

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S12Z
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SCI, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	5.5V ~ 18V
Data Converters	A/D 10x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912zvla12f0vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C.1.1	Factors Influencing Accuracy	695
C.1.2	ADC Accuracy	698

Appendix D LINPHY Electrical Specifications

D .1	Maximum Ratings	703
D.2	Static Electrical Characteristics	703
D.3	Dynamic Electrical Characteristics	704

Appendix E

NVM Electrical Parameters

E.1	NVM Timing Parameters	
E.2	NVM Reliability Parameters	

Appendix F

F.1	Dynamic Electrical Characteristics	714
-----	------------------------------------	-----

Appendix G

DAC_8B5V Electrical	Specifications
---------------------	-----------------------

G.1 Static Electrical Characteristics	
---------------------------------------	--

Appendix H

PGA Electrical Specifications

H.1	Static Electrical	Characteristics	. 71	9
-----	-------------------	-----------------	------	---

Appendix I

ACMP Electrical Specifications

I.1	Maximum Ratings	. 721
I.2	Static Electrical Characteristics	. 721
I.3	Dynamic Electrical Characteristics	. 723

Appendix J

PIM Electrical Specifications

J .1	High-Voltage Inpu	ts (HVI) Electrical	Characteristics		725
-------------	-------------------	---------------------	-----------------	--	-----

Appendix K SPI Electrical Specifications

K .1	Master Mode	728
K.2	Slave Mode	729

in system wait mode. For further power consumption the peripherals can individually turn off their local clocks. Asserting $\overline{\text{RESET}}$, $\overline{\text{XIRQ}}$, $\overline{\text{IRQ}}$, or any other interrupt that is not masked, either locally or globally by a CCR bit, ends system wait mode.

• Static power modes:

Static power (Stop) modes are entered following the CPU STOP instruction unless an NVM command is active. When no NVM commands are active, the Stop request is acknowledged and the device enters either Stop or Pseudo Stop mode.

- Pseudo-stop: In this mode the system clocks are stopped but the oscillator is still running and the real time interrupt (RTI), watchdog (COP) and Autonomous Periodic Interrupt (API) may be enabled. Other peripherals are turned off. This mode consumes more current than system STOP mode but, as the oscillator continues to run, the full speed wake up time from this mode is significantly shorter.
- Stop: In this mode the oscillator is stopped and clocks are switched off. The counters and dividers remain frozen. The autonomous periodic interrupt (API) may remain active but has a very low power consumption. If the BDC is enabled in Stop mode, the VREG remains in full performance mode and the CPMU continues operation as in run mode. With BDC enabled and BDCCIS bit set, then all clocks remain active to allow BDC access to internal peripherals. If the BDC is enabled and BDCCIS is clear, then the BDCSI clock remains active, but bus and core clocks are disabled.

1.11 Security

The MCU security mechanism prevents unauthorized access to the flash memory. It must be emphasized that part of the security must lie with the application code. An extreme example would be application code that dumps the contents of the internal memory. This would defeat the purpose of security. Also, if an application has the capability of downloading code through a serial port and then executing that code (e.g. an application containing bootloader code), then this capability could potentially be used to read the EEPROM and Flash memory contents even when the microcontroller is in the secure state. In this example, the security of the application could be enhanced by requiring a response authentication before any code can be downloaded.

Device security details are also described in the flash block description.

1.11.1 Features

The security features of the S12Z chip family are:

- Prevent external access of the non-volatile memories (Flash, EEPROM) content
- Restrict execution of NVM commands

1.11.2 Securing the Microcontroller

The chip can be secured by programming the security bits located in the options/security byte in the Flash memory array. These non-volatile bits keep the device secured through reset and power-down.

