
Microchip Technology - ATMEGA8-16AU Datasheet

Welcome to E-XFL.COM
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"Embedded - Microcontrollers" refer to small, integrated
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systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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ATmega8(L)
• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

General Purpose 
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 3 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3.  AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 3, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-pointer, Y-pointer, and Z-pointer Registers can be set to index any register in
the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
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ATmega8(L)
Oscillator Calibration 
Register – OSCCAL

• Bits 7..0 – CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process vari-
ations from the Oscillator frequency. During Reset, the 1MHz calibration value which is located
in the signature row High byte (address 0x00) is automatically loaded into the OSCCAL Regis-
ter. If the internal RC is used at other frequencies, the calibration values must be loaded
manually. This can be done by first reading the signature row by a programmer, and then store
the calibration values in the Flash or EEPROM. Then the value can be read by software and
loaded into the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is
chosen. Writing non-zero values to this register will increase the frequency of the Internal Oscil-
lator. Writing 0xFF to the register gives the highest available frequency. The calibrated Oscillator
is used to time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to
more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash write may fail.
Note that the Oscillator is intended for calibration to 1.0MHz, 2.0MHz, 4.0MHz, or 8.0MHz. Tun-
ing to other values is not guaranteed, as indicated in Table 11.

Bit 7 6 5 4 3 2 1 0

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Table 11.  Internal RC Oscillator Frequency Range

OSCCAL Value
Min Frequency in Percentage of 

Nominal Frequency (%)
Max Frequency in Percentage of 

Nominal Frequency (%)

0x00 50 100

0x7F 75 150

0xFF 100 200
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Alternate Functions of 
Port D

The Port D pins with alternate functions are shown in Table 28.

The alternate pin configuration is as follows:

• AIN1 – Port D, Bit 7

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

• AIN0 – Port D, Bit 6

AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the Analog
Comparator.

• T1 – Port D, Bit 5

T1, Timer/Counter1 counter source.

• XCK/T0 – Port D, Bit 4

XCK, USART external clock.

T0, Timer/Counter0 counter source.

• INT1 – Port D, Bit 3

INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.

• INT0 – Port D, Bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.

• TXD – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled,
this pin is configured as an output regardless of the value of DDD1.

• RXD – Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this
pin is configured as an input regardless of the value of DDD0. When the USART forces this pin
to be an input, the pull-up can still be controlled by the PORTD0 bit.

Table 29 on page 64 and Table 30 on page 64 relate the alternate functions of Port D to the
overriding signals shown in Figure 25 on page 56. 

Table 28.  Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 AIN1 (Analog Comparator Negative Input)

PD6 AIN0 (Analog Comparator Positive Input)

PD5 T1 (Timer/Counter 1 External Counter Input)

PD4
XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)

PD3 INT1 (External Interrupt 1 Input)

PD2 INT0 (External Interrupt 0 Input)

PD1 TXD (USART Output Pin)

PD0 RXD (USART Input Pin)
63
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Register Description for I/O Ports

The Port B Data 
Register – PORTB

The Port B Data 
Direction Register – 
DDRB

The Port B Input Pins 
Address – PINB

The Port C Data 
Register – PORTC

The Port C Data 
Direction Register – 
DDRC

The Port C Input Pins 
Address – PINC

The Port D Data 
Register – PORTD

The Port D Data 
Direction Register – 
DDRD

The Port D Input Pins 
Address – PIND

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

– PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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Figure 35 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 35.  Output Compare Unit, Block Diagram

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR1x Compare
Register to either TOP or BOTTOM of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the High byte
temporary register (TEMP). However, it is a good practice to read the Low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16-bit is done continuously. The High byte (OCR1xH) has to be
written first. When the High byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the Low byte (OCR1xL) is written to the lower eight
bits, the High byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Com-
pare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 77.

OCFnx (Int.Req.)

= (16-bit Comparator )

OCRnx  Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
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Timer/Counter 
Prescaler

Figure 56.  Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkI/O. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port B. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. Apply-
ing an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSR2 bit in SFIOR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

Special Function IO 
Register – SFIOR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared
by hardware after the operation is performed. Writing a zero to this bit will have no effect. This bit
will always be read as zero if Timer/Counter2 is clocked by the internal CPU clock. If this bit is
written when Timer/Counter2 is operating in Asynchronous mode, the bit will remain one until
the prescaler has been reset.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSR2

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

– – – – ACME PUD PSR2 PSR10 SFIOR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Figure 63.  Synchronous Mode XCK Timing

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is
used for data change. As Figure 63 shows, when UCPOL is zero the data will be changed at ris-
ing XCK edge and sampled at falling XCK edge. If UCPOL is set, the data will be changed at
falling XCK edge and sampled at rising XCK edge.

