

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36049ghv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Sect	ion 1 O	verview	1							
1.1	Features	S	1							
1.2	Internal	Internal Block Diagram								
1.3	Pin Arra	Pin Arrangement								
1.4	Pin Fun	ctions	5							
a .	· • •		0							
		PU								
2.1		Space and Memory Map								
2.2	-	r Configuration								
	2.2.1	General Registers								
	2.2.2	Program Counter (PC)								
	2.2.3	Condition-Code Register (CCR)								
2.3	Data Fo	rmats								
	2.3.1	General Register Data Formats								
	2.3.2	Memory Data Formats								
2.4	Instruct	ion Set								
	2.4.1	List of Instructions Classified by Function								
	2.4.2	Basic Instruction Formats								
2.5	Address	sing Modes and Effective Address Calculation								
	2.5.1	Addressing Modes								
	2.5.2	Effective Address Calculation								
2.6	Basic B	us Cycle								
	2.6.1	Access to On-Chip Memory (RAM, ROM)								
	2.6.2	On-Chip Peripheral Modules								
2.7	CPU Sta	ates								
2.8	Usage N	Notes								
	2.8.1	Notes on Data Access to Empty Areas								
	2.8.2	EEPMOV Instruction								
	2.8.3	Bit Manipulation Instruction								
G (· • • •	.' 11 11'	12							
		xception Handling								
3.1	-	on Sources and Vector Address								
3.2	-	r Descriptions								
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)								
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)								
	3.2.3	Interrupt Enable Register 1 (IENR1)								

RENESAS

2.3.2 Memory Data Formats

Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and longword data in memory, however word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, an address error does not occur, however the least significant bit of the address is regarded as 0, so access begins the preceding address. This also applies to instruction fetches.

When ER7 (SP) is used as an address register to access the stack area, the operand size should be word or longword.

Data Type	Address	Data Format
	ſ	7 0
1-bit data	Address L	7 6 5 4 3 2 1 0
Byte data	Address L	MSB LSB
Word data	Address 2M Address 2M+1	NSB LSB
Longword data	Address 2N Address 2N+1 Address 2N+2 Address 2N+3	NSB LSB

Figure 2.6 Memory Data Formats

- Description on operation
- 1. When the BSET instruction is executed, first the CPU reads port 5.

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-level input).

P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a value of H'80, but the value read by the CPU is H'40.

- 2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.
- 3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET instruction. As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal. However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work area, then write this data to PDR5.

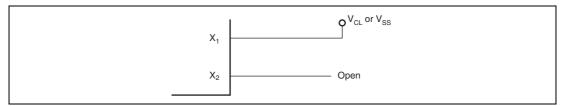
• Prior to executing BSET instruction

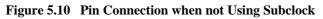
MOV.B	#80,	ROL
MOV.B	ROL,	@RAM0
MOV.B	ROL,	@PDR5

The PDR5 value (H'80) is written to a work area in memory (RAM0) as well as to PDR5.

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0	0

• BSET instruction executed


BSET #0, @RAMO

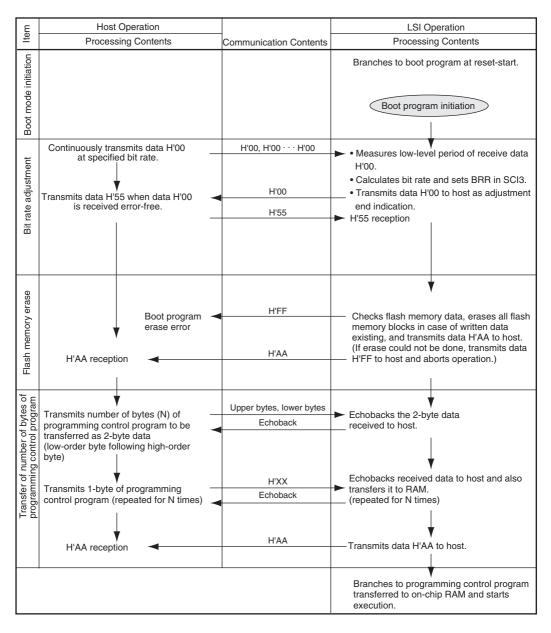

The BSET instruction is executed designating the PDR5 work area (RAM0).

