

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	369-LFBGA
Supplier Device Package	369-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc8306scvmabdca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

In summary, the MPC8306S provides users with a highly integrated, fully programmable communications processor. This helps to ensure that a low-cost system solution can be quickly developed and offers flexibility to accommodate new standards and evolving system requirements.

1.1 Features

The major features of the device are as follows:

- e300c3 Power Architecture processor core
 - Enhanced version of the MPC603e core
 - High-performance, superscalar processor core with a four-stage pipeline and low interrupt latency times
 - Floating-point, dual integer units, load/store, system register, and branch processing units
 - 16-Kbyte instruction cache and 16-Kbyte data cache with lockable capabilities
 - Dynamic power management
 - Enhanced hardware program debug features
 - Software-compatible with Freescale processor families implementing Power Architecture technology
 - Separate PLL that is clocked by the system bus clock
 - Performance monitor
- QUICC Engine block
 - 32-bit RISC controller for flexible support of the communications peripherals with the following features:
 - One clock per instruction
 - Separate PLL for operating frequency that is independent of system's bus and e300 core frequency for power and performance optimization
 - 32-bit instruction object code
 - Executes code from internal IRAM
 - 32-bit arithmetic logic unit (ALU) data path
 - Modular architecture allowing for easy functional enhancements
 - Slave bus for CPU access of registers and multiuser RAM space
 - 48 Kbytes of instruction RAM
 - 16 Kbytes of multiuser data RAM
 - Serial DMA channel for receive and transmit on all serial channels
 - Five unified communication controllers (UCCs) supporting the following protocols and interfaces:
 - 10/100 Mbps Ethernet/IEEE Std. 802.3® through MII and RMII interfaces.
 - HDLC/Transparent (bit rate up to QUICC Engine operating frequency / 8)
 - HDLC Bus (bit rate up to 10 Mbps)
 - Asynchronous HDLC (bit rate up to 2 Mbps)

Electrical Characteristics

2.1.2 Power Supply Voltage Specification

The following table provides the recommended operating conditions for the MPC8306S. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Note
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	1
PLL supply voltage	AV _{DD1} AV _{DD2} AV _{DD3}	1.0 V ± 50 mV	V	1
DDR2 DRAM I/O voltage	GV _{DD}	1.8 V ± 100 mV	V	1
Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, USB and JTAG I/O voltage	OV _{DD}	3.3 V ± 300 mV	V	1, 3
Junction temperature	T _A /T _J	0 to 105	°C	2

Table 2. Recommended Operating Conditions

Notes:

1. GV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

2. Minimum temperature is specified with T_A(Ambient Temperature); maximum temperature is specified with T_J(Junction Temperature).

3. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.

The following figure shows the undershoot and overshoot voltages at the interfaces of the MPC8306S

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}

4.2 AC Electrical Characteristics

The primary clock source for the MPC8306S is SYS_CLK_IN. The following table provides the clock input (SYS_CLK_IN) AC timing specifications for the MPC8306S. These specifications are also applicable for QE_CLK_IN.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Note
SYS_CLK_IN frequency	f _{SYS_CLK_IN}	24	_	66.67	MHz	1
SYS_CLK_IN cycle time	t _{SYS_CLK_IN}	15	_	41.6	ns	
SYS_CLK_IN rise and fall time	t _{KH} , t _{KL}	1.1	_	2.8	ns	2
SYS_CLK_IN duty cycle	t _{КНК} /t _{SYS_CLK_} IN	40	_	60	%	3
SYS_CLK_IN jitter	—	_	_	±150	ps	4, 5

Table 8. SYS_CLK_IN AC Timing Specifications

Notes:

- 1. **Caution:** The system, core and QUICC Engine block must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for SYS_CLK_IN are measured at 0.33 and 2.97 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The SYS_CLK_IN driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.
- 6. Spread spectrum is allowed up to 1% down-spread @ 33kHz (max rate).

5 **RESET** Initialization

This section describes the AC electrical specifications for the reset initialization timing requirements of the MPC8306S. The following table provides the reset initialization AC timing specifications for the reset component(s).