Port Integration Module (S12ZVLPIMV2)

Port	Pin	Pin Function & Priority	I/O	Description	Description Routing Register Bit			
AD	PAD7	AD7 AMPP (DAC)		DAC AMP non-inverting input (+)	—	GPIO		
		AN7	I	ADC0 analog input	—			
		PTADL[7]/ KWADL[7]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD6	AMP (DAC)	0	DAC AMP output	—			
		AN6	I	ADC0 analog input	—			
		PTADL[6]/ KWADL[6]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD5	AN5	I	ADC0 analog input	—			
		(ETRIG0)	I	ADC0 external trigger	TRIG0RR2-0			
		PTADL[5]/ KWADL[5]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD4	ACMP_1	I	ACMP input 1 (to mux)	—			
		AN4	I	ADC0 analog input	—			
		PTADL[4]/ KWADL[4]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD3	PGA_IN1	I	PGA input option 1	—			
		AN3	Ι	ADC0 analog input	—			
		PTADL[3]/ KWADL[3]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD2	PGA_IN0	Ι	PGA input option 0	—			
		AN2	Ι	ADC0 analog input	—			
		PTADL[2]/ KWADL[2]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD1	PGA_REF	Ι	PGA reference input	—			
		VRL	Ι	ADC0 voltage reference low	—			
		AN1	Ι	ADC0 analog input	—			
		PTADL[1]/ KWADL[1]	I/O	General-purpose; with interrupt and key-wakeup	_			
	PAD0	ACMP_0	Ι	ACMP input 0	_			
		VRH	Ι	ADC0 voltage reference high	_			
		AN0	Ι	ADC0 analog input	—			
		PTADL[0]/ KWADL[0]	I/O	General-purpose; with interrupt and key-wakeup	—			

Port Integration Module (S12ZVLPIMV2)

2.3.1 Register Map

Global Address	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0200	MODRR0	R W	0	0	CANORR	licorr	SCI1RR		S0L0RR2-0	
0x0201	MODRR1	R W	PWM7RR	PWM6RR	PWM5RR	PWM4RR	0	PWM2RR	0	PWM0RR
0x0202	MODRR2	R W	T1C1RR	T1C0RR	T0C5RR	T0C4RR	T0C3RR	T0C2RR	0	0
0x0203	MODRR3	R W	0	0	0	0	TRIG0RR2	TRIG0NEG	TRIG0RR1	TRIG0RR0
0x0204	MODRR4	R W	0	0	0	0	0	0	T0IC3	RR1-0
0x0206– 0x0207	Reserved	R W	0	0	0	0	0	0	0	0
0x0208	ECLKCTL	R W	NECLK	0	0	0	0	0	0	0
0x0209	IRQCR	R W	IRQE	IRQEN	0	0	0	0	0	0
0x020A– 0x020C	Reserved	R W	0	0	0	0	0	0	0	0
0x020D	Reserved	R W	Reserved	Reserved						
0x020E	Reserved	R W	Reserved	Reserved						
0x020F	Reserved	R W	Reserved	Reserved						
0x0210– 0x025F	Reserved	R W	0	0	0	0	0	0	0	0
0x0260	PTE	R W	0	0	0	0	0	0	PTE1	PTE0
0x0261	Reserved	R W	0	0	0	0	0	0	0	0

S12Z DebugLite (S12ZDBGV3)

Table 7-22 shows the effect for RWE and RW on the comparison conditions. These bits are ignored if INST is set, as matches based on instructions reaching the execution stage are data independent.

RWE Bit	RW Bit	RW Signal	Comment
0	х	0	RW not used in comparison
0	х	1	RW not used in comparison
1	0	0	Write match
1	0	1	No match
1	1	0	No match
1	1	1	Read match

Table 7-22. Read or Write Comparison Logic Table

7.3.2.13 Debug Comparator B Address Register (DBGBAH, DBGBAM, DBGBAL)

Figure 7-16. Debug Comparator B Address Register

Read: Anytime.

Write: If DBG not armed.

Table 7-23. DBGBAH, DBGBAM, DBGBAL Field Descriptions

Field	Description
23–16 DBGBA [23:16]	 Comparator Address Bits [23:16]— These comparator address bits control whether the comparator compares the address bus bits [23:16] to a logic one or logic zero. 0 Compare corresponding address bit to a logic zero 1 Compare corresponding address bit to a logic one
15–0 DBGBA [15:0]	 Comparator Address Bits[15:0]— These comparator address bits control whether the comparator compares the address bus bits [15:0] to a logic one or logic zero. 0 Compare corresponding address bit to a logic zero 1 Compare corresponding address bit to a logic one

7.3.2.14 Debug Comparator D Control Register (DBGDCTL)

Address: 0x0140

Figure 7-17. Debug Comparator D Control Register

Read: Anytime.

