	2 ⁽⁴⁾	1/f _{ADC}
t _S ⁽²⁾ Samplii	O annu lin a time a	6 40 MUL	0.125	-	20.0	μs
	Sampling time	f _{ADC} = 12 MHz	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	T ()	f _{ADC} = 12 MHz	1.17	-	21	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	-	14 to 252 (t _S for sa successive approx			1/f _{ADC}

Table 42. ADC characteristic	CS
------------------------------	----

1. Based on characterization results, not tested in production.

2. Guaranteed by design.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to *Table 4: Low & medium-density STM32F100xx pin definitions* and *Figure 6* for further details.


4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 42*.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{I_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

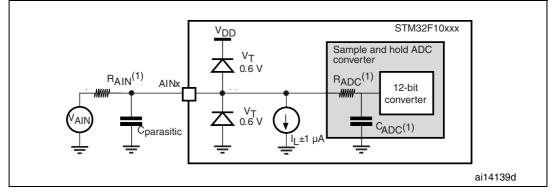

The above formula (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Figure 32. ADC accuracy characteristics

Figure 33. Typical connection diagram using the ADC

1. Refer to Table 42 for the values of R_{AIN} , R_{ADC} and C_{ADC} .

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 34* or *Figure 35*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

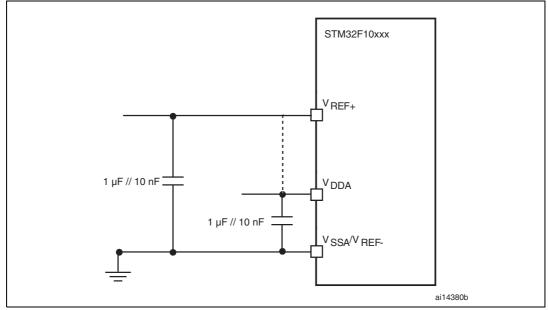


Figure 34. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. $V_{\text{REF+}}$ is available on 100-pin packages and on TFBGA64 packages. $V_{\text{REF-}}$ is available on 100-pin packages only.

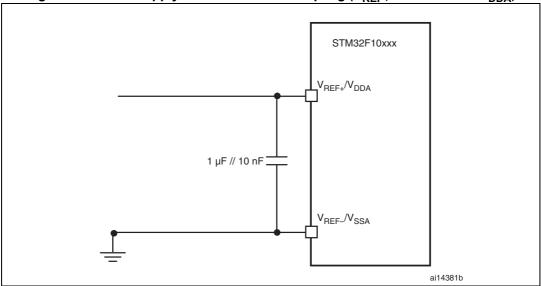


Figure 35. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

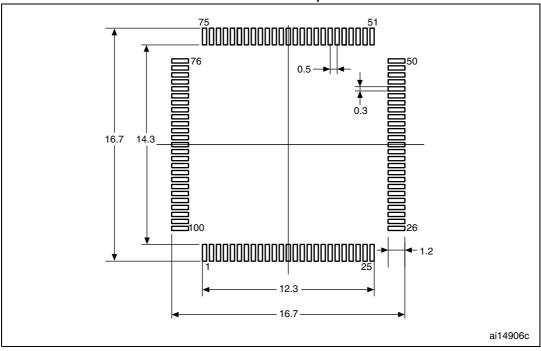


Figure 38. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are in millimeters.

6.4 LQFP48 package information

SEATING PLANE A2 F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b **CHE** <u>ш</u> ш Ē ----------£ 48 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2

Figure 46. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622

6.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 54: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F10xxx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example: high-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax =} 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

P_{Dmax =} 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 53* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 54: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = _{20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ s: $P_{Dmax} = -124 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID16455 Rev 9

8 Revision history

Date	Revision	Changes
12-Oct-2009	1	Initial release.
26-Feb-2010	2	 TFBGA64 package added (see Table 50 and Table 41). Note 5 modified in Table 4: Low & medium-density STM32F100xx pin definitions. I_{INJ(PIN)} modified in Table 6: Current characteristics. Conditions removed from Table 25: Low-power mode wakeup timings. Notes modified in Table 34: I/O static characteristics. Figure 27: Recommended NRST pin protection modified. Note modified in Table 39: I/O static characteristics. Figure 28: I2C bus AC waveforms and measurement circuit(1) modified. Table 46: DAC characteristics modified. Figure 36: 12-bit buffered /non-buffered DAC added. TIM2, TIM3, TIM4 and TIM15, TIM16 and TIM17 updated. HDMI-CEC electrical characteristics added. Values added to: Table 12: Maximum current consumption in Run mode, code with data processing running from Flash Table 13: Maximum current consumption in Sleep mode, code running from Flash or RAM Table 15: Typical and maximum current consumptions in Stop and Standby modes Table 18: Peripheral current consumption Table 29: EMS characteristics Table 19: Characteristics Table 19: TS characteristics Table 19: TS characteristics Table 19: TS characteristics Figure 12: Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Figure 13: Maximum current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled Figure 15: Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 16: Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 16: Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V

