

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S12Z
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SCI, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	5.5V ~ 18V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12zvl16f0mlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.2 Register Descriptions

3.6.2.1 ACMP Control Register 0 (ACMPC0)

Read: Anytime Write: Anytime

Table 3-2. ACMPC0 Register Field Descriptions

Field	Description
7 ACE	 ACMP Enable — This bit enables the ACMP module. When set the related input pins are connected with the low pass input filters. Note: After setting ACE to 1 an initialization delay of 127 bus clock cycles must be accounted for. During this time the comparator output path to all subsequent logic (ACO, ACIF, timer link) is held at its current state. When setting ACE to 0 the current state of the comparator will be maintained.For ACMPO a delay of t_{ACMP_delay_en} must be accounted for. 0 ACMP disabled 1 ACMP enabled
6 ACOPE	ACMP Output Pin Enable — This bit enables the ACMP output on external ACMPO pin. 0 ACMP output pin disabled 1 ACMP output is driven out to ACMPO
5 ACOPS	ACMP Output Polarity Select — This bit selects the output polarity on ACMPO. 0 ACMPO is ACMP output 1 ACMPO is ACMP output inverted
4 ACDLY	ACMP Input Filter Select for Inputs ACMP_0 and ACMP_1 — This bit selects the analog input filter characteristics resulting in a signal propagation delay of t _{ACMP_delay} . 0 Select input filter with low speed characteristics 1 Select input filter with high speed characteristics

Field	Description
7–0 (MMCPCH) 7–0 (MMCPCM) 7–0 (MMCPCL) CPUPC[23:0]	S12ZCPU Program Counter Value — The CPUPC[23:0] stores the CPU's program counter value at the time the access violation occurred. CPUPC[23:0] always points to the instruction which triggered the violation. These bits are undefined if the error code registers (MMCECn) are cleared.

4.4 Functional Description

This section provides a complete functional description of the S12ZDBG module.

4.4.1 Global Memory Map

The S12ZDBG maps all on-chip resources into an 16MB address space, the global memory map. The exact resource mapping is shown in Figure 4-8. The global address space is used by the S12ZCPU, ADC, and the S12ZBDC module.

Read: All modes through BDC operation only.

Write: All modes through BDC operation only, when not secured, but subject to the following:

- Bits 7,3 and 2 can only be written by WRITE_BDCCSR commands.
- Bit 5 can only be written by WRITE_BDCCSR commands when the device is not in stop mode.
- Bits 6, 1 and 0 cannot be written. They can only be updated by internal hardware.

Table 5-5. BDCCSRH Field Descriptions

Field	Description
7 ENBDC	 Enable BDC — This bit controls whether the BDC is enabled or disabled. When enabled, active BDM can be entered and non-intrusive commands can be carried out. When disabled, active BDM is not possible and the valid command set is restricted. Further information is provided in Table 5-7. 0 BDC disabled 1 BDC enabled Note: ENBDC is set out of reset in special single chip mode.
6 BDMACT	 BDM Active Status — This bit becomes set upon entering active BDM. BDMACT is cleared as part of the active BDM exit sequence. 0 BDM not active 1 BDM active Note: BDMACT is set out of reset in special single chip mode.
5 BDCCIS	 BDC Continue In Stop — If ENBDC is set then BDCCIS selects the type of BDC operation in stop mode (as shown in Table 5-3). If ENBDC is clear, then the BDC has no effect on stop mode and no BDC communication is possible. If ACK pulse handshaking is enabled, then the first ACK pulse following stop mode entry is a long ACK. This bit cannot be written when the device is in stop mode. Only the BDCCLK clock continues in stop mode All clocks continue in stop mode
3 STEAL	 Steal enabled with ACK— This bit forces immediate internal accesses with the ACK handshaking protocol enabled. If ACK handshaking is disabled then BDC accesses steal the next bus cycle. 0 If ACK is enabled then BDC accesses await a free cycle, with a timeout of 512 cycles 1 If ACK is enabled then BDC accesses are carried out in the next bus cycle
2 CLKSW	 Clock Switch — The CLKSW bit controls the BDCSI clock source. This bit is initialized to "0" by each reset and can be written to "1". Once it has been set, it can only be cleared by a reset. When setting CLKSW a minimum delay of 150 cycles at the initial clock speed must elapse before the next command can be sent. This guarantees that the start of the next BDC command uses the new clock for timing subsequent BDC communications. 0 BDCCLK used as BDCSI clock source 1 Device fast clock used as BDCSI clock source Note: Refer to the device specification to determine which clock connects to the BDCCLK and fast clock inputs.
1 UNSEC	 Unsecure — If the device is unsecure, the UNSEC bit is set automatically. 0 Device is secure. 1 Device is unsecure. Note: When UNSEC is set, the device is unsecure and the state of the secure bits in the on-chip Flash EEPROM can be changed.
0 ERASE	 Erase Flash — This bit can only be set by the dedicated ERASE_FLASH command. ERASE is unaffected by write accesses to BDCCSR. ERASE is cleared either when the mass erase sequence is completed, independent of the actual status of the flash array or by a soft reset. Reading this bit indicates the status of the requested mass erase sequence. 0 No flash mass erase sequence pending completion 1 Flash mass erase sequence pending completion.

