E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 16x12b, 21x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f378vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.9	Memory characteristics	78
		6.3.10	EMC characteristics	79
		6.3.11	Electrical sensitivity characteristics	80
		6.3.12	I/O current injection characteristics	81
		6.3.13	I/O port characteristics	83
		6.3.14	NRST and NPOR pins characteristics	87
		6.3.15	Communications interfaces	89
		6.3.16	12-bit ADC characteristics	96
		6.3.17	DAC electrical specifications	99
		6.3.18	Comparator characteristics	. 101
		6.3.19	Temperature sensor characteristics	. 103
		6.3.20	V _{BAT} monitoring characteristics	. 103
		6.3.21	Timer characteristics	. 103
		6.3.22	CAN (controller area network) interface	. 105
		6.3.23	SDADC characteristics	. 105
7	Pack	age info	ormation	111
	7.1	UFBG/	A100 package information	. 111
	7.2	WLCS	P66 package information	.114
	7.3	LQFP1	100 package information	.116
	7.4	LQFP6	64 package information	. 119
	7.5	LQFP4	18 package information	122
	7.6	Therma	al characteristics	125
		7.6.1	Reference document	. 125
		7.6.2	Selecting the product temperature range	. 126
8	Part	number	ring	128
9	Bavi	aian hia	story	120

3.7.2 Power supply supervisor

Device power on reset is controlled through the external NPOR pin. The device remains in reset mode when NPOR is held low. NPOR pin has an internal pull-up resistor so the external driver can be open drain type.

To guarantee a proper power-on reset, the NPOR pin must be held low until V_{DD} is stable.

When V_{DD} is stable, the reset state can be exited by:

- either putting the NPOR pin in high impedance. NPOR pin has an internal pull up.
- or forcing the pin to high level by connecting it to V_{DDA}.

3.7.3 Low-power modes

The STM32F378xx supports two low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USARTs, the I2Cs, the CEC the COMPx and the RTC alarm.

3.8 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

3.9 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G3_IO1	PC4		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PC5	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB0		TSC_G7_IO3	PE4
	TSC_G3_IO4	PB1		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
4	TSC_G4_IO3	PA13	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14		TSC_G8_IO4	PD15

Table 3. Capacitive sensing GPIOs available on STM32F378xx devices (continued)

This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.

	Number	of capacitive sensing c	hannels
Analog I/O group	STM32F378Cx	STM32F378Rx	STM32F378Vx
G1	3	3	3
G2	2	3	3
G3	1	3	3
G4	3	3	3
G5	3	3	3
G6	2	2	3
G7	0	0	3
G8	0	0	3
Number of capacitive sensing channels	14	17	24

Table 4. No. of capacitive sensing channels available on STM32F378xx devices

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

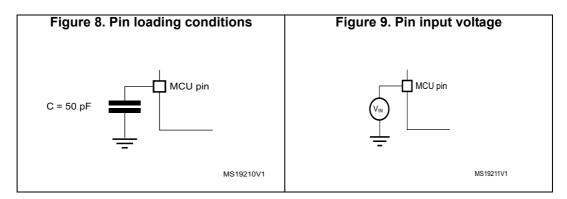
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 1.8$ V, $V_{DDA} = V_{DDSDx} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC and SDADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 9.

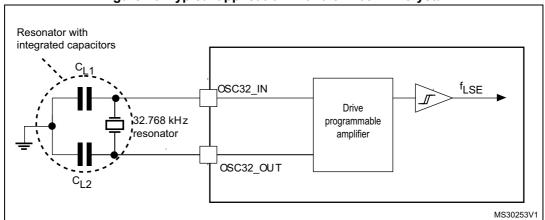


Figure 16. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.7 Internal clock source characteristics

The parameters given in *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

The provided curves are characterization results, not tested in production.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{HSI}	Frequency	-	-	8	-	MHz		
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%		
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%		
		T _A = -40 to 105 °C	-3.8 ⁽³⁾	-	4.6 ⁽³⁾	%		
	Accuracy of the HSI	T _A = −10 to 85 °C	-2.9 ⁽³⁾	-	2.9 ⁽³⁾	%		
ACC _{HSI}	oscillator (factory calibrated)	T _A = 0 to 70 °C	-2.3 ⁽³⁾	-	-2.2 ⁽³⁾	%		
		T _A = 25 °C	-1	-	1	%		
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽³⁾	-	2 ⁽³⁾	μs		
I _{DD(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽³⁾	μA		

