

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	128MHz
Connectivity	CANbus, EBI/EMI, FlexRay, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	90K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 28x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2289i136f128laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 General Device Information

The XC228xI series (16/32-Bit Single-Chip Microcontroller

with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 128 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 1 Logic Symbol

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
55	P2.0	O0 / I	St/B	Bit 0 of Port 2, General Purpose Input/Output			
	TxDC5	01	St/B	CAN Node 5 Transmit Data Output			
	CCU63_CC6 0	O2	St/B	CCU63 Channel 0 Output			
	AD13	OH / IH	St/B	External Bus Interface Address/Data Line 13			
	RxDC0C	Ι	St/B	CAN Node 0 Receive Data Input			
	CCU63_CC6 0INB	I	St/B	CCU63 Channel 0 Input			
	T5INB	I	St/B	GPT12E Timer T5 Count/Gate Input			
56	P2.1	O0 / I	St/B	Bit 1 of Port 2, General Purpose Input/Output			
	TxDC0	01	St/B	CAN Node 0 Transmit Data Output			
	CCU63_CC6 1	02	St/B	CCU63 Channel 1 Output			
	AD14	OH / IH	St/B	External Bus Interface Address/Data Line 14			
	RxDC5C	Ι	St/B	CAN Node 5 Receive Data Input			
	CCU63_CC6 1INB	I	St/B	CCU63 Channel 1 Input			
	T5EUDB	I	St/B	GPT12E Timer T5 External Up/Down Control Input			
	ESR1_5	Ι	St/B	ESR1 Trigger Input 5			
	ERU_0A0	Ι	St/B	External Request Unit Channel 0 Input A0			
57	P11.4	O0 / I	St/B	Bit 4 of Port 11, General Purpose Input/Output			
	CCU61_CC6 2	01	St/B	CCU61 Channel 2 Output			
	U3C1_DOUT	02	St/B	USIC3 Channel 1 Shift Data Output			
	RxDC5B	I	St/B	CAN Node 5 Receive Data Input			
	CCU61_CC6 2INB	I	St/B	CCU61 Channel 2 Input			
	U3C1_DX0B	I	St/B	USIC3 Channel 1 Shift Data Input			

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
78	P2.7	O0 / I	St/B	Bit 7 of Port 2, General Purpose Input/Output			
	U0C1_SELO 0	01	St/B	USIC0 Channel 1 Select/Control 0 Output			
	U0C0_SELO 1	O2	St/B	USIC0 Channel 0 Select/Control 1 Output			
	CC2_CC20	O3 / I	St/B	CAPCOM2 CC20IO Capture Inp./ Compare Out.			
	A20	OH	St/B	External Bus Interface Address Line 20			
	U0C1_DX2C	I	St/B	USIC0 Channel 1 Shift Control Input			
	RxDC1C	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_7	I	St/B	ESR2 Trigger Input 7			
	U4C0_DX0D	I	St/B	USIC4 Channel 0 Shift Data Input			
79	P0.1	O0 / I	St/B	Bit 1 of Port 0, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CCU61_CC6 1	O3	St/B	CCU61 Channel 1 Output			
	A1	OH	St/B	External Bus Interface Address Line 1			
	U1C0_DX0B	I	St/B	USIC1 Channel 0 Shift Data Input			
	CCU61_CC6 1INA	I	St/B	CCU61 Channel 1 Input			
	U1C0_DX1A	I	St/B	USIC1 Channel 0 Shift Clock Input			
80	P2.8	00 / 1	DP/B	Bit 8 of Port 2, General Purpose Input/Output			
	U0C1_SCLK OUT	01	DP/B	USIC0 Channel 1 Shift Clock Output			
	EXTCLK	O2	DP/B	Programmable Clock Signal Output			
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.			
	A21	OH	DP/B	External Bus Interface Address Line 21			
	U0C1_DX1D	I	DP/B	USIC0 Channel 1 Shift Clock Input			

Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
84	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output		
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0		
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
85	P3.0	O0 / I	St/B	Bit 0 of Port 3, General Purpose Input/Output		
	U2C0_DOUT	01	St/B	USIC2 Channel 0 Shift Data Output		
	ESR1_1	I	St/B	ESR1 Trigger Input 1		
	U2C0_DX0A	I	St/B	USIC2 Channel 0 Shift Data Input		
	RxDC3B	I	St/B	CAN Node 3 Receive Data Input		
	U2C0_DX1A	I	St/B	USIC2 Channel 0 Shift Clock Input		
86	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output		
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1		
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input		
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input		
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input		

