

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 16x12b, 21x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f378vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DocID025608 Rev 4

Do not reconfigure GPIO pins which are not present on 48 and 64 pin packages to the analog mode. Additional current consumption in the range of tens of μ A per pin can be observed if V_{DDA} is higher than V_{DDIO}.

3.10 Direct memory access (DMA)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The two DMAs can be used with the main peripherals: SPIs, I2Cs, USARTs, DACs, ADC, SDADCs, general-purpose timers.

3.11 Interrupts and events

3.11.1 Nested vectored interrupt controller (NVIC)

The STM32F378xx devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.11.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 84 GPIOs can be connected to the 16 external interrupt lines.

3.12 12-bit analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, V_{BAT} voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 64: Temperature sensor calibration values on page 103*.

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.17.3 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stopmode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either from V_{DD} supply when present or through the V_{BAT} pin. The backup registers are thirty two 32-bit registers used to store 128 bytes of user application data.

They are not reset by a system or power reset.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month.
- 2 programmable alarms with wake up from Stop mode capability.
- Periodic wakeup unit with programmable resolution and period.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- 3 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection.

1. The above figure shows the package top view.

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwis during and after	e specified in brackets below the pin name, the pin function reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf	5 V tolerant I/O, FM+ capable			
		TTa	3.3 V tolerant I/O directly connected to ADC or SDADC			
I/O structure		POR	External power on reset pin with embedded weak pull-up resistor, powered from V _{DDA}			
		TC	Standard 3.3V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	ites	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during			
	Alternate functions	Functions selec	Functions selected through GPIOx_AFR registers			
Pin functions	Additional functions	Functions direct	Functions directly selected/enabled through peripheral registers			

Table 10. Legend/abbreviations used in the pinout table

	Pin n	umb	ers					re	Pin functions		
LQFP100	BGA100	LQFP64	LQFP48	WLCSP66	Pin name (function after reset)	Pin type	Notes	I/O structu	Alternate function	Additional functions	
1	B2	-	-	-	PE2	I/O	(1)	FT	TSC_G7_IO1, TRACECLK	-	
2	A1	-	-	-	PE3	I/O	(1)	FT	TSC_G7_IO2, TRACED0	-	
3	B1	-	-	-	PE4	I/O	(1)	FT	TSC_G7_IO3, TRACED1	-	
4	C2	-	-	-	PE5	I/O	(1)	FT	TSC_G7_IO4, TRACED2	-	
5	D2	-	-	-	PE6	I/O	(1)	FT	TRACED3	WKUP3, RTC_TAMPER3	
6	E2	1	1	A8	VBAT	S	-	-	Backup powe	er supply	
7	C1	2	2	B8	PC13 ⁽²⁾	I/O	-	тс	-	WKUP2, ALARM_OUT, CALIB_OUT, TIMESTAMP, RTC_TAMPER1	
8	D1	3	3	C8	PC14 - OSC32_IN ⁽²⁾	I/O	-	тс	-	OSC32_IN	
9	E1	4	4	D8	PC15 - OSC32_OUT ⁽²⁾	I/O	-	тс	-	OSC32_OUT	
10	F2	-	-	-	PF9	I/O	(1)	FT	TIM14_CH1	-	
11	G2	-	-	-	PF10	I/O	(1)	FT	-	-	
12	F1	5	5	D7	PF0 - OSC_IN	I/O	-	FTf	I2C2_SDA	OSC_IN	
13	G1	6	6	E8	PF1 - OSC_OUT	I/O	-	FTf	I2C2_SCL	OSC_OUT	
14	H2	7	7	E7	NRST	I/O	-	RST	Device reset input / internal i	reset output (active low)	
15	H1	8	I	E6	PC0	I/O	(1)	TTa	TIM5_CH1_ETR	ADC_IN10	
16	J2	9	-	F8	PC1	I/O	(1)	ТТа	TIM5_CH2	ADC_IN11	
17	J3	10	-	F7	PC2	I/O	(1)	ТТа	SPI2_MISO/I2S2_MCK, TIM5_CH3	ADC_IN12	
18	K2	11	-	F6	PC3	I/O	(1)	TTa	SPI2_MOSI/I2S2_SD, TIM5_CH4	ADC_IN13	
19	J1	-	-	-	PF2	I/O	(1)	FT	I2C2_SMBA	-	
20	K1	12	8	G8	VSSA/ VREF-	S	-	-	Analog gr	ound	
-	-	-	9	-	VDDA/ VREF+	S	(1)	-	Analog power supply / Refe COMP, I	rence voltage for ADC, DAC	
21	M1	13	-	G7	VDDA	S	(1)	-	Analog powe	r supply	
22	L1	17	-	G6	VREF+	S	(1)	-	Reference voltage for A	ADC, COMP, DAC	