Table 40. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	48.	Electrical	sensitivities
Table	τυ.	LICCUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 49.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the maximum Run consumption of the MCU sourced on V_{DD} cannot exceed the absolute maximum rating SI_{VDD} (see *Table 20*).
- The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating SI_{VSS} (see *Table 20*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA 1.65 V < V _{DD} < 1.95 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1.65 \text{ V} < \text{V}_{\text{DD}} < 1.95 \text{ V}$		-	
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin powered by VDDSDx ⁽¹⁾	I _{IO} = +8 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin powered by VDDSDx ⁽¹⁾	2.7 V < VDDSDx < 3.6 V	VDDSDx -0.4	-	V
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin powered by VDDSDx ⁽¹⁾	I _{IO} = +20 mA	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin powered by VDDSDx ⁽¹⁾	2.7 V < VDDSDx < 3.6 V	VDDSDx -1.3	-	
V _{OLFM+} ⁽²⁾	Output low level voltage for a FTf I/O pins in FM+ mode	I _{IO} = +10 mA 1.65 V < V _{DD} < 1.95 V	-	0.4	

Table 51.	Output voltag	e characteristics ⁽¹⁾
-----------	----------------------	----------------------------------

 VDDSD12 is the external power supply for the PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). For those pins all V_{DD} supply references in this table are related to their given VDDSDx power supply.

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 20* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS(Σ)}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD(Σ)}.
- 4. Guaranteed by design.

Note:

- I/O pins are powered from V_{DD} voltage except pins which can be used as SDADC inputs:
 - The PB10 and PE7 to PE15 I/O pins are powered from V_{DDSD12} .

- PB14 to PB15 and PD8 to PD15 I/O pins are powered from V_{DDSD3}. All I/O pin ground is internally connected to V_{SS}.

 V_{DD} mentioned in the Table 51 represents power voltage for a given I/O pin (V_{DD} or V_{DDSD12} or V_{DDSD3}).

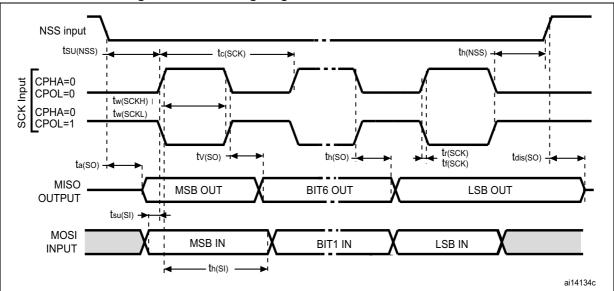
Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 20* and *Table 52*, respectively.

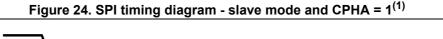
Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

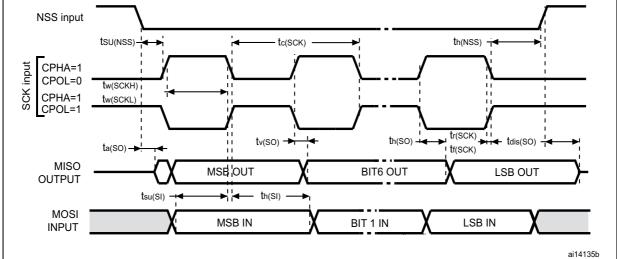
OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 1.65 V to 1.95 V	-	1	MHz
x0	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	ομ - 30 μι, ν _{DD} - 1.03 ν το 1.33 ν	-	125 ⁽³⁾	113
	$f_{max(IO)out}$ Maximum frequency ⁽²⁾ $C_L = 50$ pF, $V_{DD} = 1.65$ V to 1.95 V		-	4	MHz	
01 t _{f(IO)ou}		Output high to low level fall time			62.5	ns
	t _{r(IO)out}	Output low to high level rise time	- C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V		62.5	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾⁽³⁾	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	10	MHz
11	t _{f(IO)} out	Output high to low level fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 1.95 V		25	ns
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	25	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	0.5	MHz
FM+ configuration	t _{f(IO)out}	Output high to low level fall time	CL = 50 pF, V _{DD} = 1.65 V to 1.95 V	-	16	ns
(+)	t _{r(IO)out}	Output low to high level rise time		-	44	115
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 52. I/O AC characteristics⁽¹⁾


1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 20*.


3. Guaranteed by design.


4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx reference manual RM0313 for a description of FM+ I/O mode configuration

1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF.