5.2.2 Pin Connection when not Using Subclock

When the subclock is not used, connect pin X_1 to V_{cL} or V_{ss} and leave pin X_2 open, as shown in figure 5.10.

5.3 Prescalers

5.3.1 Prescaler S


Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period. Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standby mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000. The CPU cannot read or write prescaler S. The output from prescaler S is shared by the on-chip peripheral modules. The divider ratio can be set separately for each on-chip peripheral function. In active mode and sleep mode, the clock input to prescaler S is determined by the division factor designated by the MA2 to MA0 bits in SYSCR2.

5.3.2 Prescaler W

Prescaler W is a 5-bit counter using a 32.768 kHz signal divided by 4 ($\phi_w/4$) as its input clock. The divided output is used for clock time base operation of timer A. Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state. Even in standby mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X_1 and X_2 .

Table 7.2 Boot Mode Operation

• P22/TXD pin

Register	PMR1	PCR2	
Bit Name	TXD	PCR22	Pin Function
Setting Value	0	0	P22 input pin
		1	P22 output pin
	1	Х	TXD output pin

[Legend] X: Don't care.

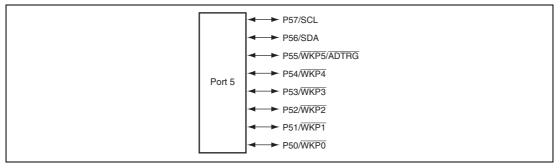
• P21/RXD pin

Register	SCR3	PCR2	
Bit Name	RE	PCR21	Pin Function
Setting Value	0	0	P21 input pin
		1	P21 output pin
	1	Х	RXD input pin

[Legend] X: Don't care.

• P20/SCK3 pin

Register	SCR3		SMR	PCR2	
Bit Name	CKE1	CKE0	СОМ	PCR20	Pin Function
Setting Value	0	0	0	0	P20 input pin
				1	P20 output pin
	0	0	1	Х	SCK3 output pin
	0	1	Х	Х	SCK3 output pin
	1	Х	Х	Х	SCK3 input pin


[Legend] X: Don't care.

PCR3	
PCR30	Pin Function
0	P30 input pin
1	P30 output pin
-	PCR30

9.4 Port 5

Port 5 is a general I/O port also functioning as an I²C bus interface I/O pin, an A/D trigger input pin, and a wakeup interrupt input pin. Each pin of the port 5 is shown in figure 9.4. The register setting of the I²C bus interface has priority for functions of the pins P57/SCL and P56/SDA. Since the output buffer for pins P56 and P57 has the NMOS push-pull structure, it differs from an output buffer with the CMOS structure in the high-level output characteristics (see section 23, Electrical Characteristics).

Figure 9.4 Port 5 Pin Configuration

Port 5 has the following registers.

- Port mode register 5 (PMR5)
- Port control register 5 (PCR5)
- Port data register 5 (PDR5)
- Port pull-up control register 5 (PUCR5)

9.8.3 Pin Functions

The correspondence between the register specification and the port functions is shown below.

•	P97	pin
---	-----	-----

Register	PCR9	
Bit Name	PCR97	Pin Function
Setting Value	0	P97 input pin
	1	P97 output pin

• P96 pin

Register	PCR9	
Bit Name	PCR96	Pin Function
Setting Value	0	P96 input pin
	1	P96 output pin

• P95 pin

Register	PCR9	
Bit Name	PCR95	Pin Function
Setting Value	0	P95 input pin
	1	P95 output pin

• P94 pin

Register	PCR9	
Bit Name	PCR94	Pin Function
Setting Value	0	P94 input pin
	1	P94 output pin

• P93 pin

Register	PCR9	
Bit Name	PCR93	Pin Function
Setting Value	0	P93 input pin
	1	P93 output pin