ECC Interrupt Flag Register (ECCIF) 8.2.2.3

Write: Anytime, write 1 to clear

Figure 8-4. ECC Interrupt Flag Register (ECCIF)

Table	8-4.	ECCIF	Field	Description
Iabio	• ••	2001	1 1010	Docomption

Field	Description
0 SBEEIF	 Single bit ECC Error Interrupt Flag — The flag is set to 1 when a single bit ECC error occurs. 0 No occurrences of single bit ECC error since the last clearing of the flag 1 Single bit ECC error has occured since the last clearing of the flag

8.2.2.7 ECC Debug Command (ECCDCMD)

¹ Read: Anytime

Write: Anytime, in special mode only

Figure 8-8. ECC Debug Command (ECCDCMD)

Table 8-8. ECCDCMD Field Description

Field	Description
7 ECCDRR	 ECC Disable Read Repair Function— Writing one to this register bit will disable the automatic single bit ECC error repair function during read access; see also chapter 8.3.7, "ECC Debug Behavior". 0 Automatic single ECC error repair function is enabled 1 Automatic single ECC error repair function is disabled
1 ECCDW	ECC Debug Write Command — Writing one to this register bit will perform a debug write access, to the system memory. During this access the debug data word (DDATA) and the debug ECC value (DECC) will be written to the system memory address defined by DPTR. If the debug write access is done, this bit is cleared. Writing 0 has no effect. It is not possible to set this bit if the previous debug access is ongoing (ECCDW or ECCDR bit set).
0 ECCDR	ECC Debug Read Command — Writing one to this register bit will perform a debug read access from the system memory address defined by DPTR. If the debug read access is done, this bit is cleared and the raw memory read data are available in register DDATA and the raw ECC value is available in register DECC. Writing 0 has no effect. If the ECCDW and ECCDR bit are set at the same time, then only the ECCDW bit is set and the Debug Write Command is performed. It is not possible to set this bit if the previous debug access is ongoing (ECCDW or ECCDR bit set).

8.3 Functional Description

Depending on the system integration the max memory access width can be 4 byte, but the ECC value is generated based on an aligned 2 byte data word. Depending on the access type, the access is separated into different access cycles. Table 8-9 shows the different access types with the expected number of access cycles and the performed internal operations.

Table 8-9	. Memory	access	cycles
-----------	----------	--------	--------

Access type	ECC error	access cycle	Internal operation	Memory content	Error indication
Aligned write		1	write to memory	new data	

Access type	ECC error	access cycle	Internal operation	Memory content	Error indication											
	20	2	read data from the memory	old + new												
	10	2	write old + new data to the memory data													
	single		read data from the memory	corrected +	SBEEIF											
Non-aligned write	bit	2	write corrected + new data to the memory	new data												
	double	2	read data from the memory	unchanged	machine exception											
	bit	2	ignore write data	unchangeu												
	no	1	read from memory	unchanged	-											
read access	single	single	single	single	single	single	single	single	single	single	single	single	11	read data from the memory	corrected	SBEEIE
	bit	I	write corrected data back to memory	data	ODEEII											
	double bit	1	read from memory	unchanged	data mark as invalid machine exception											

Table 8-9. Memory access cycles

¹ The next back to back read access to the memory will be delayed by one clock cycle

The single bit ECC error generates an interrupt when enabled. The double bit ECC errors are reported by the SRAM_ECC module, but handled at MCU level. For more information, see the MMC description.

