

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Last Time Buy
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	200MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	369-LFBGA
Supplier Device Package	369-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8306scvmacdca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8306S incorporates the e300c3 (MPC603e-based) core built on Power Architecture® technology, which includes 16 Kbytes of each L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The MPC8306S also includes two DMA engines and a 16-bit DDR2 memory controller.

A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8306S. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). A block diagram of the MPC8306S is shown in the following figure.

Figure 1. MPC8306S Block Diagram

Each of the five UCCs can support a variety of communication protocols such as 10/100 Mbps MII/RMII Ethernet, HDLC and TDM.

1

1

1

1

_

The following table provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Note
PLL lock times	—	100	μS	

5.1 **Reset Signals DC Electrical Characteristics**

The following table provides the DC electrical characteristics for the MPC8306S reset signals mentioned in Table 9.

Characteristic Symbol Condition Max Unit Min Note Output high voltage VOH $I_{OH} = -6.0 \text{ mA}$ 2.4 V Output low voltage VOL I_{OL} = 6.0 mA 0.5 V ____ V_{OL} V Output low voltage I_{OL} = 3.2 mA 0.4 Input high voltage V V_{IH} 2.0 OV_{DD} + 0.3 -0.3 0.8 V Input low voltage VII Input current $0 V \leq V_{IN} \leq OV_{DD}$ — ±5 μΑ IIN

Table 11. Reset Signals DC Electrical Characteristics

Note:

1. This specification applies when operating from 3.3 V supply.

DDR2 SDRAM 6

This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface of the MPC8306S. Note that DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V.

DDR2 SDRAM DC Electrical Characteristics 6.1

The following table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8306S when $GV_{DD}(typ) = 1.8$ V.

Parameter/Condition	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GV _{DD}	1.7	1.9	V	1
I/O reference voltage	MVREF	$0.49 imes GV_{DD}$	$0.51 \times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MVREF – 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF+ 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MVREF – 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μA	4

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

DDR2 SDRAM

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Output high current (V _{OUT} = 1.35 V)	I _{OH}	-13.4	—	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MVREF is expected to be equal to $0.5 \times \text{GV}_{\text{DD}}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

The following table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.100 V, f = 1 MHz, T_A = 25 °C, V_{OUT} = $GV_{DD} \div 2$,

V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR2 SDRAM interface.

6.2.1 DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM ($GV_{DD}(typ) = 1.8 V$).

Table 14. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 V± 100mV.

Parameter	Symbol	Min	Мах	Unit	Note
AC input low voltage	V _{IL}	—	MVREF – 0.25	V	_
AC input high voltage	V _{IH}	MVREF + 0.25	_	V	

The following table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 15. DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 1.8V ± 100mV.

Parameter	Symbol	Min	Max	Unit	Note
Controller skew for MDQS—MDQ/MDM	t _{CISKEW}			ps	1, 2

Local Bus

The following figure shows the RMII transmit AC timing diagram.

Figure 15. RMII Transmit AC Timing Diagram

8.2.2.2 RMII Receive AC Timing Specifications

The following table provides the RMII receive AC timing specifications.

Table 23. RMII Receive AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
REF_CLK clock period	t _{RMX}	—	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	—	65	%
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	—	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	—	—	ns
REF_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	—	4.0	ns
REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

12 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8306S.

12.1 DUART DC Electrical Characteristics

The following table provides the DC electrical characteristics for the DUART interface of the MPC8306S.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = –100 μA	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	_	0.2	V
Input current (0 V \leq V _{IN} \leq OV _{DD}) ¹	I _{IN}	—	±5	μΑ

Table 32. DUART DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

12.2 DUART AC Electrical Specifications

The following table provides the AC timing parameters for the DUART interface of the MPC8306S.

Table 33. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	—
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16	_	2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

13 I²C

I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8306S.

13.1 I²C DC Electrical Characteristics

The following table provides the DC electrical characteristics for the I²C interface of the MPC8306S.

Table 34. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 300mV.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 \times OV_{DD}$	OV _{DD} + 0.3	V	—
Input low voltage level	V _{IL}	-0.3	$0.3\times \text{OV}_{\text{DD}}$	V	—
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	3
Capacitance for each I/O pin	Cl	—	10	pF	—
Input current (0 V \leq V _{IN} \leq OV _{DD})	I _{IN}	—	±5	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual for information on the digital filter used.