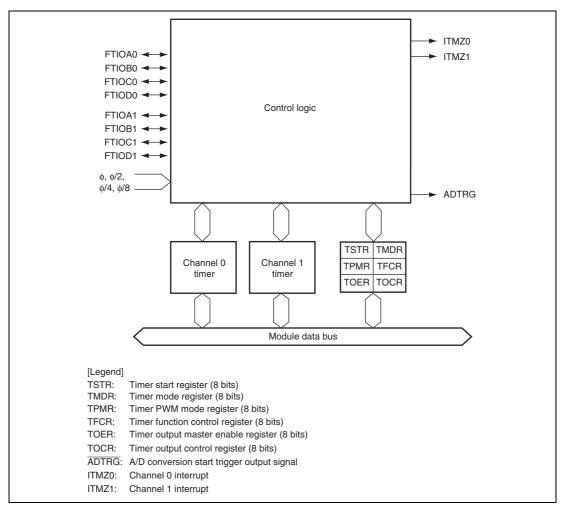


Figure 14.1 Timer Z Block Diagram

14.4 Operation

14.4.1 Counter Operation

When one of bits STR0 and STR1 in TSTR is set to 1, the TCNT counter for the corresponding channel begins counting. TCNT can operate as a free-running counter, periodic counter, for example. Figure 14.7 shows an example of the counter operation setting procedure.

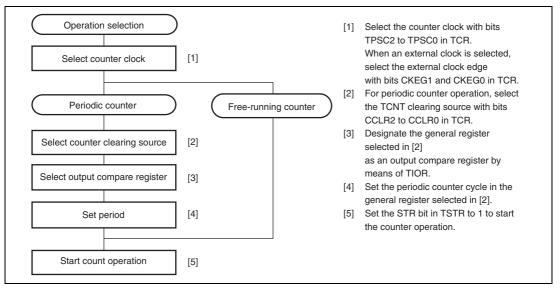


Figure 14.7 Example of Counter Operation Setting Procedure

14.4.7 Complementary PWM Mode

Three PWM waveforms for non-overlapped normal and counter phases are output by combining channels 0 and 1.

In complementary PWM mode, the FTIOB0 to FTIOD0 and FTIOA1 to FTIOD1 pins become PWM-output pins automatically. TCNT_0 and TCNT_1 perform an increment or decrement operation. Tables 14.6 and 14.7 show the output pins and register settings in complementary PWM mode, respectively.

Figure 14.29 shows the example of complementary PWM mode setting procedure.

Channel	Pin Name	Input/Output	Pin Function
0	FTIOC0	Output	Toggle output in synchronous with PWM cycle
0	FTIOB0	Output	PWM output 1
0	FTIOD0	Output	PWM output 1 (counter-phase waveform non- overlapped with PWM output 1)
1	FTIOA1	Output	PWM output 2
1	FTIOC1	Output	PWM output 2 (counter-phase waveform non- overlapped with PWM output 2)
1	FTIOB1	Output	PWM output 3
1	FTIOD1	Output	PWM output 3 (counter-phase waveform non- overlapped with PWM output 3)

 Table 14.6
 Output Pins in Complementary PWM Mode

Table 14.7 Register Settings in Complementary PWM Mode

Register	Description
TCNT_0	Initial setting of non-overlapped periods (non-overlapped periods are differences with TCNT_1)
TCNT_1	Initial setting of H'0000
GRA_0	Sets (upper limit value – 1) of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 and FTIOD0.
GRA_1	Set a changing point of the PWM waveform output from pins FTIOA1 and FTIOC1.
GRB_1	Set a changing point of the PWM waveform output from pins FTIOB1 and FTIOD1.

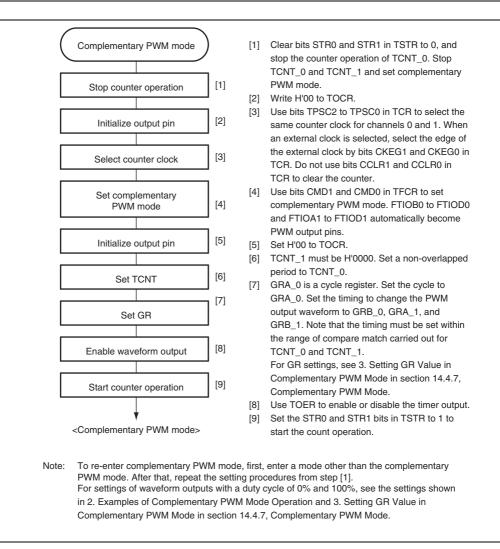


Figure 14.29 Example of Complementary PWM Mode Setting Procedure

15.3 Operation

The watchdog timer is provided with an 8-bit counter. If 1 is written to WDON while writing 0 to B2WI when the TCSRWE bit in TCSRWD is set to 1, TCWD begins counting up. (To operate the watchdog timer, two write accesses to TCSRWD are required.) When a clock pulse is input after the TCWD count value has reached H'FF, the watchdog timer overflows and an internal reset signal is generated. The internal reset signal is output for a period of 256 ϕ_{osc} clock cycles. TCWD is a writable counter, and when a value is set in TCWD, the count-up starts from that value. An overflow period in the range of 1 to 256 input clock cycles can therefore be set, according to the TCWD set value.