8.3.1 Aligned Memory Write Access

During an aligned memory write access, no ECC check is performed. The internal ECC logic generates the new ECC value based on the write data and writes the data word together with the generated ECC value into the memory.

8.3.2 Non-aligned Memory Write Access

Non-aligned write accesses are separated into a read-modify-write operation. During the first cycle, the logic reads the data from the memory and performs an ECC check. If no ECC errors were detected then the logic generates the new ECC value based on the read and write data and writes the new data word together with the new ECC value into the memory.

If the module detects a single bit ECC error during the read cycle, then the logic generates the new ECC value based on the corrected read and new write read. In the next cycle, the new data word and the new ECC value are written into the memory.

The SBEEIF bit is set. Hence, the single bit ECC error was corrected by the write access. Figure 8-9 shows an example of a 2 byte non-aligned memory write access.

If the module detects a double bit ECC error during the read cycle, then the write access to the memory is blocked and the initiator module is informed about the error.

S12 Clock, Reset and Power Management Unit (S12CPMU_UHV)

9.1.2 Modes of Operation

This subsection lists and briefly describes all operating modes supported by the S12CPMU_UHV.

9.1.2.1 Run Mode

The voltage regulator is in Full Performance Mode (FPM).

NOTE

The voltage regulator is active, providing the nominal supply voltages with full current sourcing capability (see also Appendix for VREG electrical parameters). The features ACLK clock source, Low Voltage Interrupt (LVI), Low Voltage Reset (LVR) and Power-On Reset (POR) are available.

The Phase Locked Loop (PLL) is on.

The Internal Reference Clock (IRC1M) is on.

The API is available.

- PLL Engaged Internal (PEI)
 - This is the default mode after System Reset and Power-On Reset.
 - The Bus Clock is based on the PLLCLK.
 - After reset the PLL is configured for 50MHz VCOCLK operation.
 - Post divider is 0x03, so PLLCLK is VCOCLK divided by 4, that is 12.5MHz and Bus Clock is 6.25MHz.

The PLL can be re-configured for other bus frequencies.

— The reference clock for the PLL (REFCLK) is based on internal reference clock IRC1M.

• PLL Engaged External (PEE)

- The Bus Clock is based on the PLLCLK.
- This mode can be entered from default mode PEI by performing the following steps:
 - Configure the PLL for desired bus frequency.
 - Program the reference divider (REFDIV[3:0] bits) to divide down oscillator frequency if necessary.
 - Enable the external oscillator (OSCE bit).
 - Wait for oscillator to start up (UPOSC=1) and PLL to lock (LOCK=1).

• PLL Bypassed External (PBE)

- The Bus Clock is based on the Oscillator Clock (OSCCLK).
- The PLLCLK is always on to qualify the external oscillator clock. Therefore it is necessary to make sure a valid PLL configuration is used for the selected oscillator frequency.
- This mode can be entered from default mode PEI by performing the following steps:
 - Make sure the PLL configuration is valid for the selected oscillator frequency.

S12 Clock, Reset and Power Management Unit (S12CPMU_UHV)