Table 11.	STM32F378xx	pin	definitions

	Pin n	umb	ers					ē	Pin functions		
LQFP100	BGA100	LQFP64	LQFP48	WLCSP66	Pin name (function after reset)	Pin type	Notes	I/O structu	Alternate function	Additional functions	
35	M5	26	18	H3	PB0	I/O	-	TTa	SPI1_MOSI/I2S1_SD, TIM3_CH3, TSC_G3_IO3	ADC_IN8, SDADC1_AIN6P	
36	M6	27	19	JЗ	PB1	I/O	-	ТТа	TIM3_CH4, TSC_G3_IO4	ADC_IN9, SDADC1_AIN5P, SDADC1_AIN6M	
37	L6	28	20	G2	NPOR	Ι	(3)	POR	Power-on	reset	
38	M7	-	-	-	PE7	I/O	(1)(4)	TC	-	SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M	
39	L7	29	21	H2	PE8	I/O	(4)	тс	-	SDADC1_AIN8P, SDADC2_AIN8P	
40	M8	30	22	J2	PE9	I/O	(4)	тс	-	SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M	
41	L8	-	-	-	PE10	I/O	(4) (1)	тс	-	SDADC1_AIN2P	
42	M9	-	-	-	PE11	I/O	(1)(4)	тс	-	SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P	
43	L9	-	-	-	PE12	I/O	(1)(4)	тс	-	SDADC1_AIN0P, SDADC2_AIN3P, SDADC2_AIN4M	
44	M10	-	-	-	PE13	I/O	(1)(4)	тс	-	SDADC1_AIN0M, SDADC2_AIN2P	
45	M11	-	-	-	PE14	I/O	(1)(4)	тс	-	SDADC2_AIN1P, SDADC2_AIN2M	
46	M12	-	-	-	PE15	I/O	(1)(4)	TC	USART3_RX	SDADC2_AIN0P	
47	L10	-	-	-	PB10	I/O	(1)(4)	тс	SPI2_SCK/I2S2_CK, CEC, USART3_TX, TSC_SYNC	TIM2_CH3, SDADC2_AIN0M	
48	L11	-	-	-	VREFSD-	S	(1)	-	External reference voltage f SDADC3 (negative input), n input in SDADC sing	or SDADC1, SDADC2, egative SDADC analog le ended mode	
49	F12	-	-	-	VSSSD	S	(1)	-	SDADC1, SDADC2, S	SDADC3 ground	
-	-	31	23	J1	VSSSD/ VREFSD-	S	-	-	SDADC1, SDADC2, SDADC3 ground / External reference voltage for SDADC1, SDADC2, SDADC (negative input), negative SDADC analog input in SDADC single ended mode		

Table 11. STM32F378xx pin definitions (continued)

DocID025608 Rev 4

Bus	Boundary address	Size	Peripheral
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1KB	GPIOD
ALIDZ	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
	0x4002 2000 - 0x4002 23FF	1 KB	FLASH memory interface
ALIDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0800- 0x4002 0FFF	2 KB	Reserved
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1
-	0x4001 6C00 - 0x4001 FFFF	37 KB	Reserved

Table 18. STM32F378xx	peripheral	reaister bound	arv addresses ⁽¹⁾

Bus	Boundary address	Size	Peripheral
	0x4001 6800 - 0x4001 6BFF	1 KB	SDADC3
	0x4001 6400 - 0x4001 67FF	1 KB	SDADC2
	0x4001 6000 - 0x4001 63FF	1 KB	SDADC1
	0x4001 5C00 - 0x4001 5FFF	1 KB	TIM19
	0x4001 4C00 - 0x4001 5BFF	4 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
APB2	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
	0x4001 2800 - 0x4001 2FFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG + COMP
-	0x4000 4000 - 0x4000 FFFF	24 KB	Reserved
	0x4000 9C00 – 0x4000 9FFF	1 KB	TIM18
	0x4000 9800 - 0x4000 9BFF	1 KB	DAC2
	0x4000 7C00 - 0x4000 97FF	8 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC1
APB1	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6800 - 0x4000 6FFF	2 KB	Reserved
	0x4000 6400 - 0x4000 67FF	1 KB	CAN
	0x4000 5C00 - 0x4000 63FF	2 KB	Reserved