Frame Formats A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 64 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 64.  Frame Formats

St Start bit, always low

(n) Data bits (0 to 8)

P Parity bit. Can be odd or even

Sp Stop bit, always high

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be high

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in UCSRB
and UCSRC. The Receiver and Transmitter use the same setting. Note that changing the setting
of any of these bits will corrupt all ongoing communication for both the Receiver and Transmitter. 

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
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Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The
MPCM bit shares the same I/O location as the TXC Flag and this might accidentally be cleared
when using SBI or CBI instructions.

Accessing 
UBRRH/UCSRC 
Registers

The UBRRH Register shares the same I/O location as the UCSRC Register. Therefore some
special consideration must be taken when accessing this I/O location.

Write Access When doing a write access of this I/O location, the high bit of the value written, the USART Reg-
ister Select (URSEL) bit, controls which one of the two registers that will be written. If URSEL is
zero during a write operation, the UBRRH value will be updated. If URSEL is one, the UCSRC
setting will be updated.

The following code examples show how to access the two registers.

Note: 1. See “About Code Examples” on page 8

As the code examples illustrate, write accesses of the two registers are relatively unaffected of
the sharing of I/O location.

Assembly Code Examples(1)

...

; Set UBRRH to 2

ldi r16,0x02

out UBRRH,r16

...

; Set the USBS and the UCSZ1 bit to one, and

; the remaining bits to zero.

ldi r16,(1<<URSEL)|(1<<USBS)|(1<<UCSZ1)

out UCSRC,r16

...

C Code Examples(1)

...

/* Set UBRRH to 2 */

UBRRH = 0x02;

...

/* Set the USBS and the UCSZ1 bit to one, and */

/* the remaining bits to zero. */

UCSRC = (1<<URSEL)|(1<<USBS)|(1<<UCSZ1);

...
146
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The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition

• After the TWI has transmitted SLA+R/W

• After the TWI has transmitted an address byte

• After the TWI has lost arbitration

• After the TWI has been addressed by own slave address or general call

• After the TWI has received a data byte

• After a STOP or REPEATED START has been received while still addressed as a Slave

• When a bus error has occurred due to an illegal START or STOP condition

TWI Register 
Description

TWI Bit Rate Register 
– TWBR

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 164 for calculating bit rates.

TWI Control Register – 
TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 42.

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt Handling Vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the TICIE1 bit in the Timer Interrupt Mask
Register (TIMSK) must be set.

• Bits 1,0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 71.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

Table 71.  ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge
187
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Figure 102.  Memory Sections(1)

Note: 1. The parameters in the figure are given in Table 82 on page 213

Boot Loader Lock 
Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock Bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU

• To protect only the Boot Loader Flash section from a software update by the MCU

• To protect only the Application Flash section from a software update by the MCU

• Allow software update in the entire Flash

See Table 78 on page 205 and Table 79 on page 205 for further details. The Boot Lock Bits can
be set in software and in Serial or Parallel Programming mode, but they can be cleared by a chip
erase command only. The general Write Lock (Lock bit mode 2) does not control the program-
ming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock (Lock bit
mode 3) does not control reading nor writing by LPM/SPM, if it is attempted.
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End Application
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End Application
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End Application
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ATmega8(L)
Figure 103.  Addressing the Flash during SPM(1)

Notes: 1. The different variables used in the figure are listed in Table 84 on page 214
2. PCPAGE and PCWORD are listed in Table 89 on page 218

Self-Programming 
the Flash

The Program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the page
erase command or between a page erase and a page write operation:

Alternative 1, fill the buffer before a page erase.

• Fill temporary page buffer

• Perform a page erase

• Perform a page write

Alternative 2, fill the buffer after page erase.

• Perform a page erase

• Fill temporary page buffer

• Perform a page write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the boot loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the page erase and page write operation is addressing the same
page. See “Simple Assembly Code Example for a Boot Loader” on page 212 for an assembly
code example.