Write: If DBG not armed.

Table 7-24. DBGDCTI	Field Descriptions
---------------------	--------------------

Field ¹	Description
5 INST	 Instruction Select — This bit configures the comparator to compare PC or data access addresses. 0 Comparator compares addresses of data accesses 1 Comparator compares PC address
3 RW	 Read/Write Comparator Value Bit — The RW bit controls whether read or write is used in compare for the associated comparator. The RW bit is ignored if RWE is clear or INST is set. 0 Write cycle is matched 1 Read cycle is matched
2 RWE	 Read/Write Enable Bit — The RWE bit controls whether read or write comparison is enabled for the associated comparator. This bit is ignored if INST is set. 0 Read/Write is not used in comparison 1 Read/Write is used in comparison
0 COMPE	 Enable Bit — Determines if comparator is enabled 0 The comparator is not enabled 1 The comparator is enabled

¹ If the CDCM field selects range mode comparisons, then DBGCCTL bits configure the comparison, DBGDCTL is ignored.

Table 7-25 shows the effect for RWE and RW on the comparison conditions. These bits are ignored if INST is set, because matches based on opcodes reaching the execution stage are data independent.

RWE Bit	RW Bit	RW Signal	Comment
0	х	0	RW not used in comparison
0	х	1	RW not used in comparison
1	0	0	Write match
1	0	1	No match
1	1	0	No match
1	1	1	Read match

 Table 7-25. Read or Write Comparison Logic Table

Address Offset	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x000E			0	0	0	0	0	0	0	0
	CPMUTES11	W								
0x000F	CPMU	R	0	0	0	0	0	0	0	0
	ARMCOP	W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0010	CPMU	R	0 0		VSFI	0	HTF	HTDS	HTIF	HTIF
0,0010	HTCTL	W			1022					
0x0011	CPMU	R	0	0	0	0	0	LVDS	IVIE	I VIF
0,0011	LVCTL	W								
0v0012	CPMU	R		0	0					
0x0012	APICTL	W	AFICER			AFIES				AFIF
0v0013		R							0	0
0,0013	OF MOACENTR	W	AGENTIN	AGENTIN	AGENTIN	AGENTINZ	AGENTIN	AGENTIN		
0v0014		R								
0X0014	CEMUAEIRE	W	AFIRID		AFIRIS	AFIRIZ	APIRTI	APIRIU	APIK9	AFINO
0,0015		R								
0X0015	CPINIUAPIRL	W	APIR/	APIRO	APIRO	APIR4	APIR3	APIRZ	APIRI	AFIRU
0.0010	RESERVED	R	0	0	0	0	0	0	0	0
0X0016		W								
0.0047	CPMUHTTR	R	R	0	0	0				
0X0017		W	HIUE				HIIR3	HIIRZ	niiki	
0 0040	CPMU	R					0			
0X0018	IRCTRIMH	W			ICTRIM[4:0]		- IRCTRIM[9:8]			
00040	CPMU	R					M(7.0)			
0x0019	IRCTRIML	W								
0,0014	CDMUOSC	R		0	Deserved	0	0	0	0	0
0001A	CPINIOOSC	W	USCE		Reserved					
0.0040		R	0	0	0	0	0	0	0	
0X001B	CPMUPRUI	W								PRUI
0 0040	RESERVED	R	0	0	0	0	0	0	0	0
0x001C	CPMUTEST2	W	0	0						U
0.0045	CPMU	R		0	0	0	0	0	EVENON	
0X001D	VREGCTL	W	VREG5VEN						EXTXON	INTXON
0.00/-		R	0	0	0	0	0	0	01/27	0000005
0x001E	CPMUOSC2	w						-	OMRE	OSCMOD
		R	0	0	0	0	0	0	0	0
0x001F	RESERVED	w								

= Unimplemented or Reserved

Figure 9-3. CPMU Register Summary

S12 Clock, Reset and Power Management Unit (S12CPMU_UHV)