Symbol	Parameter	Conditions	Min	Мах	Unit
DuCy(SCK) ⁽¹⁾	I2S slave input clock duty cycle	Slave mode	30	70	%
f _{CK} ⁽¹⁾	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.528	1.539	MHz
1/t _{c(CK)}		Slave mode	0	12.288	
t _{r(CK)} ⁽¹⁾ t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L = 30 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	4	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Master mode	4	-	
t _{su(WS)} ⁽¹⁾	WS setup time	Slave mode	2	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	-	-	
t _{w(CKH)} ⁽¹⁾	I2S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)} ⁽¹⁾	I2S clock low time	frequency = 48 kHz	312	-	
t _{su(SD_MR)} ⁽¹⁾	Deta input actua tima	Master receiver	6	-	
t _{su(SD_SR)} ⁽¹⁾	Data input setup time	Slave receiver	3	-	ns
$t_{h(SD_MR)}^{(1)}$	Data input hold time	Master receiver	1.5	-	
t _{h(SD_SR)} ⁽¹⁾	Data input hold time	Slave receiver	1.5	-	
$t_{v(SD_ST)}$ ⁽¹⁾	Data output valid time	Slave transmitter (after enable edge)	-	16	
t _{h(SD_ST)} ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)	16	-	
t _{v(SD_MT)} ⁽¹⁾	Data output valid time	Master transmitter (after enable edge)	-	2	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)	0	_	

Table 58. I²S characteristics

1. Guaranteed by characterization results.

6.3.18 Comparator characteristics

Symbol	Parameter	Conditions		Min	Тур	Max ⁽¹⁾	Unit
M		V _{REFINT} scaler	not in use	1.65		2.6	v
V _{DDA}	Analog supply voltage	V _{REFINT} scale	er in use	2	-	3.6	v
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V
V_{BG}	V _{REFINT} scaler input voltage	-		-	1.2	-	V
V _{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV
t _{s_sc}	Scaler startup time from power down		First V _{REFINT} scaler activation after device power on Next activations		-	1000 ⁽²⁾	ms
-	nom power down	Next activa				0.2	
t _{START}	Comparator startup time	Startup time to reach p specifica		-	-	60	μs
		Ultra-low power mode		-	2	4.5	
	Propagation delay for	Low power mode		-	0.7	1.5	μs
	200 mV step with 100 mV overdrive	Medium power mode		-	0.3	0.6	
		High speed mode	$V_{DDA} \ge 2.7 V$	-	50	100	ns
t _D		V _{DDA} < 2.7		-	100	240	115
۲D		Ultra-low pow	er mode	-	2	7	
	Propagation delay for full	Low power mode		-	0.7	2.1	μs
	range step with 100 mV	Medium power mode		-	0.3	1.2	
	overdrive	Link and made	$V_{DDA} \ge 2.7 V$	-	90	180	
		High speed mode	V _{DDA} < 2.7 V	-	110	300	ns
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	µV/°C
		Ultra-low power mode		-	1.2	1.5	
	COMP current	Low power	mode	-	3	5	μA
I _{DD(COMP)}	consumption	Medium powe	er mode	-	10	15	
		High speed	mode	-	75	100	

	Table 63	. Com	parator	[•] characteristic	cs
--	----------	-------	---------	-----------------------------	----

6.3.19 Temperature sensor characteristics

Calibration value name	Description	Memory address				
TS_CAL1	TS ADC raw data acquired at temperature of 30 $^{\circ}$ C ± 5 $^{\circ}$ C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9				
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^{\circ}$ C ± 5 $^{\circ}$ C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3				

Table 64. Temperature sensor calibration values

Table 65. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
TL	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽²⁾⁽¹⁾	ADC sampling time when reading the temperature	17.1	-	-	μs

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	5	-	-	μs

Table 66. V_{BAT} monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.21 Timer characteristics

The parameters given in *Table* 67 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit	
t	Timer resolution time	-	1	-	t _{TIMxCLK}	
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.9	-	ns	
f	Timer external clock		0	f _{TIMxCLK} /2	MHz	
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	24	MHz	
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit	
		TIM2	-	32		
+	16 bit counter clock period	-	1	65536	t _{TIMxCLK}	
^t COUNTER	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs	
t _{MAX_COUN}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}	
	with 32-bit counter	f _{TIMxCLK} = 72 MHz	-	59.65	S	

Table 67. TIMx^{(1) (2)}characteristics

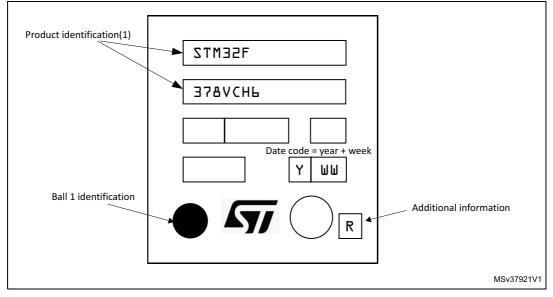
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, TIM12, TIM13, TIM14, TIM15, TIM16, TIM17, TIM18 and TIM19 timers.