4. I/O pins obstructs the SDA and SCL lines if OV_DD is switched off.

13.2 I²C AC Electrical Specifications

The following table provides the AC timing parameters for the I²C interface of the MPC8306S.

Table 35. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 34).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μS
High period of the SCL clock	t _{I2CH}	0.6	—	μS
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μS
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	—	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time: I ² C bus devices	t _{I2DXKL}	300	0.9 ³	μS
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _B ⁴	300	ns

JTAG

The following figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

The following figure shows the SPI timing in master mode (internal clock).

Figure 31. SPI AC Timing in Master Mode (Internal Clock) Diagram

18 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1[™] (JTAG) interface of the MPC8306S.

18.1 JTAG DC Electrical Characteristics

The following table provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8306S.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = –6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 44. JTAG Interface DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq OV_{DD}$		±5	μA

Table 44. JTAG Interface DC Electrical Characteristics (continued)

18.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8306S. The following table provides the JTAG AC timing specifications as defined in Figure 33 through Figure 36.

Table 45. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	—
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	11	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10	_	ns	4
Valid times: Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	15 15	ns	5

MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 1

JTAG

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MEMC_MA[8]	T1	0	GV _{DD}	—
MEMC_MA[9]	P4	0	GV _{DD}	—
MEMC_MA[10]	L4	0	GV _{DD}	
MEMC_MA[11]	T2	0	GV _{DD}	—
MEMC_MA[12]	U1	0	GV _{DD}	_
MEMC_MA[13]	U2	0	GV _{DD}	- T
MEMC_MWE_B	K1	0	GV _{DD}	—
MEMC_MRAS_B	K2	0	GV _{DD}	—
MEMC_MCAS_B	J1	0	GV _{DD}	—
MEMC_MCS_B[0]	J4	0	GV _{DD}	—
MEMC_MCS_B[1]	H1	0	GV _{DD}	—
MEMC_MCKE[0]	U4	0	GV _{DD}	—
MEMC_MCK[0]	V1	0	GV _{DD}	—
MEMC_MCK_B[0]	W1	0	GV _{DD}	—
MEMC_MODT[0]	H2	0	GV _{DD}	—
MEMC_MODT[1]	H4	0	GV _{DD}	—
MEMC_MVREF	L8		GV _{DD}	—
Loc	al Bus Controller Interfac	e		
LAD[0]	B7	IO	OV _{DD}	_
LAD[1]	D9	IO	OV _{DD}	—
LAD[2]	A6	IO	OV _{DD}	—
LAD[3]	B8	IO	OV _{DD}	—
LAD[4]	A7	10	OV _{DD}	—
LAD[5]	A8	IO	OV _{DD}	—
LAD[6]	A9	IO	OV _{DD}	—
LAD[7]	D10	10	OV _{DD}	—
LAD[8]	B10	IO	OV _{DD}	—
LAD[9]	A10	10	OV _{DD}	—
LAD[10]	B11	IO	OV _{DD}	—
LAD[11]	D12	10	OV _{DD}	—
LAD[12]	D11	IO	OV _{DD}	—
LAD[13]	A11	IO	OV _{DD}	—
LAD[14]	A12	IO	OV _{DD}	_
LAD[15]	B13	10	OV _{DD}	
LA[16]	A13	10	OV _{DD}	_

Table 46. MPC8306S Pinout Listing (continued)

	Table 46.	MPC 8306S	Pinout Listing (continued
--	-----------	------------------	-------------------------	-----------