Figure 9-10. S12CPMU_UHV Flags Register (CPMUIFLG)

Read: Anytime

Write: Refer to each bit for individual write conditions

Table 9-5. CPMUIFLG Field Descriptions

Field	Description
7 RTIF	 Real Time Interrupt Flag — RTIF is set to 1 at the end of the RTI period. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (RTIE=1), RTIF causes an interrupt request. 0 RTI time-out has not yet occurred. 1 RTI time-out has occurred.
4 LOCKIF	 PLL Lock Interrupt Flag — LOCKIF is set to 1 when LOCK status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (LOCKIE=1), LOCKIF causes an interrupt request. 0 No change in LOCK bit. 1 LOCK bit has changed.
3 LOCK	Lock Status Bit — LOCK reflects the current state of PLL lock condition. Writes have no effect. While PLL is unlocked (LOCK=0) f_{PLL} is f_{VCO} / 4 to protect the system from high core clock frequencies during the PLL stabilization time t_{lock} . 0 VCOCLK is not within the desired tolerance of the target frequency. $f_{PLL} = f_{VCO}/4$. 1 VCOCLK is within the desired tolerance of the target frequency. $f_{PLL} = f_{VCO}/4$.
1 OSCIF	 Oscillator Interrupt Flag — OSCIF is set to 1 when UPOSC status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (OSCIE=1), OSCIF causes an interrupt request. 0 No change in UPOSC bit. 1 UPOSC bit has changed.
0 UPOSC	 Oscillator Status Bit — UPOSC reflects the status of the oscillator. Writes have no effect. Entering Full Stop Mode UPOSC is cleared. 0 The oscillator is off or oscillation is not qualified by the PLL. 1 The oscillator is qualified by the PLL.

Figure 9-31. IRC1M Frequency Trimming Diagram

Figure 9-32. Influence of TCTRIM[4:0] on the Temperature Coefficient

NOTE

The frequency is not necessarily linear with the temperature (in most cases it will not be). The above diagram is meant only to give the direction (positive or negative) of the variation of the TC, relative to the nominal TC.

Setting TCTRIM[4:0] at 0x00000 or 0x10000 does not mean that the temperature coefficient will be zero. These two combinations basically switch off the TC compensation module, which results in the nominal TC of the IRC1M.

Upon detection of a status change (UPOSC) the OSCIF flag is set. Going into Full Stop Mode or disabling the oscillator can also cause a status change of UPOSC.

Any change in PLL configuration or any other event which causes the PLL lock status to be cleared leads to a loss of the oscillator status information as well (UPOSC=0).

Oscillator status change interrupts are locally enabled with the OSCIE bit.

NOTE

Loosing the oscillator status (UPOSC=0) affects the clock configuration of the system¹. This needs to be dealt with in application software.

9.6.1.4 Low-Voltage Interrupt (LVI)

In FPM the input voltage VDDA is monitored. Whenever VDDA drops below level V_{LVIA} , the status bit LVDS is set to 1. When VDDA rises above level V_{LVID} the status bit LVDS is cleared to 0. An interrupt, indicated by flag LVIF = 1, is triggered by any change of the status bit LVDS if interrupt enable bit LVIE = 1.

9.6.1.5 HTI - High Temperature Interrupt

In FPM the junction temperature T_J is monitored. Whenever T_J exceeds level T_{HTIA} the status bit HTDS is set to 1. Vice versa, HTDS is reset to 0 when T_J get below level T_{HTID} . An interrupt, indicated by flag HTIF = 1, is triggered by any change of the status bit HTDS, if interrupt enable bit HTIE = 1.

9.6.1.6 Autonomous Periodical Interrupt (API)

The API sub-block can generate periodical interrupts independent of the clock source of the MCU. To enable the timer, the bit APIFE needs to be set.

The API timer is either clocked by the Autonomous Clock (ACLK - trimmable internal RC oscillator) or the Bus Clock. Timer operation will freeze when MCU clock source is selected and Bus Clock is turned off. The clock source can be selected with bit APICLK. APICLK can only be written when APIFE is not set.

