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elapse between the consecutive ERASE_FLASH commands then a timeout occurs, which forces a soft 
reset and initializes the sequence. The ERASE bit is cleared when the mass erase sequence has been 
completed. No ACK is driven.

During the mass erase operation, which takes many clock cycles, the command status is indicated by the 
ERASE bit in BDCCSR. Whilst a mass erase operation is ongoing, Always-available commands can be 
issued. This allows the status of the erase operation to be polled by reading BDCCSR to determine when 
the operation is finished.

The status of the flash array can be verified by subsequently reading the flash error flags to determine if 
the erase completed successfully. 

ERASE_FLASH can be aborted by a SYNC pulse forcing a soft reset. 

NOTE: Device Bus Frequency Considerations

The ERASE_FLASH command requires the default device bus clock 
frequency after reset. Thus the bus clock frequency must not be changed 
following reset before issuing an ERASE_FLASH command. 

5.4.4.20 STEP1

This command is used to step through application code. In active BDM this command executes the next 
CPU instruction in application code. If enabled an ACK is driven. 

If a STEP1 command is issued and the CPU is not halted, the command is ignored. 

Using STEP1 to step through a CPU WAI instruction is explained in Section 5.1.3.3.2, “Wait Mode.

5.4.5 BDC Access Of Internal Resources

Unsuccessful read accesses of internal resources return a value of 0xEE for each data byte. This enables a 
debugger to recognize a potential error, even if neither the ACK handshaking protocol nor a status 
command is currently being executed. The value of 0xEE is returned in the following cases.

• Illegal address access, whereby ILLACC is set

• Invalid READ_SAME or DUMP_MEM sequence

• Invalid READ_Rn command (BDM inactive or CRN incorrect)

• Internal resource read with timeout, whereby NORESP is set

Step1 Active Background

0x09

host  
target

D
A
C
K
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The BDC serial interface uses a clocking scheme in which the external host generates a falling edge on the 
BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is 
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per 
bit. The interface times out if during a command 512 clock cycles occur between falling edges from the 
host. The timeout forces the current command to be discarded.

The BKGD pin is a pseudo open-drain pin and has a weak on-chip active pull-up that is enabled at all 
times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typically 
drive the high level. Since R-C rise time could be unacceptably long, the target system and host provide 
brief drive-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host 
for transmit cases and the target for receive cases.

The timing for host-to-target is shown in Figure 5-6 and that of target-to-host in Figure 5-7 and 
Figure 5-8. All cases begin when the host drives the BKGD pin low to generate a falling edge. Since the 
host and target operate from separate clocks, it can take the target up to one full clock cycle to recognize 
this edge; this synchronization uncertainty is illustrated in Figure 5-6. The target measures delays from this 
perceived start of the bit time while the host measures delays from the point it actually drove BKGD low 
to start the bit up to one target clock cycle earlier. Synchronization between the host and target is 
established in this manner at the start of every bit time.

Figure 5-6 shows an external host transmitting a logic 1 and transmitting a logic 0 to the BKGD pin of a 
target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay from the 
host-generated falling edge to where the target recognizes this edge as the beginning of the bit time. Ten 
target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect logic 
requires the pin be driven high no later than eight target clock cycles after the falling edge for a logic 1 
transmission.

Since the host drives the high speedup pulses in these two cases, the rising edges look like digitally driven 
signals. 

Figure 5-6. BDC Host-to-Target Serial Bit Timing 

Figure 5-7 shows the host receiving a logic 1 from the target system. The host holds the BKGD pin low 
long enough for the target to recognize it (at least two target clock cycles). The host must release the low 

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
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BDCSI clock
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10.5.2.12 ADC Conversion Interrupt Flag Register (ADCCONIF)

After being set any of these bits can be cleared by writing a value of 1’b1. All bits are cleared if bit 
ADC_EN is clear or via ADC soft-reset (bit ADC_SR set). Writing any flag with value 1’b0 does not clear 
the flag. Writing any flag with value 1’b1 does not set the flag.