	RTR[6:4] =									
RTR[3:0]	000 (1x10 ³)	001 (2x10 ³)	010 (5x10 ³)	011 (10x10 ³)	100 (20x10 ³)	101 (50x10 ³)	110 (100x10 ³)	111 (200x10 ³)		
0000 (÷1)	1x10 ³	2x10 ³	5x10 ³	10x10 ³	20x10 ³	50x10 ³	100x10 ³	200x10 ³		
0001 (÷2)	2x10 ³	4x10 ³	10x10 ³	20x10 ³	40x10 ³	100x10 ³	200x10 ³	400x10 ³		
0010 (÷3)	3x10 ³	6x10 ³	15x10 ³	30x10 ³	60x10 ³	150x10 ³	300x10 ³	600x10 ³		
0011 (÷4)	4x10 ³	8x10 ³	20x10 ³	40x10 ³	80x10 ³	200x10 ³	400x10 ³	800x10 ³		
0100 (÷5)	5x10 ³	10x10 ³	25x10 ³	50x10 ³	100x10 ³	250x10 ³	500x10 ³	1x10 ⁶		
0101 (÷6)	6x10 ³	12x10 ³	30x10 ³	60x10 ³	120x10 ³	300x10 ³	600x10 ³	1.2x10 ⁶		
0110 (÷7)	7x10 ³	14x10 ³	35x10 ³	70x10 ³	140x10 ³	350x10 ³	700x10 ³	1.4x10 ⁶		
0111 (÷8)	8x10 ³	16x10 ³	40x10 ³	80x10 ³	160x10 ³	400x10 ³	800x10 ³	1.6x10 ⁶		
1000 (÷9)	9x10 ³	18x10 ³	45x10 ³	90x10 ³	180x10 ³	450x10 ³	900x10 ³	1.8x10 ⁶		
1001 (÷10)	10 x10 ³	20x10 ³	50x10 ³	100x10 ³	200x10 ³	500x10 ³	1x10 ⁶	2x10 ⁶		
1010 (÷11)	11 x10 ³	22x10 ³	55x10 ³	110x10 ³	220x10 ³	550x10 ³	1.1x10 ⁶	2.2x10 ⁶		
1011 (÷12)	12x10 ³	24x10 ³	60x10 ³	120x10 ³	240x10 ³	600x10 ³	1.2x10 ⁶	2.4x10 ⁶		
1100 (÷13)	13x10 ³	26x10 ³	65x10 ³	130x10 ³	260x10 ³	650x10 ³	1.3x10 ⁶	2.6x10 ⁶		
1101 (÷14)	14x10 ³	28x10 ³	70x10 ³	140x10 ³	280x10 ³	700x10 ³	1.4x10 ⁶	2.8x10 ⁶		
1110 (÷15)	15x10 ³	30x10 ³	75x10 ³	150x10 ³	300x10 ³	750x10 ³	1.5x10 ⁶	3x10 ⁶		
1111 (÷16)	16x10 ³	32x10 ³	80x10 ³	160x10 ³	320x10 ³	800x10 ³	1.6x10 ⁶	3.2x10 ⁶		

Table 9-13. RT	Frequency	Divide Rates	for	RTDEC=1
----------------	-----------	---------------------	-----	---------

10.5 Memory Map and Register Definition

This section provides a detailed description of all registers accessible in the ADC12B_LBA.

10.5.1 Module Memory Map

Figure 10-3 gives an overview of all ADC12B_LBA registers.

NOTE

Register Address = Base Address + Address Offset, where the Base Address is defined at the MCU level and the Address Offset is defined at the module level.

Address	Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000	ADCCTL_0	R W	ADC_EN	ADC_SR	FRZ_MOD	SWAI	ACC_C	FG[1:0]	STR_SEQ A	MOD_CFG
0v0001	ΔΠΟΟΤΙ 1	R	CSL_BMO	RVL_BMO	SMOD_AC	AUT_RST	0	0	0	0
0,0001	ADCOLL_I	W	D	D	С	A				
0x0002	ADCSTS	R	CSL_SEL	RVL_SEL	DBECC_E RR	Reserved	READY	0	0	0
		W	0							
0x0003	ADCTIM	к W	0				PRS[6:0]			
020004		R	р ім	0	0	0	0		SDE6(2:01	
0x0004	ADCFINIT	W	DJM						SRES[2.0]	
0x0005	ADCFLWCTL	R	SEQA	TRIG	RSTA	LDOK	0	0	0	0
		W		_		_				0
0x0006	ADCEIE	к W	IA_EIE	CMD_EIE	EOL_EIE	Reserved	TRIG_EIE	E E	LDOK_EIE	0
0x0007	ADCIE	R	SEQAD IE	CONIF_OI	Reserved	0	0	0	0	0
		W		E						0
0x0008	ADCEiF	к W	IA_EIF	CMD_EIF	EOL_EIF	Reserved	TRIG_EIF	RSTAR_EI F	LDOK_EIF	0
0x0009	ADCIF	R	SEQAD IF	CONIF_OI	Reserved	0	0	0	0	0
		W		F						
0x000A	ADCCONIE_0	к W				CON_	_IE[15:8]			
0x000B	ADCCONIE_1	R W				CON_IE[7:1]			EOL_IE
0x000C	ADCCONIF_0	R W		CON_IF[15:8]						
0x000D	ADCCONIF_1	R W		CON_IF[7:1] EOL_IF						EOL_IF
		R	CSL_IMD	RVL_IMD	0	0	0	0	0	0
UXUUUE										
0x000F	ADCIMDRI 1	R	0	0	RIDX_IMD[5:0]					
0,0001		W								
				= Unimplemented or Reserved						