The APIR[15:0] bits determine the interrupt period. APIR[15:0] can only be written when APIFE is cleared. As soon as APIFE is set, the timer starts running for the period selected by APIR[15:0] bits. When the configured time has elapsed, the flag APIF is set. An interrupt, indicated by flag APIF = 1, is triggered if interrupt enable bit APIE = 1. The timer is re-started automatically again after it has set APIF.

The procedure to change APICLK or APIR[15:0] is first to clear APIFE, then write to APICLK or APIR[15:0], and afterwards set APIFE.

The API Trimming bits ACLKTR[5:0] must be set so the minimum period equals 0.2 ms if stable frequency is desired.

See Table 9-21 for the trimming effect of ACLKTR[5:0].

^{1.} For details please refer to "<st-blue>9.4.6 System Clock Configurations"

10.5.2.12 ADC Conversion Interrupt Flag Register (ADCCONIF)

After being set any of these bits can be cleared by writing a value of 1'b1. All bits are cleared if bit ADC_EN is clear or via ADC soft-reset (bit ADC_SR set). Writing any flag with value 1'b0 does not clear the flag. Writing any flag with value 1'b1 does not set the flag.

Module Base + 0x000C

Figure 10-15. ADC Conversion Interrupt Flag Register (ADCCONIF)

Read: Anytime

Write: Anytime

Table 10-17. ADCCONIF Field Descriptions

Field	Description
15-1 CON_IF[15:1]	Conversion Interrupt Flags — These bits could be set by the binary coded interrupt select bits INTFLG_SEL[3:0] when the corresponding conversion command has been processed and related data has been stored to RAM. See also notes below.
0 EOL_IF	End Of List Interrupt Flag — This bit is set by the binary coded conversion command type select bits CMD_SEL[1:0] for "end of list" type of commands and after such a command has been processed and the related data has been stored RAM. See also second note below

NOTE

These bits can be used to indicate if a certain packet of conversion results is available. Clearing a flag indicates that conversion results have been retrieved by software and the flag can be used again (see also Section 10.9.6, "RVL swapping in RVL double buffer mode and related registers ADCIMDRI and ADCEOLRI.

NOTE

Overrun situation of a flag CON_IF[15:1] and EOL_IF are indicated by flag CONIF_OIF.

Digital Analog Converter (DAC_8B5V_V2)

11.3.4 AMPM Input Pin

This analog pin is used as input for the operational amplifier negative input pin, if the according mode is selected, see register bit DACM[2:0].

11.4 Memory Map and Register Definition

This sections provides the detailed information of all registers for the DAC_8B5V module.

11.4.1 Register Summary

Figure 11-2 shows the summary of all implemented registers inside the DAC_8B5V module.

```
NOTE
```

Register Address = Module Base Address + Address Offset, where the Module Base Address is defined at the MCU level and the Address Offset is defined at the module level.

Address Offset Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
0x0000	R			0	0	0	DACM[2:0]				
DACCIL	W		DIVIC					DACIN[2.0]			
0x0001	R	0	0	0	0	0	0	0	0		
Reserved	W										
0x0002	R	R									
DACVOL	W	VOLTAGE[7:0]									
0x0003 - 0x0006	R	0	0	0	0	0	0	0	0		
Reserved	W										
0x0007	R	0									
Reserved	w		Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		

Figure 11-2. DAC_8B5V Register Summary

11.4.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register diagram with an associated figure number. Details of register bit and field function follow the register diagrams, in bit order.

Table 17-10. PWMCTL Field Descriptions

Note: Bits related to available channels have functional significance. Writing to unavailable bits has no effect. Read from unavailable bits return a zero