Parameter/Condition	Min	Max	Unit	Note
Required assertion time of HRESET to activate reset flow	32	—	t _{SYS_CLK_IN}	1
Required assertion time of PORESET with stable clock applied to SYS_CLK_IN	32	—	t _{SYS_CLK_IN}	1
HRESET assertion (output)	512	—	t _{SYS_CLK_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]) with respect to negation of PORESET	4	_	t _{SYS_CLK_IN}	1, 2
Input hold time for POR config signals with respect to negation of HRESET	0	—	ns	1, 2

Table 9. RESET Initialization Timing Specifications

Notes:

1. t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. For more details, see the *MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual.*

2. POR configuration signals consist of CFG_RESET_SOURCE[0:3].

1

1

1

1

_

The following table provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Note
PLL lock times	—	100	μS	

5.1 **Reset Signals DC Electrical Characteristics**

The following table provides the DC electrical characteristics for the MPC8306S reset signals mentioned in Table 9.

Characteristic Symbol Condition Max Unit Min Note Output high voltage VOH $I_{OH} = -6.0 \text{ mA}$ 2.4 V Output low voltage VOL I_{OL} = 6.0 mA 0.5 V ____ V_{OL} V Output low voltage I_{OL} = 3.2 mA 0.4 Input high voltage V V_{IH} 2.0 OV_{DD} + 0.3 -0.3 0.8 V Input low voltage VII Input current $0 V \leq V_{IN} \leq OV_{DD}$ — ±5 μΑ IIN

Table 11. Reset Signals DC Electrical Characteristics

Note:

1. This specification applies when operating from 3.3 V supply.

DDR2 SDRAM 6

This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface of the MPC8306S. Note that DDR2 SDRAM is $GV_{DD}(typ) = 1.8$ V.

DDR2 SDRAM DC Electrical Characteristics 6.1

The following table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8306S when $GV_{DD}(typ) = 1.8 V$.

Parameter/Condition	Symbol	Min	Min Max		Note
I/O supply voltage	GV _{DD}	1.7	1.9	V	1
I/O reference voltage	MVREF	$0.49 imes GV_{DD}$	$0.51 \times GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MVREF – 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF+ 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MVREF – 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μA	4

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

DDR2 SDRAM

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Output high current (V _{OUT} = 1.35 V)	I _{OH}	-13.4	—	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MVREF is expected to be equal to $0.5 \times \text{GV}_{\text{DD}}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

The following table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8 \text{ V}$.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.100 V, f = 1 MHz, T_A = 25 °C, V_{OUT} = $GV_{DD} \div 2$,

V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR2 SDRAM interface.

6.2.1 DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM ($GV_{DD}(typ) = 1.8 V$).

Table 14. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 V± 100mV.

Parameter	Symbol	Min	Мах	Unit	Note
AC input low voltage	V _{IL}	—	MVREF – 0.25	V	_
AC input high voltage	V _{IH}	MVREF + 0.25	_	V	

The following table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 15. DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 1.8V ± 100mV.

Parameter	Symbol	Min	Max	Unit	Note
Controller skew for MDQS—MDQ/MDM	t _{CISKEW}			ps	1, 2

DDR2 SDRAM

Table 16. DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with GV_{DD} of 1.8V ± 100mV.

Parameter	Symbol ¹	Min	Мах	Unit	Note
MCS output hold with respect to MCK	t _{DDKHCX}			ns	3
266 MHz		2.5	—		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ns	5
266 MHz		0.9	—		
MDQ/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
266 MHz		1100	—		
MDQS preamble start	t _{DDKHMP}	0.75 x t _{MCK}	_	ns	6
MDQS epilogue end	t _{DDKHME}	0.4 x t _{MCK}	0.6 x t _{MCK}	ns	6

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

- 2. All MCK/ $\overline{\text{MCK}}$ referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjusts in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. t_{DDKHMP} follows the symbol conventions described in note 1.

The following figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}) .

Figure 5. Timing Diagram for t_{DDKHMH}

The following figure shows the DDR2 SDRAM output timing diagram.

Figure 6. DDR2 SDRAM Output Timing Diagram

Ethernet and MII Management

The following figure shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.2.1 RMII Transmit AC Timing Specifications

The following table provides the RMII transmit AC timing specifications.