Table 18. STM32F378xx peripheral register boundary addresses⁽¹⁾ (continued)

6.3 Operating conditions

6.3.1 General operating conditions

Table	22.	General	operating	conditions
-------	-----	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	72	
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	72	
V _{DD}	Standard operating voltage Must have a potential equal to or lower than V _{DDA}		1.65	1.95	V
V(1)	Analog operating voltage (ADC and DAC used)	Must have a potential equal to	2.4	3.6	V
V _{DDA} (')	Analog operating voltage (ADC and DAC not used)	or higher than V_{DD}	1.65	3.6	v
M	(SDADC used) Must have a potential equal to		2.2	3.6	V
VDDSD12	VDDSD12 operating voltage (SDADC not used)	or lower than V _{DDA}	1.65	3.6	v
M	VDDSD3 operating voltage (SDADC used)	Must have a potential equal to	2.2	3.6	v
VDDSD3	VDDSD3 operating voltage (SDADC not used)	1.65	3.6	v	
V	Positive reference voltage (ADC and DAC used)	Must have a potential equal to	2.4	3.6	V
VREF+	Positive reference voltage (ADC and DAC not used)	or lower than V _{DDA}	1.65	3.6	V
V _{REFSD+}	SDADCx positive reference voltage	Must have a potential equal to or lower than any V _{DDSDx}	1.1	3.6	V
V _{BAT}	Backup operating voltage	-	1.65	3.6	V
	Input voltage on FT, FTf and POR pins ⁽²⁾		- 0.3	5.2	
	Input voltage on TTa pins		- 0.3	V _{DDA} + 0.3	V
V _{IN}	Input voltage on TC pins on SDADCx channels inputs ⁽³⁾	-	- 0.3	V _{DDSDx} + 0.3	
	Input voltage on BOOT0 pin		0	5.5	
	Input voltage on any other pin		- 0.3	V _{DD} + 0.3	

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	48.	Electrical	sensitivities
IUNIC	TU .	LICCUICUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 49.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 20* and *Table 52*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	1	MHz
×0	t _{f(IO)} out	Output high to low level fall time	C = 50 pc V = 1.65 V/to 1.05 V	-	125 ⁽³⁾	200
	t _{r(IO)out}	Output low to high level rise time	CL = 30 μr, V _{DD} = 1.03 V to 1.93 V	-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	4	MHz
01	t _{f(IO)out}	Output high to low level fall time		-	62.5	20
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pr}, V_{DD} = 1.65 \text{ V to } 1.95 \text{ V}$		62.5	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾⁽³⁾	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	10	MHz
11	t _{f(IO)} out	Output high to low level fall time	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	25	20
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	25	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	0.5	MHz
FM+ configuration	t _{f(IO)out}	Output high to low level fall time	CL = 50 pF, V _{DD} = 1.65 V to 1.95 V		16	20
(*)	t _{r(IO)out}	Output low to high level rise time			44	115
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 52. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 20*.

3. Guaranteed by design.

4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx reference manual RM0313 for a description of FM+ I/O mode configuration

6.3.14 NRST and NPOR pins characteristics

NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 50*).

Unless otherwise specified, the parameters given in *Table 53* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-	-	0.3V _{DD} + 0.07 ⁽¹⁾	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	0.445V _{DD} + 0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	700	-	_	ns

Table 53. NRST pin characteristics

1. Guaranteed by design.

 The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 57* for SPI or in *Table 58* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22*.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{scк}	SDI alaak fraguanay	Master mode (C = 30 pF)	-	18	
$1/t_{c(SCK)}^{(1)}$	SPI Clock frequency	Slave mode	-	18	MHz
t _{r(SCK)} t _{f(SCK)} (1)	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
DuCy(SCK) ⁽¹⁾	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	2Tpclk	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	4Tpclk	-	
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 - 3	Tpclk/2 + 3	
t _{su(MI)} ⁽¹⁾	Data input actus time	Master mode	5.5	-	
t _{su(SI)} ⁽¹⁾	Data input setup time	Slave mode 6.5		-	
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-	
t _{h(SI)} ⁽¹⁾		Slave mode	5	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 24 MHz	0	4Tpclk	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	0	24	
$t_{v(SO)}$ ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	39	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	3	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽¹⁾		Master mode (after enable edge)	4	-	