Figure 10-3. ADC12B_LBA Register Summary (Sheet 1 of 3)

MC912ZVL Family Reference Manual, Rev. 2.41

Chapter 11 Digital Analog Converter (DAC_8B5V_V2)

11.1 Revision History

Table 11-1. Revision History Table

1.4	17-Nov10	11.2.2	Update the behavior of the DACU pin during stop mode
1.5	29-Aug13	11.2.2, 11.3	added note about settling time added link to DACM register inside section 11.3
2.0	30-Jan14	11.2.3, 11.4.2.1, 11.5.4	added mode "Internal DAC only"
2.1	13-May15	Figure 11-5	correct read value of reserved register, Figure 11-5

Glossary

Table 11-2. Terminology

Term	Meaning
DAC	Digital to Analog Converter
VRL	Low Reference Voltage
VRH	High Reference Voltage
FVR	Full Voltage Range
SSC	Special Single Chip

11.2 Introduction

The DAC_8B5V module is a digital to analog converter. The converter works with a resolution of 8 bit and generates an output voltage between VRL and VRH.

The module consists of configuration registers and two analog functional units, a DAC resistor network and an operational amplifier.

The configuration registers provide all required control bits for the DAC resistor network and for the operational amplifier.

The DAC resistor network generates the desired analog output voltage. The unbuffered voltage from the DAC resistor network output can be routed to the external DACU pin. When enabled, the buffered voltage from the operational amplifier output is available on the external AMP pin.

The operational amplifier is also stand alone usable.

Figure 11-1 shows the block diagram of the DAC_8B5V module.

13.1.1 Glossary

	-
ACK	Acknowledge of CAN message
CAN	Controller Area Network
CRC	Cyclic Redundancy Code
EOF	End of Frame
FIFO	First-In-First-Out Memory
IFS	Inter-Frame Sequence
SOF	Start of Frame
CPU bus	CPU related read/write data bus
CAN bus	CAN protocol related serial bus
oscillator clock	Direct clock from external oscillator
bus clock	CPU bus related clock
CAN clock	CAN protocol related clock

Table 13-2. Terminology

13.1.2 Block Diagram

Figure 13-1. MSCAN Block Diagram

17.4.2 PWM Channel Timers

The main part of the PWM module are the actual timers. Each of the timer channels has a counter, a period register and a duty register (each are 8-bit). The waveform output period is controlled by a match between the period register and the value in the counter. The duty is controlled by a match between the duty register and the counter value and causes the state of the output to change during the period. The starting polarity of the output is also selectable on a per channel basis. Shown below in Figure 17-16 is the block diagram for the PWM timer.

PWMEx

Figure 17-16. PWM Timer Channel Block Diagram

17.4.2.1 PWM Enable

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx bits are set (PWMEx = 1), the associated PWM output signal is enabled immediately. However, the actual PWM waveform is not available on the associated PWM output until its clock source begins its next cycle due to the synchronization of PWMEx and the clock source. An exception to this is when channels are concatenated. Refer to Section 17.4.2.7, "PWM 16-Bit Functions" for more detail.

NOTE

The first PWM cycle after enabling the channel can be irregular.

*The VLINSUP supply mapping is described in device level documentation

Figure 21-1. S12LINPHYV2 Block Diagram

NOTE

The external 220 pF capacitance between LIN and LGND is strongly recommended for correct operation.