Table 22. RMII Transmit AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
REF_CLK clock	t _{RMX}		20	_	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX}	2	_	13	ns
REF_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	_	4.0	ns
REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0	_	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

The following figure provides the AC test load.

Figure 14. AC Test Load

ı	ı	S	R
ų	,	3	D

Parameter	Symbol ¹	Min	Мах	Unit	Note
USB clock to output valid—USBDR_STP	t _{USKHOV}	_	7.5	ns	
Output hold from USB clock—all outputs	t _{USKHOX}	2	_	ns	

Table 31. USB	General	Timing	Parameters	(continued)
---------------	---------	--------	------------	-------------

Note:

 The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{USIXKH} symbolizes USB timing (USB) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t_{USKHOX} symbolizes us timing (USB) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

The following figures provide the AC test load and signals for the USB, respectively.

Figure 23. USB AC Test Load

Table 35. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 34).

Parameter	Symbol ¹	Min	Max	Unit
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _B ⁴	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6		μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$		V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- MPC8306S provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKL} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.

The following figure provides the AC test load for the I^2C .

Figure 25. I²C AC Test Load

The following figure shows the AC timing diagram for the I^2C bus.

Figure 26. I²C Bus AC Timing Diagram

16 IPIC

IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8306S.

16.1 IPIC DC Electrical Characteristics

The following table provides the DC electrical characteristics for the external interrupt pins of the MPC8306S.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	—	—	±5	μA
Output High Voltage	V _{OH}	I _{OL} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 40. IPIC DC Electrical Characteristics^{1,2}

Notes:

1. This table applies for pins $\overline{IRQ}, \overline{MCP_OUT}, \text{ and } QE$ ports Interrupts.

2. $\overline{\text{MCP}_{\text{OUT}}}$ is open drain pins, thus $\overline{V_{\text{OH}}}$ is not relevant for those pins.

16.2 IPIC AC Timing Specifications

The following table provides the IPIC input and output AC timing specifications.

Table 41. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN. Timings are measured at the pin.

2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when working in edge triggered mode.

17 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8306S.

17.1 SPI DC Electrical Characteristics

The following table provides the DC electrical characteristics for the MPC8306S SPI.

Package and Pin Listings

19.3 Pinout Listings

Following table shows the pin list of the MPC8306S.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DDR Memory Controller Interfa	се	1	
MEMC_MDQ[0]	W5	IO	GV _{DD}	_
MEMC_MDQ[1]	V4	IO	GV _{DD}	
MEMC_MDQ[2]	Y4	IO	GV _{DD}	_
MEMC_MDQ[3]	AB1	IO	GV _{DD}	_
MEMC_MDQ[4]	AA1	IO	GV _{DD}	—
MEMC_MDQ[5]	Y2	IO	GV _{DD}	—
MEMC_MDQ[6]	Y1	IO	GV _{DD}	—
MEMC_MDQ[7]	W2	IO	GV _{DD}	—
MEMC_MDQ[8]	G2	IO	GV _{DD}	—
MEMC_MDQ[9]	G1	IO	GV _{DD}	—
MEMC_MDQ[10]	F1	IO	GV _{DD}	—
MEMC_MDQ[11]	E2	IO	GV _{DD}	—
MEMC_MDQ[12]	E1	IO	GV _{DD}	—
MEMC_MDQ[13]	E4	IO	GV _{DD}	—
MEMC_MDQ[14]	F4	IO	GV _{DD}	—
MEMC_MDQ[15]	D1	IO	GV _{DD}	_
MEMC_MDM[0]	AB2	0	GV _{DD}	—
MEMC_MDM[1]	G4	0	GV _{DD}	—
MEMC_MDQS[0]	V5	IO	GV _{DD}	
MEMC_MDQS[1]	F5	IO	GV _{DD}	_
MEMC_MBA[0]	L2	0	GV _{DD}	_
MEMC_MBA[1]	L1	0	GV _{DD}	
MEMC_MBA[2]	R4	0	GV _{DD}	_
MEMC_MA[0]	M1	0	GV _{DD}	_
MEMC_MA[1]	M4	0	GV _{DD}	—
MEMC_MA[2]	N1	0	GV _{DD}	_
MEMC_MA[3]	N2	0	GV _{DD}	
MEMC_MA[4]	P1	0	GV _{DD}	
MEMC_MA[5]	N4	0	GV _{DD}	
MEMC_MA[6]	P2	0	GV _{DD}	
MEMC_MA[7]	R1	0	GV _{DD}	