Table 6Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
95	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output			
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output			
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3			
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input			
	U3C0_DX0A	I	St/B	USIC3 Channel 0 Shift Data Input			
96	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output			
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output			
	U1C0_SELO 2	O2	St/B	USIC1 Channel 0 Select/Control 2 Output			
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output			
	A5	OH	St/B	External Bus Interface Address Line 5			
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input			
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input			
	RXDC3E	I	St/B	CAN Node 3 Receive Data Input			
97	P3.3	O0 / I	St/B	Bit 3 of Port 3, General Purpose Input/Output			
	U2C0_SELO 0	01	St/B	USIC2 Channel 0 Select/Control 0 Output			
	U2C1_SELO 1	O2	St/B	USIC2 Channel 1 Select/Control 1 Output			
	U4C0_SELO 0	O3	St/B	USIC4 Channel 0 Select/Control 0 Output			
	U2C0_DX2A	I	St/B	USIC2 Channel 0 Shift Control Input			
	RxDC3A	I	St/B	CAN Node 3 Receive Data Input			

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
107	P3.7	O0 / I	St/B	Bit 7 of Port 3, General Purpose Input/Output			
	U2C1_DOUT	01	St/B	USIC2 Channel 1 Shift Data Output			
	U2C0_SELO 3	02	St/B	USIC2 Channel 0 Select/Control 3 Output			
	U0C0_SELO 7	O3	St/B	USIC0 Channel 0 Select/Control 7 Output			
	U2C1_DX0B	I	St/B	USIC2 Channel 1 Shift Data Input			
111	P1.0	O0 / I	St/B	Bit 0 of Port 1, General Purpose Input/Output			
	U1C0_MCLK OUT	01	St/B	USIC1 Channel 0 Master Clock Output			
	U1C0_SELO 4	02	St/B	USIC1 Channel 0 Select/Control 4 Output			
	A8	ОН	St/B	External Bus Interface Address Line 8			
	ESR1_3	I	St/B	ESR1 Trigger Input 3			
	ERU_0B0	I	St/B	External Request Unit Channel 0 Input B0			
	CCU62_CTR APB	I	St/B	CCU62 Emergency Trap Input			
	T6INB	I	St/B	GPT12E Timer T6 Count/Gate Input			
112	P9.0	O0 / I	St/B	Bit 0 of Port 9, General Purpose Input/Output			
	CCU63_CC6 0	01	St/B	CCU63 Channel 0 Output			
	CCU63_CC6 0INA	I	St/B	CCU63 Channel 0 Input			
	T6EUDB	I	St/B	GPT12E Timer T6 External Up/Down Control Input			

Memory Content Protection

The contents of on-chip memories can be protected against soft errors (induced e.g. by radiation) by activating the parity mechanism or the Error Correction Code (ECC).

The parity mechanism can detect a single-bit error and prevent the software from using incorrect data or executing incorrect instructions.

The ECC mechanism can detect and automatically correct single-bit errors. This supports the stable operation of the system.

It is strongly recommended to activate the ECC mechanism wherever possible because this dramatically increases the robustness of an application against such soft errors.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

Figure 3 CPU Block Diagram

With this hardware most XC228xl instructions are executed in a single machine cycle of ns @ -MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XC228xl instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC228xI from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- · External crystal or resonator using the on-chip oscillator
- · On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

4.1.3 Voltage Range Definition

The XC228xI timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for	$V_{\rm DDP}{\rm SR}$	4.5	5	5.5	V	<i>f</i> _{SYS} ≤ 100 MHz
IO pads and voltage regulators		4.75	5	5.25	V	f _{SYS} ≤ 128 MHz

Table 15 Lower Voltage Range Definition

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage for IO pads and voltage regulators	$V_{\sf DDP}\sf SR$	3.0	3.3	4.5	V	

4.1.4 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 118.

4.1.5 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC228xl and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC228xI provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC228xI.

•						
Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Leakage supply current	$I_{\rm LK0} {\rm CC}$	-	20	35	μA	$T_{\rm J}$ = 25 °C ²⁾
(DMP_1 off) ¹⁾		-	115	330	μA	<i>T</i> _J = 85 °C ²⁾
		_	270	880	μA	$T_{\rm J}$ = 125 °C ²⁾
		_	420	1 450	μA	$T_{\rm J}$ = 150 °C ²⁾
Leakage supply current	$I_{\rm LK1}$ CC	-	0.03	0.05	mA	$T_{\rm J}$ = 25 °C ²⁾
(DMP_1 powered) ¹⁾		-	0.7	1.7	mA	$T_{\rm J}$ = 85 °C ²⁾
		_	3.0	8.3	mA	$T_{\rm J}$ = 125 °C ²⁾
		-	6.4	18.5	mA	<i>T</i> _J = 150 °C ²⁾

Table 19 Leakage Power Consumption

1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7 000 × e^{- α}, with α = 5 000 / (273 + 1.3× T_J). For T_J = 150°C, this results in a current of 160 μ A.