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
	Clock Interface		1		
QE_CLK_IN	P23	I	OV _{DD}	—	
SYS_CLK_IN	R23	I	OV _{DD}	—	
RTC_PIT_CLOCK	V23	I	OV _{DD}	—	
Miscellaneous Signals					
QUIESCE_B	A2	0	OV _{DD}	—	
THERM0	D6	Ι	OV _{DD}	—	
	GPIO		·		
GPIO[0]/MSRCID0 (DDR ID)	E5	IO	OV _{DD}	_	
GPIO[1]/MSRCID1 (DDR ID)	E6	IO	OV _{DD}	—	
GPIO[2]/MSRCID2 (DDR ID)	D4	IO	OV _{DD}	—	
GPIO[3]/MSRCID3 (DDR ID)	C2	IO	OV _{DD}	—	
GPIO[4]/MSRCID4 (DDR ID)	C1	IO	OV _{DD}	—	
GPIO[5]/MDVAL (DDR ID)	B1	IO	OV _{DD}	—	
GPIO[6]/QE_EXT_REQ_3	B3	IO	OV _{DD}	—	
GPIO[7]/QE_EXT_REQ_1	B2	IO	OV _{DD}	—	
	USB			•	
USBDR_PWRFAULT/IIC_SDA2/CE_PIO_1	AC4	IO	OV _{DD}	2	
USBDR_CLK/UART2_SIN[2]/UART2_CTS_B[1]	Y9	Ι	OV _{DD}		
USBDR_DIR/IIC_SCL2	AC3	IO	OV _{DD}	2	
USBDR_NXT/UART2_SIN[1]/QE_EXT_REQ_4	AC2	IO	OV _{DD}	—	
USBDR_PCTL[0]/UART2_SOUT[1]/ LB_POR_CFG_BOOT_ECC	AB3	Ю	OV _{DD}	—	
USBDR_PCTL[1]/UART2_SOUT[2]/ UART2_RTS_B1/LB_POR_BOOT_ERR	Y8	0	OV _{DD}	—	
USBDR_STP/QE_EXT_REQ_2	W6	IO	OV _{DD}	—	
USBDR_TXDRXD[0]/UART1_SOUT[1]/ GPI0[32]/QE_TRB_O	AB7	Ю	OV _{DD}	—	
USBDR_TXDRXD[1]/UART1_SIN[1]/GPIO[33]/ QE_TRB_I	AB8	Ю	OV _{DD}	_	
USBDR_TXDRXD[2]/UART1_SOUT[2]/ UART1_RTS_B1/QE_BRG[1]	AC6	Ю	OV _{DD}	—	
USBDR_TXDRXD[3]/UART1_SIN[2]/ UART1_CTS_B1/QE_BRG[2]	AC5	IO	OV _{DD}	-	
USBDR_TXDRXD[4]/GPI0[34]/QE_BRG[3]	AB5	10	OV _{DD}	—	
USBDR_TXDRXD[5]/GPI0[35]/QE_BRG[4]	Y7	10	OV _{DD}	—	
USBDR_TXDRXD[6]/GPI0[36]/QE_BRG[9]	Y6	Ю	OV _{DD}	—	

Fable 46. MPC 8306S	Pinout Listing (continue	d)
----------------------------	--------------------------	----

Signal	Package Pin Number	Pin Type	Power Supply	Notes
USBDR_TXDRXD[7]/GPI0[37]/QE_BRG[11]	Y5	IO	OV _{DD}	—
	DUART		ł	1
UART1_SOUT[1]/LSRCID4/LCS_B[4]	C23	0	OV _{DD}	—
UART1_SIN[1]/LDVAL/LCS_B[5]	F19	IO	OV _{DD}	—
UART1_SOUT[2]/UART1_RTS_B1/LCS_B[6]	D23	0	OV _{DD}	—
UART1_SIN[2]/UART1_CTS_B[1]/LCS_B[7]	D22	IO	OV _{DD}	—
	Interrupts			
IRQ_B0_MCP_IN_B/CE_PI_0	E20	IO	OV _{DD}	—
IRQ_B1/MCP_OUT_B	E23	IO	OV _{DD}	—
IRQ_B2/CKSTOP_OUT_B	E22	IO	OV _{DD}	—
IRQ_B3/CKSTOP_IN_B	F20	I	OV _{DD}	—
	I2C / SPI		•	
IIC_SDA1	G20	IO	OV _{DD}	2
IIC_SCL1	J20	IO	OV _{DD}	2
LCLK1/IIC_SCL2/CKSTOP_IN_B	H20	IO	OV _{DD}	2
SPISEL_BOOT/IIC_SDA2/CKSTOP_OUT_B	F23	0	OV _{DD}	2
SPIMOSI/LSRCID[2]	G22	IO	OV _{DD}	—
SPIMISO/LSRCID[3]	K20	IO	OV _{DD}	—
SPICLK/LSRCID[0]	G23	IO	OV _{DD}	—
SPISEL/LSRCID[1]	H22	I	OV _{DD}	—
	FEC Management			
FEC_MDC	H23	0	OV _{DD}	—
FEC_MDIO	L20	IO	OV _{DD}	—
	FEC1/GTM/GPIO		•	
FEC1_COL/GTM1_TIN[1]/GPIO[16]	AB20	IO	OV _{DD}	—
FEC1_CRS/GTM1_TGATE1_B/GPIO[17]	AC21	IO	OV _{DD}	—
FEC1_RX_CLK/GPIO[18]	Y17	IO	OV _{DD}	—
FEC1_RX_DV/GTM1_TIN[2]/GPIO[19]	Y18	IO	OV _{DD}	—
FEC1_RX_ER/GTM1_TGATE[2]_B/GPIO[20]	AB19	IO	OV _{DD}	—
FEC1_RXD0/GPIO[21]	AC20	IO	OV _{DD}	—
FEC1_RXD1/GTM1_TIN[3]/GPI0[22]	AC19	IO	OV _{DD}	—
FEC1_RXD2/GTM1_TGATE[3]_B/GPIO[23]	AC18	IO	OV _{DD}	—
FEC1_RXD3/GPIO[24]	AB17	IO	OV _{DD}	—
FEC1_TX_CLK/GTM1_TIN4/GPI0[25]	Y15	IO	OV _{DD}	—
FEC1_TX_EN/GTM1_TGATE[4]_B/GPIO[26]	Y16	IO	OV _{DD}	—