21.2 External Signal Description

This section lists and describes the signals that connect off chip as well as internal supply nodes and special signals.

21.2.1 LIN — LIN Bus Pin

This pad is connected to the single-wire LIN data bus.

21.3.2.1 Port LP Data Register (LPDR)

Read: Anytime Write: Anytime

Table 21-2. LPDR Field Description

Field	Description
1 LPDR1	Port LP Data Bit 1 — The S12LINPHYV2 LPTxD input (see Figure 21-1) can be directly controlled by this register bit. The routing of the LPTxD input is done in the Port Inetrgation Module (PIM). Please refer to the PIM chapter of the device Reference Manual for more info.
0 LPDR0	Port LP Data Bit 0 — Read-only bit. The S12LINPHYV2 LPRxD output state can be read at any time.

21.3.2.2 LIN Control Register (LPCR)

¹ Read: Anytime

Write: Anytime,

Table 21-3. LPCR Field Description

Field	Description
3 LPE	 LIN Enable Bit — If set, this bit enables the LIN Physical Layer. The LIN Physical Layer is in shutdown mode. None of the LIN Physical Layer functions are available, except that the bus line is held in its recessive state by a high ohmic (330kΩ) resistor. All registers are normally accessible. The LIN Physical Layer is not in shutdown mode.
2 RXONLY	Receive Only Mode bit — This bit controls RXONLY mode. 0 The LIN Physical Layer is not in receive only mode. 1 The LIN Physical Layer is in receive only mode.

MC912ZVL Family Reference Manual, Rev. 2.41

Figure 22-3. Memory Controller Resource Memory Map (NVM Resources Area)

22.3.2 Register Descriptions

The Flash module contains a set of 24 control and status registers located between Flash module base + 0x0000 and 0x0017.

In the case of the writable registers, the write accesses are forbidden during Flash command execution (for more detail, see Caution note in Section 22.3).

A summary of the Flash module registers is given in Figure 22-4 with detailed descriptions in the following subsections.

Address & Name		7	6	5	4	3	2	1	0
0x0000 FCLKDIV	R W	FDIVLD	FDIVLCK	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
0x0001	R	KEYEN1	KEYEN0	RNV5	RNV4	RNV3	RNV2	SEC1	SEC0
FSEC	W								
0x0002	R	0	0	0	0	0	CCORIX2	CCORIX1	CCORIXO
FCCOBIX	W						CCOBIAZ	CCOBIAT	CCOBINO

Flash Module (S12ZFTMRZ)

block can support. Right after reset the Flash will be configured to run with the maximum amount of wait-states enabled; if the user application is setup to run at a slower frequency the control bits FCNFG[WSTAT] (see Section 22.3.2.5) can be configured by the user to disable the generation of wait-states, so it does not impose a performance penalty to the system if the read timing of the S12Z core is setup to be within the margins of the Flash block. For a definition of the frequency values where wait-states can be disabled please refer to the device electrical parameters.

The following sequence must be followed when the transition from a higher frequency to a lower frequency is going to happen:

- Flash resets with wait-states enabled;
- system frequency must be configured to the lower target;
- user writes to FNCNF[WSTAT] to disable wait-states;
- user reads the value of FPSTAT[WSTATACK], the new wait-state configuration will be effective when it reads as 1;
- user must re-write FCLKDIV to set a new value based on the lower frequency.

The following sequence must be followed on the contrary direction, going from a lower frequency to a higher frequency:

- user writes to FCNFG[WSTAT] to enable wait-states;
- user reads the value of FPSTAT[WSTATACK], the new wait-state configuration will be effective when it reads as 1;
- user must re-write FCLKDIV to set a new value based on the higher frequency;
- system frequency must be set to the upper target.

CAUTION

If the application is going to require the frequency setup to change, the value to be loaded on register FCLKDIV will have to be updated according to the new frequency value. In this scenario the application must take care to avoid locking the value of the FCLKDIV register: bit FDIVLCK must not be set if the value to be loaded on FDIV is going to be re-written, otherwise a reset is going to be required. Please refer to Section 22.3.2.1, "Flash Clock Divider Register (FCLKDIV) and Section 22.4.5.1, "Writing the FCLKDIV Register.