Table 46. MPC8306S Pinout Listing

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
V _{DD}	H8,H9,H10,H11,H12,H1 3,H14,H15,H16,J8,J16,K 8,K16,M8,N16,P8,P16,R 8,R16,T8,T9,T10,T11,T1 2,T13,T14,T15,T16	_	_	_
VSS	A1,B4,B6,B9,B12,B15,B 18,B21,C22,D2,D5,D18, D20,F2,F22,J2,J9,J10,J 11,J12,J13,J14,J15,J22, K4,K9,K10,K11,K12,K13 ,K14,K15,L9,L10,L11,L1 2,L13,L14,L15,M2,M9,M 10,M11,M12,M13,M14,M 15,M22,N9,N10,N11,N1 2,N13,N14,N15,P9,P10, P11,P12,P13,P14,P15,R 2,R9,R10,R11,R12,R13, R14,R15,R22,T4,V2,V19 ,V22,W4,Y19,AA2,AA22, AB4,AB6,AB9,AB12,AB1 5,AB18,AB21,AC1,AC23	_		
NC	A23	_	_	_
Notes 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV _{DD} 2. This pin is an open drain signal. A weak pull-up resistor (2-10 k Ω) should be placed on this pin to OV _{DD} 3. This pin has weak pull-up that is always enabled.				

Table 46. MPC8306S Pinout Listing (continued)

Clocking

20.1 System Clock Domains

As shown in Figure 38, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create four major clock domains:

- The coherent system bus clock (*csb_clk*)
- The QUICC Engine clock (*qe_clk*)
- The internal clock for the DDR controller (*ddr_clk*)
- The internal clock for the local bus controller (*lbc_clk*)

The *csb_clk* frequency is derived from the following equation:

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the core multiplies up the *csb_clk* frequency to create the internal clock for the core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. For more information, see the Reset Configuration chapter in the *MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual*.

The *qe_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF]) and the QUICC Engine PLL division factor (RCWL[CEPDF]) as the following equation:

 $qe_clk = (QE_cLK_IN \times CEPMF) \div (1 + CEPDF)$ Eqn. 2

$$qe_clk = (QE_cLK_IN \times CEPMF) \div (1 + CEPDF)$$
 Eqn. 3

For more information, see the QUICC Engine PLL Multiplication Factor section and the "QUICC Engine PLL Division Factor" section in the *MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual* for more information.

The DDR SDRAM memory controller operates with a frequency equal to twice the frequency of csb_clk . Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The local bus memory controller operates with a frequency equal to the frequency of *csb_clk*. Note that *lbc_clk* is not the external local bus frequency; *lbc_clk* passes through the LBC clock divider to create the external local bus clock outputs (LCLK). The LBC clock divider ratio is controlled by LCRR[CLKDIV]. For more information, see the LBC Bus Clock and Clock Ratios section in the *MPC8306S PowerQUICC II Pro Integrated Communications Processor Family Reference Manual*.

RCWL[COREPLL]		-L]			
0-1	2-5	6	core_cik : csb_cik Ratio	VCO Divider	
00	0001	1	1.5:1	÷ 2	
01	0001	1	1.5:1	÷ 4	
10	0001	1	1.5:1	÷8	
11	0001	1	1.5:1	÷8	
00	0010	0	2:1	÷ 2	
01	0010	0	2:1	÷ 4	
10	0010	0	2:1	÷8	
11	0010	0	2:1	÷ 8	
00	0010	1	2.5:1	÷ 2	
01	0010	1	2.5:1	÷ 4	
10	0010	1	2.5:1	÷8	
11	0010	1	2.5:1	÷ 8	
00	0011	0	3:1	÷ 2	
01	0011	0	3:1	÷ 4	
10	0011	0	3:1	÷ 8	
11	0011	0	3:1	÷ 8	

Table 51. e300 Core PLL Configuration (continued)

NOTE

Core VCO frequency = core frequency \times VCO divider. The VCO divider (RCWL[COREPLL[0:1]]), must be set properly so that the core VCO frequency is in the range of 400–800 MHz.