Read: Anytime

Write: Anytime

NOTE

These bits can be used to indicate if a certain packet of conversion results is 
available. Clearing a flag indicates that conversion results have been 
retrieved by software and the flag can be used again (see also 
Section 10.9.6, “RVL swapping in RVL double buffer mode and related 
registers ADCIMDRI and ADCEOLRI.

NOTE

Overrun situation of a flag CON_IF[15:1] and EOL_IF are indicated by flag 
CONIF_OIF.

 Module Base + 0x000C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CON_IF[15:1]

EOL_I
FW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-15. ADC Conversion Interrupt Flag Register (ADCCONIF)

Table 10-17. ADCCONIF Field Descriptions

Field Description

15-1
CON_IF[15:1]

Conversion Interrupt Flags — These bits could be set by the binary coded interrupt select bits 
INTFLG_SEL[3:0] when the corresponding conversion command has been processed and related data has been 
stored to RAM.
See also notes below.

0
EOL_IF

End Of List Interrupt Flag — This bit is set by the binary coded conversion command type select bits 
CMD_SEL[1:0] for “end of list” type of commands and after such a command has been processed and the related 
data has been stored RAM.
See also second note below
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10.5.2.16 ADC Command Register 1 (ADCCMD_1)

A command which contains reserved bit settings causes the error flag CMD_EIF being set and ADC cease 
operation. The CMD_EIF is never set for Internal_x channels, even if the channels are specified as 
reserved in the Device Overview section of the Reference Manual.

Read: Anytime

Write: Only writable if bit SMOD_ACC is set
(see also Section 10.5.2.2, “ADC Control Register 1 (ADCCTL_1) bit SMOD_ACC description for more 
details)

NOTE

If bit SMOD_ACC is set modifying this register must be done carefully - 
only when no conversion and conversion sequence is ongoing.

 Module Base + 0x0015

 23 22 21 20 19 18 17 16

R
VRH_SEL1

1 Only available on ADC12B_LBA V1 and V2 (see Table 10-2 for details)

VRL_SEL1 CH_SEL[5:0]
W

R
VRH_SEL[1:0]2

2 Only available on ADC12B_LBA V3 (see Table 10-2 for details)

CH_SEL[5:0]
W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-19. ADC Command Register 1 (ADCCMD_1)

Table 10-23. ADCCMD_1 Field Descriptions

Field Description

ADC12B_LBA V1 and V2 (includes VRH_SEL/VRL_SEL)

23
VRH_SEL

Reference High Voltage Select Bit — This bit selects the high voltage reference for current conversion.
0 VRH_0 input selected as high voltage reference.
1 VRH_1 input selected as high voltage reference.

22
VRL_SEL

Reference Low Voltage Select Bit — This bit selects the low voltage reference for current conversion.
0 VRL_0 input selected as low voltage reference.
1 VRL_1 input selected as low voltage reference.

ADC12B_LBA V3 (includes VRH_SEL[1:0])

23-22
VRH_SEL

Reference High Voltage Select Bit — These bits select the high voltage reference for current conversion.
00 VRH_0 input selected as high voltage reference
01 VRH_1 input selected as high voltage reference
10 VRH_2 input selected as high voltage reference
11  Reserved 

21-16
CH_SEL[5:0]

ADC Input Channel Select Bits — These bits select the input channel for the current conversion. See 
Table 10-24 for channel coding information.
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2. With the optimal PGAOFFSET[5:3] setting step through the offset compensation values 
PGAOFFSET[2:0]= {0x011, 0x010, 0x001, 0x000, 0x111, 0x110, 0x101} and measure the 
PGA_OUT value with the ADC. Select as optimal offset compensation value for the lower three 
bits the PGAOFFSET[2:0] which is closest to the expected ADC reading of VDDA/2. 