Field	Description
7 CON67	 Concatenate Channels 6 and 7 Channels 6 and 7 are separate 8-bit PWMs. Channels 6 and 7 are concatenated to create one 16-bit PWM channel. Channel 6 becomes the high order byte and channel 7 becomes the low order byte. Channel 7 output pin is used as the output for this 16-bit PWM (bit 7 of port PWMP). Channel 7 clock select control-bit determines the clock source, channel 7 polarity bit determines the polarity, channel 7 enable bit enables the output and channel 7 center aligned enable bit determines the output mode.
6 CON45	 Concatenate Channels 4 and 5 Channels 4 and 5 are separate 8-bit PWMs. Channels 4 and 5 are concatenated to create one 16-bit PWM channel. Channel 4 becomes the high order byte and channel 5 becomes the low order byte. Channel 5 output pin is used as the output for this 16-bit PWM (bit 5 of port PWMP). Channel 5 clock select control-bit determines the clock source, channel 5 polarity bit determines the polarity, channel 5 enable bit enables the output and channel 5 center aligned enable bit determines the output mode.
5 CON23	 Concatenate Channels 2 and 3 Channels 2 and 3 are separate 8-bit PWMs. Channels 2 and 3 are concatenated to create one 16-bit PWM channel. Channel 2 becomes the high order byte and channel 3 becomes the low order byte. Channel 3 output pin is used as the output for this 16-bit PWM (bit 3 of port PWMP). Channel 3 clock select control-bit determines the clock source, channel 3 polarity bit determines the polarity, channel 3 enable bit enables the output and channel 3 center aligned enable bit determines the output mode.
4 CON01	 Concatenate Channels 0 and 1 Channels 0 and 1 are separate 8-bit PWMs. Channels 0 and 1 are concatenated to create one 16-bit PWM channel. Channel 0 becomes the high order byte and channel 1 becomes the low order byte. Channel 1 output pin is used as the output for this 16-bit PWM (bit 1 of port PWMP). Channel 1 clock select control-bit determines the clock source, channel 1 polarity bit determines the polarity, channel 1 enable bit enables the output and channel 1 center aligned enable bit determines the output mode.
3 PSWAI	 PWM Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling the input clock to the prescaler. O Allow the clock to the prescaler to continue while in wait mode. 1 Stop the input clock to the prescaler whenever the MCU is in wait mode.
2 PFRZ	PWM Counters Stop in Freeze Mode — In freeze mode, there is an option to disable the input clock to the prescaler by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in freeze mode, the input clock to the prescaler is disabled. This feature is useful during emulation as it allows the PWM function to be suspended. In this way, the counters of the PWM can be stopped while in freeze mode so that once normal program flow is continued, the counters are re-enabled to simulate real-time operations. Since the registers can still be accessed in this mode, to re-enable the prescaler clock, either disable the PFRZ bit or exit freeze mode. 1 Disable PWM input clock to the prescaler whenever the part is in freeze mode. This is useful for emulation.

17.3.2.7 PWM Clock A/B Select Register (PWMCLKAB)

Each PWM channel has a choice of four clocks to use as the clock source for that channel as described below.

17.4.2 PWM Channel Timers

The main part of the PWM module are the actual timers. Each of the timer channels has a counter, a period register and a duty register (each are 8-bit). The waveform output period is controlled by a match between the period register and the value in the counter. The duty is controlled by a match between the duty register and the counter value and causes the state of the output to change during the period. The starting polarity of the output is also selectable on a per channel basis. Shown below in Figure 17-16 is the block diagram for the PWM timer.

PWMEx

Figure 17-16. PWM Timer Channel Block Diagram

17.4.2.1 PWM Enable

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx bits are set (PWMEx = 1), the associated PWM output signal is enabled immediately. However, the actual PWM waveform is not available on the associated PWM output until its clock source begins its next cycle due to the synchronization of PWMEx and the clock source. An exception to this is when channels are concatenated. Refer to Section 17.4.2.7, "PWM 16-Bit Functions" for more detail.

NOTE

The first PWM cycle after enabling the channel can be irregular.

Pulse-Width Modulator (S12PWM8B8CV2)

Clock Source = bus clock, where bus clock= 10 MHz (100 ns period) PPOLx = 0 PWMPERx = 4 PWMDTYx = 1 PWMx Frequency = 10 MHz/8 = 1.25 MHz PWMx Period = 800 ns PWMx Duty Cycle = 3/4 *100% = 75%

Shown in Figure 17-20 is the output waveform generated.

Figure 17-20. PWM Center Aligned Output Example Waveform

17.4.2.7 PWM 16-Bit Functions

The scalable PWM timer also has the option of generating up to 8-channels of 8-bits or 4-channels of 16-bits for greater PWM resolution. This 16-bit channel option is achieved through the concatenation of two 8-bit channels.