Table 5	57. SPI	charac	teristics
---------	---------	--------	-----------

1. Guaranteed by characterization results.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 59* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 22*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	0	-	-	V
I _{DDA(ADC)} ⁽¹⁾	Current consumption from $\mathrm{V}_{\mathrm{DDA}}$	V _{DDA} = 3.3 V	-	0.9	-	mA
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽²⁾	220 ⁽²⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
$f_S^{(3)}$	Sampling rate	-	0.05	-	1	MHz
f (3)	Extornal trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
'TRIG` '		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
$R_{SRC}^{(3)}$	Signal source impedance	See Equation 1 and Table 60 for details	-	-	50	kΩ
R _{ADC} ⁽³⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (3)	Calibration time	f _{ADC} = 14 MHz	5.9			μs
'CAL`		-	83			1/f _{ADC}
+. (3)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
Hat	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
t. (3)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
Hatr	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
+_(3)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
IS Y	Sampling time	-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽³⁾	Power-up time	-	-	-	1	μs
	Total conversion time (including	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽³⁾	sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Tahlo	59		characteristics
lable	53.	ADC	Characteristics

During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on I_{DDA} and 60 μA on I_{DD} is present

2. Guaranteed by characterization results.

3. Guaranteed by design.

4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 59

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 $^{\circ}$ C ± 5 $^{\circ}$ C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^\circ$ C ± 5 $^\circ$ C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3

Table 64. Temperature sensor calibration values

Table 65. TS characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
ΤL	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽²⁾⁽¹⁾	ADC sampling time when reading the temperature	17.1	-	-	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	5	-	-	μs

Table 66. V_{BAT} monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.21 Timer characteristics

The parameters given in *Table* 67 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

- 1. Guaranteed by characterization results.
- 2. Integral linearity error can be improved by software calibration of SDADC transfer curve (2-nd order polynomial calibration).
- 3. For f_{ADC} lower than 5 MHz, there will be a performance degradation of around 2 dB due to flicker noise increase.
- If the reference value is lower than 2.4 V, there will be a performance degradation proportional to the reference supply drop, according to this formula: 20*log10(V_{REF}/2.4) dB
- 5. SNR, THD, SINAD parameters are valid for frequency bandwidth 20Hz 1kHz. Input signal frequency is 300Hz (for f_{ADC} =6MHz) and 100Hz (for f_{ADC} =1.5MHz).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Note
V _{REFINT}	Internal reference	Buffered embedded reference voltage (1.2 V)	-	1.2	-	V	See Section 6.3.3: Embedded reference voltage on page 59
	Vollage	Embedded reference voltage amplified by factor 1.5	-	1.8	-	V	-
C _{VREFSD+} ⁽²⁾	Reference voltage filtering capacitor	V _{REFSD+} = V _{REFINT}	1000	-	10000	nF	-
Burneroon	Reference voltage	Normal mode (f _{ADC} = 6 MHz)		238	-	kO	See RM0313
KVREFSD+	input impedance	Slow mode (f _{ADC} = 1.5 MHz)	-	952	-	1122	detailed description

Table 71. VREFSD+ pin characteristics⁽¹⁾

1. Guaranteed by characterization results.

 If internal reference voltage is selected then this capacitor is charged through internal resistance - typ. 300 ohm. If internal reference source is selected through the reference voltage selection bits (REFV<>"00" in SDADC_CR1 register), the application must first configure REFV bits and then wait for capacitor charging. Recommended waiting time is 3 ms if 1 µF capacitor is used.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Min Typ M		
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ССС	-	-	0.080	-	-	0.0031	

Table 76. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.6 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J max = T_A max + (P_D max x Q_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Q_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \mathsf{S} \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \mathsf{S}((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θја	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient BGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient WLCSP66 - 0.400 mm	53	

Table 78. Package thermal characteristics

7.6.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