Figure 12-8. Offset compensation timing diagram

12.4.3 Application Example for differential voltage measurement

For sensor applications it is often required to measure a small differential voltage Vdiff. The PGA is not 
capable of amplifying a differential voltage, but an algorithm to calculate the differential voltage can be 
implemented. The PGA contains two input pins PGA_IN0 and PGA_IN1 which can be multiplexed by the 
ADC command list. By subtracting the ADC readings of the two pins the amplified differential voltage 
can be calculated. 

For this algorithm two requirements must be met:

1. The minimum time for the input signal multiplexing is given by PGA to ADC settling time 
tPGA_settling. The rate of signal change within tPGA_settling must be small.

2. The common mode input voltage range of the differential input signals must be limited that for a 
given gain APGA a reference voltage Vref can be selected so that both amplified signals do not 
saturate. 

If both requirements are met the algorithm can be implemented. The error calculation is the following:

Vdiff = (ADC_reading(PGA_IN1) - ADC_reading(PGA_IN0))/APGA Eqn. 12-1

V(PGAOUT)

t/us

10 6050403020 70 1201101009080 130 140

VDDA/2

PGAOFFSET[5:0]

Vstep_H=220mV

Vstep_L=44mV

min(VDDA/2-V(PGAOUT))
after 1st calibration step

min(VDDA/2-V(PGAOUT))
after 2nd calibration step

 011000  010000 

 011000 

 001000  000000  111000  110000  101000  001011  001010  001001  001000  001111  001110  001101 
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13.1.3 Features

The basic features of the MSCAN are as follows:

• Implementation of the CAN protocol — Version 2.0A/B

— Standard and extended data frames

— Zero to eight bytes data length

— Programmable bit rate up to 1 Mbps1

— Support for remote frames

• Five receive buffers with FIFO storage scheme

• Three transmit buffers with internal prioritization using a “local priority” concept

• Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, or four 
16-bit filters, or eight 8-bit filters

• Programmable wake-up functionality with integrated low-pass filter

• Programmable loopback mode supports self-test operation

• Programmable listen-only mode for monitoring of CAN bus

• Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states 
(warning, error passive, bus-off)

• Programmable MSCAN clock source either bus clock or oscillator clock

• Internal timer for time-stamping of received and transmitted messages

• Three low-power modes: sleep, power down, and MSCAN enable

• Global initialization of configuration registers

13.1.4 Modes of Operation

For a description of the specific MSCAN modes and the module operation related to the system operating 
modes refer to Section 13.4.4, “Modes of Operation”.

1. Depending on the actual bit timing and the clock jitter of the PLL.
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NOTE

The CANCTL0 register, except WUPE, INITRQ, and SLPRQ, is held in the 
reset state when the initialization mode is active (INITRQ = 1 and 
INITAK = 1). This register is writable again as soon as the initialization 
mode is exited (INITRQ = 0 and INITAK = 0).

Table 13-3. CANCTL0 Register Field Descriptions

Field Description

7
RXFRM

Received Frame Flag — This bit is read and clear only. It is set when a receiver has received a valid message 
correctly, independently of the filter configuration. After it is set, it remains set until cleared by software or reset. 
Clearing is done by writing a 1. Writing a 0 is ignored. This bit is not valid in loopback mode.
0 No valid message was received since last clearing this flag
1 A valid message was received since last clearing of this flag

6
RXACT

Receiver Active Status — This read-only flag indicates the MSCAN is receiving a message1. The flag is 
controlled by the receiver front end. This bit is not valid in loopback mode.
0 MSCAN is transmitting or idle
1 MSCAN is receiving a message (including when arbitration is lost)

5
CSWAI2

CAN Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling all 
the clocks at the CPU bus interface to the MSCAN module.
0 The module is not affected during wait mode
1 The module ceases to be clocked during wait mode

4
SYNCH

Synchronized Status — This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and 
able to participate in the communication process. It is set and cleared by the MSCAN.
0 MSCAN is not synchronized to the CAN bus
1 MSCAN is synchronized to the CAN bus