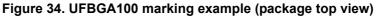
2. Guaranteed by characterization results.

Table 68. IWDG min/max timeout period at 40 kHz (LSI) (14)							
Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF				
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8				
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	7	6.4	26214.4				

Table 68. IWDG min/max timeout period at 40 k

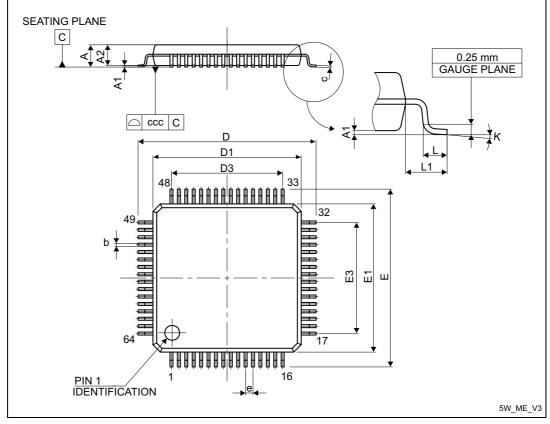
1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.


2. Guaranteed by characterization results.


Prescaler	WDGTB	Min timeout value	Max timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

Device Marking for UFBGA100

The following figure gives an example of topside marking orientation versus ball 1 identifier location.



1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.4 LQFP64 package information

Figure 40. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

7.6 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J max = T_A max + (P_D max x Q_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Q_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \mathsf{S} \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \mathsf{S}((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
Θ_{JA}	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	46	°C/W
	Thermal resistance junction-ambient BGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient WLCSP66 - 0.400 mm	53	

Table 78. Package thermal characteristics

7.6.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.6.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F378xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 1.8 V, maximum 3 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 2 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

P_{INTmax} = 50 mA × 1.8 V= 90 mW

P_{IOmax} = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW

This gives: P_{INTmax} = 90 mW and P_{IOmax} = 61.6 mW:

 $P_{Dmax} = 90 + 61.6 = 151.6 \text{ mW}$

Thus: P_{Dmax} = 151.6 mW

Using the values obtained in *Table 78* T_{Jmax} is calculated as follows:

For LQFP64, 45°C/W

T_{.lmax} = 82 °C + (45°C/W × 151.6 mW) = 82 °C + 6.8 °C = 88.8 °C

This is within the range of the suffix 6 version parts ($-40 < T_{.1} < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 115 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 1.8 V, maximum 9 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V P_{INTmax} = 20 mA × 1.8 V= 36 mW $P_{IOmax} = 9 \times 8 \text{ mA} \times 0.4 \text{ V} = 28.8 \text{ mW}$ This gives: P_{INTmax} = 36 mW and P_{IOmax} = 28.8 mW: P_{Dmax} = 36+ 28.8 = 64.8 mW

Thus: P_{Dmax} = 64.8 mW

8 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Example:	STM32	F	378	R	С	Т	6	>
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = General-purpose								
Sub-family								
378 = STM32F378xx								
Pin count								
C = 48 pins								
R = 64/66 pins								
V = 100 pins								
Code size								
C = 256 Kbytes of Flash memory								
Package								
T = LQFP								
H = BGA								
Y = WLCSP								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C							1	
7 = Industrial temperature range, -40 to 105 °C								
Options								

Options

xxx = programmed parts TR = tape and reel

Date	Revision	Changes		
10-Jun-2016	4	 Updated: Table 3: Capacitive sensing GPIOs available on STM32F378xx devices Table 19: Voltage characteristics Table 25: Embedded internal reference voltage Table 39: LSE oscillator characteristics (fLSE = 32.768 kHz) Table 47: ESD absolute maximum ratings Table 59: ADC characteristics Table 62: DAC characteristics Table 70: SDADC characteristics Table 78: Package thermal characteristics Figure 18: TC and TTa I/O input characteristics Figure 19: Five volt tolerant (FT and FTf) I/O input characteristics - TTL port 		

Table 80.	Document revision	history	(continued)
-----------	--------------------------	---------	-------------

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