Figure 15.2 shows an example of watchdog timer operation.

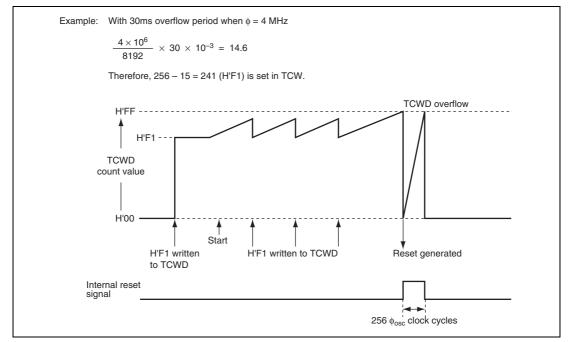


Figure 15.2 Watchdog Timer Operation Example

Section 17 Serial Communication Interface 3 (SCI3)

This LSI includes a serial communication interface 3 (SCI3), which has independent three channels. The SCI3 can handle both asynchronous and clocked synchronous serial communication. In asynchronous mode, serial data communication can be carried out using standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or an Asynchronous Communication Interface Adapter (ACIA). A function is also provided for serial communication between processors (multiprocessor communication function).

Table 17.1 shows the SCI3 channel configuration and figure 17.1 shows a block diagram of the SCI3. Since basic pin functions are identical for each of the three channels (SCI3, SCI3_2, and SCI3_3), separate explanations are not given in this section.

17.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock source.
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity error.

• Noise canceller (only for SCI3_3)

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in the case of a framing error

17.6 Multiprocessor Communication Function

Use of the multiprocessor communication function enables data transfer between a number of processors sharing communication lines by asynchronous serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data. When multiprocessor communication is performed, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles; an ID transmission cycle that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the cycle is a data transmission cycle. Figure 17.15 shows an example of inter-processor communication using the multiprocessor format. The transmitting station first sends the ID code of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1, transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags, RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received. On reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit settings are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

18.3.7 I²C Bus Transmit Data Register (ICDRT)

ICDRT is an 8-bit readable/writable register that stores the transmit data. When ICDRT detects the space in the shift register (ICDRS), it transfers the transmit data which is written in ICDRT to ICDRS and starts transferring data. If the next transfer data is written to ICDRT during transferring data of ICDRS, continuous transfer is possible. If the MLS bit of ICMR is set to 1 and when the data is written to ICDRT, the MSB/LSB inverted data is read. The initial value of ICDRT is H'FF.

18.3.8 I²C Bus Receive Data Register (ICDRR)

ICDRR is an 8-bit register that stores the receive data. When data of one byte is received, ICDRR transfers the receive data from ICDRS to ICDRR and the next data can be received. ICDRR is a receive-only register, therefore the CPU cannot write to this register. The initial value of ICDRR is H'FF.

18.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferred from ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred from ICDRS to ICDRR after data of one byte is received. This register cannot be read directly from the CPU.