3
TIME

Timer Enable — This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock rate. 
If the timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the 
active TX/RX buffer. Right after the EOF of a valid message on the CAN bus, the time stamp is written to the 
highest bytes (0x000E, 0x000F) in the appropriate buffer (see Section 13.3.3, “Programmer’s Model of Message 
Storage”). In loopback mode no receive timestamp is generated. The internal timer is reset (all bits set to 0) when 
disabled. This bit is held low in initialization mode.
0 Disable internal MSCAN timer
1 Enable internal MSCAN timer

2
WUPE3

Wake-Up Enable — This configuration bit allows the MSCAN to restart from sleep mode or from power down 
mode (entered from sleep) when traffic on CAN is detected (see Section 13.4.5.5, “MSCAN Sleep Mode”). This 
bit must be configured before sleep mode entry for the selected function to take effect.
0 Wake-up disabled — The MSCAN ignores traffic on CAN
1 Wake-up enabled — The MSCAN is able to restart
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eight identifier acceptance filters.
Figure 13-39 shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3, 
CANIDMR0–CANIDMR3) produces a filter 0 hit. Similarly, the second filter bank 
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces a filter 1 hit.

• Four identifier acceptance filters, each to be applied to: 

— The 14 most significant bits of the extended identifier plus the SRR and IDE bits of CAN 2.0B 
messages.

— The 11 bits of the standard identifier, the RTR and IDE bits of CAN 2.0A/B messages. 
Figure 13-40 shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3, 
CANIDMR0–CANIDMR3) produces filter 0 and 1 hits. Similarly, the second filter bank 
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces filter 2 and 3 hits.

• Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode 
implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard 
identifier or a CAN 2.0B compliant extended identifier. 
Figure 13-41 shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3, 
CANIDMR0–CANIDMR3) produces filter 0 to 3 hits. Similarly, the second filter bank 
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces filter 4 to 7 hits.

• Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is 
never set.

Figure 13-39. 32-bit Maskable Identifier Acceptance Filter

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CANIDAR0

AM7 AM0CANIDMR0

AC7 AC0CANIDAR1

AM7 AM0CANIDMR1

AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3

AM7 AM0CANIDMR3

ID Accepted (Filter 0 Hit)

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier
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13.4.7.3 Receive Interrupt

A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO. 
This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are 
multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the 
foreground buffer.

13.4.7.4 Wake-Up Interrupt

A wake-up interrupt is generated if activity on the CAN bus occurs during MSCAN sleep or power-down 
mode.

NOTE

This interrupt can only occur if the MSCAN was in sleep mode (SLPRQ = 1 
and SLPAK = 1) before entering power down mode, the wake-up option is 
enabled (WUPE = 1), and the wake-up interrupt is enabled (WUPIE = 1).

13.4.7.5 Error Interrupt

An error interrupt is generated if an overrun of the receiver FIFO, error, warning, or bus-off condition 
occurs. MSCAN Receiver Flag Register (CANRFLG) indicates one of the following conditions:

• Overrun — An overrun condition of the receiver FIFO as described in Section 13.4.2.3, “Receive 
Structures,” occurred.

• CAN Status Change — The actual value of the transmit and receive error counters control the 
CAN bus state of the MSCAN. As soon as the error counters skip into a critical range 
(Tx/Rx-warning, Tx/Rx-error, bus-off) the MSCAN flags an error condition. The status change, 
which caused the error condition, is indicated by the TSTAT and RSTAT flags (see 
Section 13.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)” and Section 13.3.2.6, “MSCAN 
Receiver Interrupt Enable Register (CANRIER)”).

13.4.7.6 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in either the MSCAN Receiver Flag 
Register (CANRFLG) or the MSCAN Transmitter Flag Register (CANTFLG). Interrupts are pending as 
long as one of the corresponding flags is set. The flags in CANRFLG and CANTFLG must be reset within 
the interrupt handler to handshake the interrupt. The flags are reset by writing a 1 to the corresponding bit 
position. A flag cannot be cleared if the respective condition prevails.