Table 46. MPC8306S Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
FEC3_TXD0/TSEC_TMR_PP2/GPIO[60]	R20	IO	OV _{DD}	_
FEC3_TXD1/TSEC_TMR_PP3/GPIO[61]	T22	IO	OV _{DD}	—
FEC3_TXD2/TSEC_TMR_ALARM1/GPIO[62]	T23	IO	OV _{DD}	—
FEC3_TXD3/TSEC_TMR_ALARM2/GPIO[63]	T20	IO	OV _{DD}	—
	HDLC/GPIO/TDM			
HDLC1_RXCLK/TDM1_RCK/GPIO[1]	U23	IO	OV _{DD}	_
HDLC1_RXD/TDM1_RD/GPIO[3]	U22	IO	OV _{DD}	—
HDLC1_TXCLK/GPIO[0]/TDM1_TCK/ QE_BRG[5]	AC22	IO	OV _{DD}	—
HDLC1_TXD/GPIO[2]/TDM1_TD/ CFG_RESET_SOURCE[0]	W18	IO	OV _{DD}	_
HDLC1_CD_B/GPIO[4]/TDM1_TFS	W19	IO	OV _{DD}	—
HDLC1_CTS_B/GPIO[5]/TDM1_RFS	Y20	IO	OV _{DD}	_
HDLC1_RTS_B/GPIO[6]/TDM1_STROBE_B/ CFG_RESET_SOURCE[1]	AB22	IO	OV _{DD}	_
HDLC2_TXCLK/GPIO[16]/TDM2_TCK/ QE_BRG[7]	AB23	IO	OV _{DD}	—
HDLC2_RXCLK/GPIO[17]/TDM2_RCK/ QE_BRG[8]	AA23	IO	OV _{DD}	—
HDLC2_TXD/GPIO[18]/TDM2_TD/ CFG_RESET_SOURCE[2]	W20	IO	OV _{DD}	_
HDLC2_RXD/GPIO[19]/TDM2_RD	Y23	IO	OV _{DD}	—
HDLC2_CD_B/GPIO[20]/TDM2_TFS	Y22	IO	OV _{DD}	—
HDLC2_CTS_B/GPIO[21]/TDM2_RFS	W23	IO	OV _{DD}	—
HDLC2_RTS_B/GPIO[22]/TDM2_STROBE_B/ CFG_RESET_SOURCE[3]	W22	IO	OV _{DD}	_
	Power			
AV _{DD1}	L16	—	—	—
AV _{DD2}	M16	—	—	—
AV _{DD3}	N8	—	_	_
GV _{DD}	G5, H5, J5, K5, L5, M5, N5, P5, R5, T5, U5	—	_	_
OV _{DD}	E7,E8,E9,E10,E11,E12, E13,E14, E15, E16,E17,G19,H19,J19,K 19,L19,M19, N19,P19,R19,T19,U19, W7,W8,W9, W10,W11, W12,W13, W14,W15, W16, W17			