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
PWDRL	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0	14-bit PWM
PWDRU	_	_	PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0	-
PWCR	_	_	_	_	_	_	_	PWCR0	-
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	BOWI	WRST	WDT* ²
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0	-
TMWD	_	_	_	_	CKS3	CKS2	CKS1	CKS0	-
ABRKCR	RTINTE	CSEL1	CSEL0	ACMP2	ACMP1	ACMP0	DCMP1	DCMP0	Address
ABRKSR	ABIF	ABIE	_	_	_	_	_	_	- break
BARH	BARH7	BARH6	BARH5	BARH4	BARH3	BARH2	BARH1	BARH0	=
BARL	BARL7	BARL6	BARL5	BARL4	BARL3	BARL2	BARL1	BARL0	=
BDRH	BDRH7	BDRH6	BDRH5	BDRH4	BDRH3	BDRH2	BDRH1	BDRH0	-
BDRL	BDRL7	BDRL6	BDRL5	BDRL4	BDRL3	BDRL2	BDRL1	BDRL0	=
BARE	BARE7	BARE6	BARE5	BARE4	BARE3	BARE2	BARE1	BARE0	_
PUCR1	PUCR17	PUCR16	PUCR15	PUCR14	_	PUCR12	PUCR11	PUCR10	I/O port
PUCR5	_	_	PUCR55	PUCR54	PUCR53	PUCR52	PUCR51	PUCR50	_
PDR1	P17	P16	P15	P14	_	P12	P11	P10	-
PDR2	_	_	_	P24	P23	P22	P21	P20	_
PDR3	P37	P36	P35	P34	P33	P32	P31	P30	-
PDR5	P57	P56	P55	P54	P53	P52	P51	P50	-
PDR6	P67	P66	P65	P64	P63	P62	P61	P60	_
PDR7	P77	P76	P75	P74	_	P72	P71	P70	-
PDR8	P87	P86	P85	P84	P83	P82	P81	P80	-
PDR9	P97	P96	P95	P94	P93	P92	P91	P90	_
PDRB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-
PMR1	IRQ3	IRQ2	IRQ1	IRQ0	TXD2	PWM	TXD	TMOW	-
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	_
PMR3	_	_	_	POF24	POF23	_	_	_	_
PCR1	PCR17	PCR16	PCR15	PCR14	_	PCR12	PCR11	PCR10	-
PCR2	_	_	_	PCR24	PCR23	PCR22	PCR21	PCR20	-
PCR3	PCR37	PCR36	PCR35	PCR34	PCR33	PCR32	PCR31	PCR30	_
PCR5	PCR57	PCR56	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	

22.3 Register States in Each Operating Mode

Register Name	Reset	Active	Sleep	Subactive	Subsleep	Standby	Module
SMR_3	Initialized	_	_	Initialized	Initialized	Initialized	SCI3_3
BRR_3	Initialized	_	_	Initialized	Initialized	Initialized	_
SCR3_3	Initialized	_	_	Initialized	Initialized	Initialized	_
TDR_3	Initialized	_	_	Initialized	Initialized	Initialized	_
SSR_3	Initialized	_	_	Initialized	Initialized	Initialized	=
RDR_3	Initialized	_	_	Initialized	Initialized	Initialized	-
SMCR_3	Initialized	_	_	_	_	_	-
TCR_0	Initialized	_	_	_	_	_	Timer Z0
TIORA_0	Initialized	_	_	_		_	-
TIORC_0	Initialized	_	_	_	_	_	-
TSR_0	Initialized	_	_	_	_	_	_
TIER_0	Initialized	_	_	_	_	_	_
POCR_0	Initialized	_	_	_	_	_	_
TCNT_0	Initialized	_	_	_	_	_	-
GRA_0	Initialized	_	_	_	_	_	_
GRB_0	Initialized	_	_	_	_	_	-
GRC_0	Initialized	_	_	_	_	_	-
GRD_0	Initialized	_	_		_	_	_
TCR_1	Initialized	_	_	_	_	_	Timer Z1
TIORA_1	Initialized	_	_	_	_	_	-
TIORC_1	Initialized	_	_		_	_	_
TSR_1	Initialized	_	_	_	_	_	_
TIER_1	Initialized	_	_	_		_	_
POCR_1	Initialized	_	_			_	-
TCNT_1	Initialized	_	_	_			_
GRA_1	Initialized	_		_		_	_
GRB_1	Initialized	_	_			_	-
GRC_1	Initialized	_	_	_	_	_	_
GRD_1	Initialized	_	_	_	_	_	

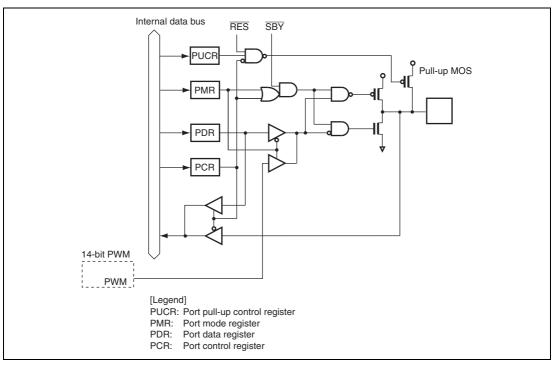


Figure B.5 Port 1 Block Diagram (P11)