NOTE

It must be guaranteed that the CPU clears only the bit causing the current 
interrupt. For this reason, bit manipulation instructions (BSET) must not be 
used to clear interrupt flags. These instructions may cause accidental 
clearing of interrupt flags which are set after entering the current interrupt 
service routine.
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NOTE

The newly selected prescale factor will not take effect until the next 
synchronized edge where all prescale counter stages equal zero. 

15.3.2.10 Main Timer Interrupt Flag 1 (TFLG1)

Read: Anytime

Write: Used in the clearing mechanism (set bits cause corresponding bits to be cleared). Writing a zero will 
not affect current status of the bit. 

Table 15-12. Timer Clock Selection 

PR2 PR1 PR0 Timer Clock

0 0 0 Bus Clock / 1

0 0 1 Bus Clock / 2

0 1 0 Bus Clock / 4

0 1 1 Bus Clock / 8

1 0 0 Bus Clock / 16

1 0 1 Bus Clock / 32

1 1 0 Bus Clock / 64

1 1 1 Bus Clock / 128

Module Base + 0x000E

 7 6 5 4 3 2 1 0

R
RESERVED RESERVED C5F C4F C3F C2F C1F C0F

W

Reset 0 0 0 0 0 0 0 0

Figure 15-16. Main Timer Interrupt Flag 1 (TFLG1)

Table 15-13. TRLG1 Field Descriptions

Note: Writing to unavailable bits has no effect. Reading from unavailable bits return a zero.

Field Description

5:0
C[5:0]F

Input Capture/Output Compare Channel “x” Flag — These flags are set when an input capture or output 
compare event occurs. Clearing requires writing a one to the corresponding flag bit while TEN  is set to one.

Note: When TFFCA bit in TSCR register is set, a read from an input capture or a write into an output compare 
channel (0x0010–0x001F) will cause the corresponding channel flag CxF to be cleared.
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17.2.1 PWM7 - PWM0 — PWM Channel 7 - 0

Those pins serve as waveform output of PWM channel 7 - 0.

17.3 Memory Map and Register Definition

17.3.1 Module Memory Map

This section describes the content of the registers in the scalable PWM module. The base address of the 
scalable PWM module is determined at the MCU level when the MCU is defined. The register decode map 
is fixed and begins at the first address of the module address offset. The figure below shows the registers 
associated with the scalable PWM and their relative offset from the base address. The register detail 
description follows the order they appear in the register map.

Reserved bits within a register will always read as 0 and the write will be unimplemented. Unimplemented 
functions are indicated by shading the bit.

NOTE

Register Address = Base Address + Address Offset, where the Base Address 
is defined at the MCU level and the Address Offset is defined at the module 
level.

17.3.2 Register Descriptions

This section describes in detail all the registers and register bits in the scalable PWM module.

Register
Name

Bit 7 6 5 4 3 2 1 Bit 0

0x0000
PWME1

R
PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0

W

0x0001
PWMPOL1

R
PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0

W

0x0002
PWMCLK1

R
PCLK7 PCLKL6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0

W

0x0003
PWMPRCLK

R 0
PCKB2 PCKB1 PCKB0

0
PCKA2 PCKA1 PCKA0

W

0x0004
PWMCAE1

R
CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0

W

0x0005
PWMCTL1

R
CON67 CON45 CON23 CON01 PSWAI PFRZ

0 0

W

= Unimplemented or Reserved

Figure 17-2. The scalable PWM Register Summary (Sheet 1 of 4)
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18.3.2.3 SCI Alternative Status Register 1 (SCIASR1)

Read: Anytime, if AMAP = 1

5
RSRC

Receiver Source Bit — When LOOPS = 1, the RSRC bit determines the source for the receiver shift register 
input. See Table 18-4.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter

4
M

Data Format Mode Bit — MODE determines whether data characters are eight or nine bits long.
0 One start bit, eight data bits, one stop bit
1 One start bit, nine data bits, one stop bit