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
V _{DD}	H8,H9,H10,H11,H12,H1 3,H14,H15,H16,J8,J16,K 8,K16,M8,N16,P8,P16,R 8,R16,T8,T9,T10,T11,T1 2,T13,T14,T15,T16	_	_	_
VSS	A1,B4,B6,B9,B12,B15,B 18,B21,C22,D2,D5,D18, D20,F2,F22,J2,J9,J10,J 11,J12,J13,J14,J15,J22, K4,K9,K10,K11,K12,K13 ,K14,K15,L9,L10,L11,L1 2,L13,L14,L15,M2,M9,M 10,M11,M12,M13,M14,M 15,M22,N9,N10,N11,N1 2,N13,N14,N15,P9,P10, P11,P12,P13,P14,P15,R 2,R9,R10,R11,R12,R13, R14,R15,R22,T4,V2,V19 ,V22,W4,Y19,AA2,AA22, AB4,AB6,AB9,AB12,AB1 5,AB18,AB21,AC1,AC23	_		
NC	A23	_	_	_
Notes 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV _{DD} 2. This pin is an open drain signal. A weak pull-up resistor (2-10 k Ω) should be placed on this pin to OV _{DD} 3. This pin has weak pull-up that is always enabled.				

Table 46. MPC8306S Pinout Listing (continued)

RCWL[SPMF]	System PLL Multiplication Factor
0000	Reserved
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111–1111	Reserved

Table 49. System PLL Multiplication Factors

coherent system bus clock (*csb_clk*). The following table shows the expected frequency values for the CSB frequency for selected *csb_clk* to *SYS_CLK_IN* ratios.

		SYS_CLK_IN(MHz)		
SPMF	csb_clk : sys_clk_in Ratio	25	33.33	66.67
		csb	_clk Frequency (M	Hz)
0010	2:1			133
0011	3:1			
0100	4:1		133	
0101	5:1	125	167	1
0110	6:1			

Table 50. CSB Frequency Options

20.3 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). The following table shows the encodings for RCWL[COREPLL]. COREPLL values not listed, and should be considered reserved.

Table 51. e300 Core PLL Configuration

RCWL[COREPLL]			coro alk: ash alk Patio	VCO Dividor	
0-1	2-5	6			
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	÷2	
01	0001	0	1:1	÷4	
10	0001	0	1:1	÷8	
11	0001	0	1:1	÷8	

Clocking

Conf No.	SPMF	Core PLL	CEPMF	CEDF	Input Clock Frequency (MHz)	CSB Frequency (MHz)	Core Frequency (MHz)	QUICC Engine Frequency (MHz)
1	0100	0000100	0111	0	33.33	133.33	266.66	233
2	0010	0000100	0111	1	66.67	133.33	266.66	233
3	0100	0000101	0111	0	33.33	133.33	333.33	233
4	0101	0000101	1001	0	25	125	312.5	225
5	0010	0000101	0111	1	66.67	133.33	333.33	233

Table 54. Suggested PLL Configurations

PLL Power Supply Filtering 22.2

Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each $AV_{DD}n$ pin should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits as illustrated in Figure 41, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

The following figure shows the PLL power supply filter circuit.

Decoupling Recommendations 22.3

Due to large address and data buses, and high operating frequencies, the MPC8306S can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8306S system, and MPC8306S itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD}, OV_{DD}, and GV_{DD} pins of the MPC8306S. These decoupling capacitors should receive their power from separate V_{DD}, OV_{DD}, GV_{DD}, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , and GV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 μ F (AVX TPS tantalum or Sanyo OSCON).

22.4 Output Buffer DC Impedance

For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 42). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_p + R_N)/2$.

Figure 42. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

MPC	nnnn	С	VM	AF	D	С	Α
Product Code	Part Identifier	Temperature Range ¹	Package ²	e300 Core Frequency ³	DDR2 Frequency	QUICC Engine Frequency	Revision Level
MPC	8306S	Blank = 0 to 105°C C = −40 to 105°C	VM = Pb-free	AB = 133MHz AC = 200 MHz AD = 266 MHz AF = 333 MHz	D = 266 MHz F = 333 MHz	C = 233 MHz	Contact local Freescale sales office

Table 57. Part Numbering Nomenclature

Notes:

1. Contact local Freescale office on availability of parts with C temperature range.

2. See Section 19, "Package and Pin Listings," for more information on available package types.

3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

23.2 Part Marking

Parts are marked as in the example shown in the following figure.

ATWLYYWW is the traceability code. CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code.

Figure 43. Freescale Part Marking for MAPBGA Devices

The following table shows the SVR Settings.

Table 58. SVR Settings

Device Package		SVR (Rev 1.0)	SVR (Rev 1.1)				
MPC8306S	PC8306S MAPBGA		0x8110_0211				
Note: PVR = 0x8085_0020							

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8306SEC Rev. 1 09/2011