The PWMCTL register contains four control bits, each of which is used to concatenate a pair of PWM channels into one 16-bit channel. Channels 6 and 7 are concatenated with the CON67 bit, channels 4 and 5 are concatenated with the CON45 bit, channels 2 and 3 are concatenated with the CON23 bit, and channels 0 and 1 are concatenated with the CON01 bit.

NOTE

Change these bits only when both corresponding channels are disabled.

When channels 6 and 7 are concatenated, channel 6 registers become the high order bytes of the double byte channel, as shown in Figure 17-21. Similarly, when channels 4 and 5 are concatenated, channel 4 registers become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated, channel 2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are concatenated, channel 0 registers become the high order bytes of the double byte soft the double byte channel.

When using the 16-bit concatenated mode, the clock source is determined by the low order 8-bit channel clock select control bits. That is channel 7 when channels 6 and 7 are concatenated, channel 5 when channels 4 and 5 are concatenated, channel 3 when channels 2 and 3 are concatenated, and channel 1 when channels 0 and 1 are concatenated. The resulting PWM is output to the pins of the corresponding low order 8-bit channel as also shown in Figure 17-21. The polarity of the resulting PWM output is controlled by the PPOLx bit of the corresponding low order 8-bit channel as well.

Serial Communication Interface (S12SCIV6)

Figure 18-25 shows the effect of noise early in the start bit time. Although this noise does not affect proper synchronization with the start bit time, it does set the noise flag.

Figure 18-26 shows a burst of noise near the beginning of the start bit that resets the RT clock. The sample after the reset is low but is not preceded by three high samples that would qualify as a falling edge. Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may set the framing error flag.

Flash Module (S12ZFTMRZ)

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanica	L OUTLINE	PRINT VERSION NOT TO SCALE			
TITLE:		DOCUMENT NO	RE∨: D			
LOW PROFILE QUAD FLAT PA	ACK (LQFP)	CASE NUMBER	19 MAY 2005			
32 LEAD, 0.8 PITCH (7 X	/ X 1.4)	STANDARD: JEDEC MS-026 BBA				

Detailed Register Address Map

				•		,				
Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x05D7	TIM0TC3L	R W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x05D8	TIM0TC4H	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05D9	TIM0TC4L	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05DA	TIM0TC5H	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05DB	TIM0TC5L	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0x05DC– 0x05EB	Reserved	R W								
0x05EC	TIM0OCPD	R W	RESERVE D	RESERVE D	OCPD5	OCPD4	OCPD3	OCPD2	OCPD1	OCPD0
0x05ED	Reserved	R W								
0x05EE	TIM0PTPSR	R W	PTPS7	PTPS6	PTPS5	PTPS4	PTPS3	PTPS2	PTPS1	PTPS0
0x05EF	Reserved	R W								

O.11 0x05C0-0x05FF TIM0 (continued)

O.12 0x0600-0x063F ADC0

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0	
0x0600	ADC0CTL_0	R W	ADC_EN	ADC_SR	FRZ_MOD	SWAI	ACC_CFG[1:0]		STR_SEQ A	MOD_CF G	
0x0601 ADC	ADC0CTL 1	R	CSL_BMO	RVL_BMO	SMOD_A	AUT_RST	0	0	0	0	
	_	W	D	D	CC	A					
0x0602	0x0602 ADC0STS	R	CSL_SEL	RVL_SEL	DBECC_E RR	Reserved	READY	0	0	0	
		W									
0x0603	ADC0TIM	R	0	DBS(E·0)							
		W		PK5[0.0]							
0x0604 ADC0F		R		0	0	0	0	SPES(2:0)			
		W	DOM								
0,0605	ADC0FLWCTL	R	SEQA	TRIG	RSTA	LDOK	0	0	0	0	
UXU6U5 F		W									
0x0606		R		CMD_EIE	EOL_EIE	Reserved	TRIG_EIE	RSTAR_EI		0	
	ADCULIE	W						E	LDOK_EIE		
0x0607	ADC0IE	R	SEQAD_I	CONIF_OI	Reserved	0	0	0	0	0	
		W	E	E							