3
WAKE

Wakeup Condition Bit — WAKE determines which condition wakes up the SCI: a logic 1 (address mark) in the 
most significant bit position of a received data character or an idle condition on the RXD pin.
0 Idle line wakeup
1 Address mark wakeup

2
ILT

Idle Line Type Bit — ILT determines when the receiver starts counting logic 1s as idle character bits. The 
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of 
logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the 
stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
0 Idle character bit count begins after start bit
1 Idle character bit count begins after stop bit

1
PE

Parity Enable Bit — PE enables the parity function. When enabled, the parity function inserts a parity bit in the 
most significant bit position.
0 Parity function disabled
1 Parity function enabled

0
PT

Parity Type Bit — PT determines whether the SCI generates and checks for even parity or odd parity. With even 
parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an 
odd number of 1s clears the parity bit and an even number of 1s sets the parity bit.
0 Even parity
1 Odd parity

Table 18-4. Loop Functions

LOOPS RSRC Function

0 x Normal operation

1 0 Loop mode with transmitter output internally connected to receiver input 

1 1 Single-wire mode with TXD pin connected to receiver input 

Module Base + 0x0000

 7 6 5 4 3 2 1 0

R
RXEDGIF

0 0 0 0 BERRV
BERRIF BKDIF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-6. SCI Alternative Status Register 1 (SCIASR1)

Table 18-3. SCICR1 Field Descriptions (continued)

Field Description
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18.3.2.7 SCI Status Register 1 (SCISR1)

The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also, 
these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures 
require that the status register be read followed by a read or write to the SCI data register.It is permissible 
to execute other instructions between the two steps as long as it does not compromise the handling of I/O, 
but the order of operations is important for flag clearing.

Read: Anytime

Write: Has no meaning or effect

3
TE

Transmitter Enable Bit — TE enables the SCI transmitter and configures the TXD pin as being controlled by 
the SCI. The TE bit can be used to queue an idle preamble. 
0 Transmitter disabled
1 Transmitter enabled 

2
RE

Receiver Enable Bit — RE enables the SCI receiver.
0 Receiver disabled
1 Receiver enabled

1
RWU

Receiver Wakeup Bit — Standby state
0 Normal operation. 
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes 

the receiver by automatically clearing RWU.

0
SBK

Send Break Bit — Toggling SBK sends one break character (10 or 11 logic 0s, respectively 13 or 14 logics 0s 
if BRK13 is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As 
long as SBK is set, the transmitter continues to send complete break characters (10 or 11 bits, respectively 13 
or 14 bits).
0 No break characters
1 Transmit break characters

Module Base + 0x0004

 7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-10. SCI Status Register 1 (SCISR1)

Table 18-10. SCICR2 Field Descriptions (continued)

Field Description
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18.4.5 Transmitter

Figure 18-16. Transmitter Block Diagram

18.4.5.1 Transmitter Character Length

The SCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI 
control register 1 (SCICR1) determines the length of data characters. When transmitting 9-bit data, bit T8 
in SCI data register high (SCIDRH) is the ninth bit (bit 8).

18.4.5.2 Character Transmission

To transmit data, the MCU writes the data bits to the SCI data registers (SCIDRH/SCIDRL), which in turn 
are transferred to the transmitter shift register. The transmit shift register then shifts a frame out through 
the TXD pin, after it has prefaced them with a start bit and appended them with a stop bit. The SCI data 
registers (SCIDRH and SCIDRL) are the write-only buffers between the internal data bus and the transmit 
shift register.
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Figure 19-9. Reception with SPIF serviced in Time

Figure 19-10. Reception with SPIF serviced too late

19.4 Functional Description

The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral 
devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set, 
the four associated SPI port pins are dedicated to the SPI function as:

• Slave select (SS)

• Serial clock (SCK)

• Master out/slave in (MOSI)

• Master in/slave out (MISO)