22.4.4 Internal NVM resource

IFR is an internal NVM resource readable by CPU. The IFR fields are shown in Table 22-4.

The NVM Resource Area global address map is shown in Table 22-5.

22.4.5 Flash Command Operations

Flash command operations are used to modify Flash memory contents.

The next sections describe:

Table A-11. 3.3V I/O Characteristics (Junction Temperature	From –40°C To +175°C)
--	----------------------	-----------------------

Condi unles	Conditions are $3.2V \le V_{DDX} \le 3.39V$, unless otherwise noted. I/O Characteristics for all GPIO pins (defined in A.1.1.1/A-671).						
18	Internal pull up current (All GPIO except RESET) V _{IH} min > input voltage > V _{IL} max	I _{PUL}	-1	_	-70	μA	
19	Internal pull up resistance (RESET pin)	R _{PUL}	2.5	5	10	KΩ	
20	Internal pull down current V _{IH} min > input voltage > V _{IL} max	I _{PDH}	1	_	70	μA	
21	Input capacitance	C _{in}	_	7	—	pF	
22	Injection current ⁴ Single pin limit Total device limit, sum of all injected currents	I _{ICS} I _{ICP}	-2.5 -25	_	2.5 25	mA	

1 Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8°°C to 12°°C in the temperature range from 50°C to 125°C.

² Not applicable for PP3 and PP5 if VSSX2 is not available

³ this value is derived from the spice simulations and NOT guaranteed by test

⁴ For sake of ADC conversion accuracy, the application should avoid to inject any current into pins PAD0/VRH and PAD1/VRL. Refer to Section A.1.2, "Current Injection" for more details

Table A-12. Pin Timing Characteristics

Conditions are

MC9S12ZVL(S)32\16\8: $3.13V \le V_{DDX} \le 5.5V$,

MC9S12ZVL(A)128\96\64: $3.2V \le V_{DDX} \le 5.15V$, junction temperature from -40°C to +175°C, unless otherwise noted I/O Characteristics for all GPIO pins (defined in A.1.1.1/A-671).

Num	Rating	Symbol	Min	Тур	Мах	Unit
1	Port P, S, AD interrupt input pulse filtered (STOP) ¹	t _{P_MASK}	—	—	3	μS
2	Port P, S, AD interrupt input pulse passed (STOP) ¹	t _{P_PASS}	10	—	—	μs
3	Port P, S, AD interrupt input pulse filtered ($\overline{\text{STOP}}$) in number of bus clock cycles of period $1/f_{\text{bus}}$	n _{P_MASK}	—	—	3	
4	Port P, S, AD interrupt input pulse passed ($\overline{\text{STOP}}$) in number of bus clock cycles of period $1/f_{\text{bus}}$	n _{P_PASS}	4	—	_	
5	\overline{IRQ} pulse width, edge-sensitive mode (\overline{STOP}) in number of bus clock cycles of period $1/f_{bus}$	n _{IRQ}	1	—	_	
6	RESET pin input pulse filtered	R _{P_MASK}	—	—	12	ns
7	RESET pin input pulse passed	R _{P_PASS}	22	_	_	ns

¹ Parameter only applies in stop or pseudo stop mode.

A.1.8 **Supply Currents**

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

NOTE

On timers and serial modules a prescaler will eliminate the effect of the jitter to a large extent.

Table B-5. ipll_1v	ld_II18 C	Characteristics
--------------------	-----------	-----------------

Conditions are: MC9S12ZVL(S)32\16\8: $3.13V \le V_{DDX} \le 5.5V$, MC9S12ZVL(A)128\96\64: $3.2V \le V_{DDX} \le 5.15V$, junction temperature from -40°C to +175°C, unless otherwise noted							
Num	Rating	Symbol	Min	Тур	Max	Unit	
1	VCO frequency during system reset	f _{VCORST}	8	-	32	MHz	
2	VCO locking range	f _{VCO}	32	_	64	MHz	
3	Reference Clock	f _{REF}	1		—	MHz	
4	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ¹	
5	Un-Lock Detection	$ \Delta_{unl} $	0.5		2.5	%1	
7	Time to lock	t _{lock}	—	—	150 + 256/f _{REF}	μS	
8	Jitter fit parameter 1 ²	j ₁	_	_	2	%	
9	PLL Clock Monitor Failure assert frequency	f _{PMFA}	0.45	0.8	1.6	MHz	