20.4 QUICC Engine PLL Configuration

The QUICC Engine PLL is controlled by the RCWL[CEPMF] and RCWL[CEPDF] parameters. The following table shows the multiplication factor encodings for the QUICC Engine PLL.

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF)
00000–00001	0	Reserved
00010	0	× 2
00011	0	× 3
00100	0	× 4
00101	0	× 5
00110	0	× 6

Table 52. QUICC Engine PLL Multiplication Factors

Table 52	QUICC	Engine F	PLL Multi	plication	Factors	(continued))
----------	-------	-----------------	-----------	-----------	---------	-------------	---

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF)
00111	0	× 7
01000	0	× 8
01001–11111	0	Reserved

The RCWL[CEVCOD] denotes the QUICC Engine PLL VCO internal frequency as shown in the following table.

Table 53. QUICC Engine PLL VCO Divider

RCWL[CEVCOD]	VCO Divider	
00	2	
01	4	
10	8	
11	Reserved	

NOTE

The VCO divider (RCWL[CEVCOD]) must be set properly so that the QUICC Engine VCO frequency is in the range of 300–600 MHz. The QUICC Engine frequency is not restricted by the CSB and core frequencies. The CSB, core, and QUICC Engine frequencies should be selected according to the performance requirements.

The QUICC Engine VCO frequency is derived from the following equations:

 $qe_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

QUICC Engine VCO Frequency = $qe_{clk} \times VCO$ divider $\times (1 + CEPDF)$

20.5 Suggested PLL Configurations

To simplify the PLL configurations, the MPC8306S might be separated into two clock domains. The first domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock domains are independent, and each of their PLLs is configured separately.

The following table shows suggested PLL configurations for 33 and 66 MHz input clocks.

21 Thermal

This section describes the thermal specifications of the MPC8306S.

21.1 Thermal Characteristics

The following table provides the package thermal characteristics for the 369, 19×19 mm MAPBGA of the MPC8306S.

Characteristic	Board type	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection	Single-layer board (1s)	$R_{ ext{ heta}JA}$	39	°C/W	1, 2
Junction-to-ambient natural convection	Four-layer board (2s2p)	$R_{ ext{ heta}JA}$	24	°C/W	1, 2, 3
Junction-to-ambient (@200 ft/min)	Single-layer board (1s)	$R_{ hetaJMA}$	32	°C/W	1, 3
Junction-to-ambient (@200 ft/min)	Four-layer board (2s2p)	$R_{ extsf{ heta}JMA}$	21	°C/W	1, 3
Junction-to-board	—	$R_{ ext{ heta}JB}$	14	°C/W	4
Junction-to-case	—	$R_{ ext{ heta}JC}$	9	°C/W	5
Junction-to-package top	Natural convection	Ψ _{JT}	2	°C/W	6

Table 55. Package Thermal Characteristics for MAPBGA

Notes:

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

21.1.1 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$, where $P_{I/O}$ is the power dissipation of the I/O drivers.

21.1.2 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta} J_A \times P_D)$$
 Eqn. 1

where:

 T_I = junction temperature (°C)

PLL Power Supply Filtering 22.2

Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each $AV_{DD}n$ pin should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits as illustrated in Figure 41, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

The following figure shows the PLL power supply filter circuit.

Decoupling Recommendations 22.3

Due to large address and data buses, and high operating frequencies, the MPC8306S can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8306S system, and MPC8306S itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD}, OV_{DD}, and GV_{DD} pins of the MPC8306S. These decoupling capacitors should receive their power from separate V_{DD}, OV_{DD}, GV_{DD}, and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , and GV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 μ F (AVX TPS tantalum or Sanyo OSCON).

22.4 Output Buffer DC Impedance

For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 42). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_p is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_p then becomes the resistance of the pull-up devices. R_p and R_N are designed to be close to each other in value. Then, $Z_0 = (R_p + R_N)/2$.

Figure 42. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8306SEC Rev. 1 09/2011