Receive Shift Register

SPIF

SPI Data Register

Data A Data B

Data A

Data A Received Data B Received

Data C

Data C

SPIF Serviced

Data C Received

Data B

= Unspecified = Reception in progress

Receive Shift Register

SPIF

SPI Data Register

Data A Data B

Data A

Data A Received Data B Received

Data C

Data C

SPIF Serviced 

Data C Received
Data B Lost

= Unspecified = Reception in progress
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Table 20-5. Prescale Divider Encoding

The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values shown 
in the scl2tap column of Table 20-4, all subsequent tap points are separated by 2IBC5-3 as shown in the 
tap2tap column in Table 20-5. The SCL Tap is used to generated the SCL period and the SDA Tap is used 
to determine the delay from the falling edge of SCL to SDA changing, the SDA hold time.

IBC7–6 defines the multiplier factor MUL. The values of MUL are shown in the Table 20-6.

Table 20-4. I-Bus Tap and Prescale Values 

IBC2-0
(bin)

SCL Tap
(clocks)

SDA Tap
(clocks)

000 5 1

001 6 1

010 7 2

011 8 2

100 9 3

101 10 3

110 12 4

111 15 4

IBC5-3
(bin)

scl2start
(clocks)

scl2stop
(clocks)

scl2tap
(clocks)

tap2tap
(clocks)

000 2 7 4 1

001 2 7 4 2

010 2 9 6 4

011 6 9 6 8

100 14 17 14 16

101 30 33 30 32

110 62 65 62 64

111 126 129 126 128

Table 20-6. Multiplier Factor

IBC7-6 MUL

00 01

01 02

10 04

11 RESERVED
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G.1 Static Electrical Characteristics

*) DRIVE bit = 1 is not recomended in this case.

Table G-1. Static Electrical Characteristics - dac_8b5v_analog_ll18 @5V VDDA

Characteristics noted under conditions 4.85V  VDDA  5.15V, -40°C  TJ  175°C, VRH = VDDA, VRL = VSSA unless 
otherwise noted. Typical values noted reflect the approximate parameter mean at TA = 25°C under nominal conditions 
unless otherwise noted.

Num Ratings Symbol Min Typ Max Unit

1 Supply Current of dac_8b5v_analog_ll18
buffer disabled
buffer enabled FVR=0 DRIVE=1
buffer enabled FVR=1 DRIVE=0

Ibuf -
-
-

-
365
215

5
800
800

A

2 Reference current
reference disabled
reference enabled

Iref - -
50

1
150

A

3 Resolution 8 bit

4 Relative Accuracy measured at AMP
-40oC < TJ  150oC
150oC < TJ < 175oC

INL -0.5
-0.75

+0.5
+0.75

LSB

5 Differential Nonlinearity measure at AMP
-40oC < TJ  150oC
150oC < TJ < 175oC

DNL -0.5
-0.75

+0.5
+0.75

LSB

6 DAC Range A (FVR bit = 1) Vout 0...255/256(VRH-VRL)+VRL V

7 DAC Range B (FVR bit = 0 Vout 32...287/320(VRH-VRL)+VRL V

8 Output Voltage
unbuffered range A or B (load >= 50M) Vout full DAC Range A or B V

9 Output Voltage (DRIVE bit = 0) *)

buffered range A (load >= 100K to VSSA) or
buffered range A (load >= 100Kto VDDA)

buffered range B (load >= 100K to VSSA)
buffered range B (load >= 100K to VDDA)

Vout

0
0.15

-
-

VDDA-0.15
VDDA V

full DAC Range B

10 Output Voltage (DRIVE bit = 1) **)

buffered range B with 6.4K load into resistor 
divider of 800 /6.56K between VDDA and 
VSSA.
(equivalent load is >= 65Kto VSSA) or
(equivalent load is >= 7.5K to VDDA)

Vout full DAC Range B V

11 Buffer Output Capacitive load Cload 0 - 100 pF

12 Buffer Output Offset Voffset -30 - +30 mV

13 Settling time tdelay - 3 5 s

14 Reverence voltage high Vrefh VDDA-0.1V VDDA VDDA+0.1V V