¹ % deviation from target frequency

² $f_{REF} = 1$ MHz, $f_{BUS} = 32$ MHz

LINPHY Electrical Specifications

12b	Capacitance of the LIN pin, Recessive state	C _{LIN}			45	pF
12c	Capacitance of the LIN pin, Recessive state, 150°C < TJ < 175°C	C _{LIN}			39	pF
13	Internal pull-up (slave)	R _{slave}	27	34	40	kΩ

 ¹For 3.5V<= V_{LINSUP} <5V, the LINPHY is still working but with degraded parametrics.
 ²For 5V<= V_{LINSUP} <5.5V, characterization showed that all parameters generally stay within the indicated specification, except the duty cycles D2 and D4 which may increase and potentially go beyond their maximum limits for highly loaded buses.

³The V_{LINSUP} voltage is provided by the VLINSUP supply. This supply mapping is described in device level documentation.

⁴At temperatures above 25C the current may be naturally limited by the driver, in this case the limitation circuit is not engaged and the flag is not set.

Dynamic Electrical Characteristics D.3

Table D-3. Dynamic electrical characteristics of the LINPHY

Characteristics noted under conditions $5.5V \le V_{LINSUP} \le 18V$ unless otherwise noted^{1 2 3}. Typical values noted reflect the approximate parameter mean at $T_A = 25^{\circ}C$ under nominal conditions unless otherwise noted. Num Symbol Min Max Unit Ratings Тур 1 Minimum duration of wake-up pulse generating a 56 72 120 μS t_{WUFR} wake-up interrupt 2 TxD-dominant timeout (in IRC periods) 16388 16389 t_{DTLIM} t_{IRC} 3 Propagation delay of receiver 6 μS t_{rx pd} 4 Symmetry of receiver propagation delay rising edge -2 2 μS t_{rx sym} w.r.t. falling edge LIN PHYSICAL LAYER: DRIVER CHARACTERISTICS FOR NOMINAL SLEW RATE - 20.0KBIT/S 5 Rising/falling edge time (min to max / max to min) 6.5 t_{rise} μS Over-current masking window (IRC trimmed at 1MHz) 6 15 16 μS **t**OCLIM -40×C < TJ < 175C 7 Duty cycle 1 D1 0.396 $T_{HRec(max)} = 0.744 \times V_{LINSUP}$ $T_{HDom(max)} = 0.581 \text{ x } V_{LINSUP}$ V_{LINSUP} = 5.5V...18V t_{Bit} = 50us $D1 = t_{Bus_rec(min)} / (2 \times t_{Bit})$ 8 Duty cycle 2 D2 0.581 $T_{HRec(min)} = 0.422 \times V_{LINSUP}$ $T_{HDom(min)} = 0.284 \times V_{LINSUP}$ $V_{LINSUP} = 5.5V...18V$ t_{Bit} = 50us $D2 = t_{Bus_{rec}(max)} / (2 \times t_{Bit})$ LIN PHYSICAL LAYER: DRIVER CHARACTERISTICS FOR SLOW SLEW RATE - 10.4KBIT/S

MC912ZVL Family Reference Manual, Rev. 2.41

Appendix K SPI Electrical Specifications

This section provides electrical parametrics and ratings for the SPI.

In Figure K-1 the measurement conditions are listed.

Table K-1. Measurement Conditions

Description	Value	Unit
Drive mode	full drive mode	_
Load capacitance C _{LOAD} ¹ , on all outputs	50	pF
Thresholds for delay measurement points	(35% / 65%) V _{DDX}	V

¹Timing specified for equal load on all SPI output pins. Avoid asymmetric load.

K.1 Master Mode

In Figure K-1 the timing diagram for master mode with transmission format CPHA=0 is depicted.

Figure K-1. SPI Master Timing (CPHA=0)

In Figure K-2 the timing diagram for master mode with transmission format CPHA=1 is depicted.

MC912ZVL Family Reference Manual, Rev. 2.41