The leakage power consumption can be calculated according to the following formula: $I_{LK0} = 500\ 000 + e^{-\alpha}$, with $\alpha = 3\ 000\ /\ (273 + B \times T_J)$ must be tagged "PWR_Management" Parameter B must be replaced by

- 1.0 for typical values
- 1.6 for maximum values

 $I_{LK1} = 580\ 000 + e^{-\alpha}$, with $\alpha = 5\ 000\ /\ (273 + B \times T_J)$

Parameter B must be replaced by

- 1.1 for typical values
- 1.4 for maximum values

- 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.
- The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66_H).
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_µ).
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Input resistance of the selected analog channel	R _{AIN} CC	_	0.9	1.5	kΩ	not subject to production test
Input resistance of the reference input	R _{AREF} CC	_	0.5	1	kΩ	not subject to production test
Differential Non-Linearity Error ²⁾³⁾⁴⁾⁵⁾	EA _{DNL} CC	-	1.5	3.0	LSB	not subject to production test
Gain Error ²⁾³⁾⁴⁾⁵⁾	$ EA_{GAIN} $ CC	-	0.5	3.5	LSB	not subject to production test
Integral Non-Linearity 2)3)4)5)	EA _{INL} CC	-	1.5	3.0	LSB	not subject to production test
Offset Error ²⁾³⁾⁴⁾⁵⁾	EA _{OFF} CC	-	1.0	4.0	LSB	not subject to production test
Total Unadjusted Error ³⁾⁴⁾	TUE CC	-	2.5	4	LSB	6)
Analog clock frequency	$f_{\sf ADCI}\sf SR$	2	-	20	MHz	Std. reference input (V_{AREF})
		2	-	17.5	MHz	Alt. reference input (CH0)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	7	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	-	11.5	μS	

Table 21 ADC Parameters for Upper Voltage Range

- The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.
- This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization
- 3) $f_{\rm WU}$ in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) V_{LV} = selected PVC/SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for *t*_{SPO} Timing Measurement

The time required for the transition from **Power-On** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0 V and remains above 3.0 V even though the XC228xl is starting up. See also V_{DDPB} requirements in Table 13.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for *t*_{SSB} Timing Measurement

The time required for the transition from **Standby** to **Base** mode is called t_{SSB} . It is measured under the following conditions:

Precondition: The **Standby** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for *t*_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on $\overline{\text{ESR}}$ pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

4.5 Flash Memory Parameters

The XC228xI is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XC228xl's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module	$N_{\rm PP}{\rm SR}$	-	_	5 ¹⁾		$N_{\rm FL_RD} \leq 1$
program/erase limit depending on Flash read activity		_	_	1 ²⁾		N _{FL_RD} > 1
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	$t_{RET} \ge 20$ years
Flash wait states ³⁾	$N_{\rm WSFLAS}$	1	-	-		$f_{SYS} \le 8 \text{ MHz}$
	H SR	2	-	-		$f{SYS} \le 13 \text{ MHz}$
		3	-	-		$f_{\rm SYS} \le$ 17 MHz
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Flash wait state	N _{WSFLE} SR	0	-	-		$f_{\rm SYS} \le$ 80 MHz
extension ⁴⁾		1	-	-		f _{SYS} > 80 MHz; f _{SYS} ≤ 128 MHz
Erase time per sector/page	$t_{\sf ER}\sf CC$	-	7 ⁵⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	3 ⁵⁾	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm Er} \le 1\ 000$ cycles
Drain disturb limit	$N_{\rm DD}{ m SR}$	32	-	-	cycle s	

Table 27Flash Parameters

4.6.4 Pad Properties

The output pad drivers of the XC228xI can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage $V_{\rm DDP}$. Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

Table 35 EBC External Bus Timing for Upper Voltage Range

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₁₀ CC	-	7	13	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	7	14	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	8	14	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	8	15	ns	
Output valid delay for CS	<i>t</i> ₁₄ CC	-	7	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	8	15	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	8	15	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	6	8	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	6	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	6	8	ns	
Output hold time for CS	t ₂₄ CC	-3	6	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	6	8	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	25	15	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-7	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Figure 20 Multiplexed Bus Cycle

	U	0 0					
Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
TCK clock period	t ₁ SR	50 ¹⁾	-	-	ns		
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns		
TCK low time	t ₃ SR	16	-	-	ns		
TCK clock rise time	t_4 SR	-	-	8	ns		
TCK clock fall time	$t_5 \mathrm{SR}$	-	-	8	ns		
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns		
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns		
TDO valid from TCK falling edge (propagation delay) ²⁾	t ₈ CC	-	32	36	ns		
TDO high impedance to valid output from TCK falling edge ³⁾²⁾	<i>t</i> ₉ CC	-	32	36	ns		
TDO valid output to high impedance from TCK falling edge ²⁾	<i>t</i> ₁₀ CC	-	32	36	ns		
TDO hold after TCK falling edge ²⁾	<i>t</i> ₁₈ CC	5	_	_	ns		

Table 45 Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) The falling edge on TCK is used to generate the TDO timing.

3) The setup time for TDO is given implicitly by the TCK cycle time.

www.infineon.com

Published by Infineon Technologies AG