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
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ATmega8(L)
Figure 107.  Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 222 for details on Command and Address loading):

1. A: Load Command “0000 0010”

2. G: Load Address High byte (0x00 - 0xFF)

3. B: Load Address Low byte (0x00 - 0xFF)

4. Set OE to “0”, and BS1 to “0”. The Flash word Low byte can now be read at DATA

5. Set BS1 to “1”. The Flash word High byte can now be read at DATA

6. Set OE to “1”

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 222 for details on Command and Address loading):

1. A: Load Command “0000 0011”

2. G: Load Address High byte (0x00 - 0xFF)

3. B: Load Address Low byte (0x00 - 0xFF)

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA

5. Set OE to “1”

Programming the 
Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 222 for details on Command and Data loading):

1. A: Load Command “0100 0000”

2. C: Load Data Low byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit

3. Set BS1 and BS2 to “0”

4. Give WR a negative pulse and wait for RDY/BSY to go high

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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ATmega8(L)
Serial Programming 
Algorithm

When writing serial data to the ATmega8, data is clocked on the rising edge of SCK.

When reading data from the ATmega8, data is clocked on the falling edge of SCK. See Figure
113 on page 232 for timing details.

To program and verify the ATmega8 in the Serial Programming mode, the following sequence is
recommended (see four byte instruction formats in Table 98 on page 233):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during Power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”

2. Wait for at least 20ms and enable Serial Programming by sending the Programming
Enable serial instruction to pin MOSI

3. The Serial Programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command

4. The Flash is programmed one page at a time. The page size is found in Table 89 on
page 218. The memory page is loaded one byte at a time by supplying the 5 LSB of the
address and data together with the Load Program memory Page instruction. To ensure
correct loading of the page, the data Low byte must be loaded before data High byte is
applied for a given address. The Program memory Page is stored by loading the Write
Program memory Page instruction with the 7MSB of the address. If polling is not used,
the user must wait at least tWD_FLASH before issuing the next page (see Table 97 on page
232).

Note: If other commands than polling (read) are applied before any write operation (FLASH,
EEPROM, Lock Bits, Fuses) is completed, it may result in incorrect programming

5. The EEPROM array is programmed one byte at a time by supplying the address and data
together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling is not used, the user must wait
at least tWD_EEPROM before issuing the next byte (see Table 97 on page 232). In a chip
erased device, no 0xFFs in the data file(s) need to be programmed

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO

7. At the end of the programming session, RESET can be set high to commence normal
operation

8. Power-off sequence (if needed):
Set RESET to “1”
Turn VCC power off

Data Polling Flash When a page is being programmed into the Flash, reading an address location within the page
being programmed will give the value 0xFF. At the time the device is ready for a new page, the
programmed value will read correctly. This is used to determine when the next page can be writ-
ten. Note that the entire page is written simultaneously and any address within the page can be
used for polling. Data polling of the Flash will not work for the value 0xFF, so when programming
this value, the user will have to wait for at least tWD_FLASH before programming the next page. As
a chip-erased device contains 0xFF in all locations, programming of addresses that are meant to
contain 0xFF, can be skipped. See Table 97 on page 232 for tWD_FLASH value.
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ATmega8(L)
Figure 129.  Idle Supply Current vs. VCC (Internal RC Oscillator, 2MHz)

Figure 130.  Idle Supply Current vs. VCC (Internal RC Oscillator, 1MHz)
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ATmega8(L)
Figure 0-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 4 MHz)

Figure 0-7. Idle Supply Current vs. VCC (Internal RC Oscillator, 2 MHz)
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ATmega8(L)
Figure 0-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Power-down Supply Current

Figure 0-9. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
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ATmega8(L)
Bod Thresholds and Analog Comparator Offset

Figure 0-32. BOD Thresholds vs. Temperature (BOD Level is 4.0V)

Figure 0-33. BOD Thresholds vs. Temperature (BOD Level is 2.7V)
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ATmega8(L)
Figure 0-48. AREF External Reference Current vs. VCC

Figure 0-49. Watchdog Timer Current vs. VCC
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ATmega8(L)
Figure 0-50. Analog Comparator Current vs. VCC

Figure 0-51. Programming Current vs. VCC
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