STMicroelectronics - STM32F302VCT7TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vct7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 45.	LQFP48 marking example (package top view)	128
Figure 46.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package outline	129
Figure 47.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package recommended footprint	130
Figure 48.	UFQFPN32 marking example (package top view)	131

57

8/138

	STM32	F302Kx	r -	F302Cx	STM32F302Rx			
Flash (Kbytes)		32	64	32	64	32	64	
SRAM (Kbytes)				1	6		I	
	Advanced control	1 (16-bit)						
	General purpose	3 (16-bit) 1 (32 bit)						
	Basic				1			
Timers	SysTick timer				1			
	Watchdog timers (independent, window)			2	2			
	PWM channels (all) ⁽¹⁾	1	6		1	8		
	PWM channels (except complementary)	1	0		1	2		
	SPI/I2S	2						
Comm. interfaces	l ² C	3						
	USART	2 3						
	USB 2.0 FS	1						
	CAN 2.0B	1						
GPIOs	Normal I/Os (TC, TTa)	9 20		0	26			
GFIOS	5-Volt tolerant I/Os (FT, FT1)	15		17		25		
DMA channels		7						
Capacitive sensing	l channels	1	3	1	7		18	
12-bit ADC Number of channe	ls		1 3		1 1		1 15	
12-bit DAC channe	els				1			
Analog comparato	ſ	2	2	:	3		3	
Operational amplifi	er	1						
CPU frequency		72 MHz						
Operating voltage		2.0 to 3.6 V						
Operating temperature		Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C						
Packages		UFQF	PN32		P48, SP49	LQI	FP64	

Table 1. STM32F302x6/8 device features and peripheral counts

1. This total number considers also the PWMs generated on the complementary output channels.

3.11.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN17. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.12 Digital-to-analog converter (DAC)

One 12-bit buffered DAC channel (DAC1_OUT1) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- One DAC output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- DMA capability
- External triggers for conversion

3.13 Operational amplifier (OPAMP)

The STM32F302x6/8 devices embed one operational amplifier with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When the operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0
1	TSC_G1_IO2	PA1
	TSC_G1_IO3	PA2
	TSC_G1_IO4	PA3
	TSC_G2_IO1	PA4
2	TSC_G2_IO2	PA5
2	TSC_G2_IO3	PA6
	TSC_G2_IO4	PA7
	TSC_G3_IO1	PC5
2	TSC_G3_IO2	PB0
3	TSC_G3_IO3	PB1
	TSC_G3_IO4	PB2
	TSC_G4_IO1	PA9
, T	TSC_G4_IO2	PA10
4	TSC_G4_IO3	PA13
	TSC_G4_IO4	PA14
	TSC_G5_IO1	PB3
_ T	TSC_G5_IO2	PB4
5	TSC_G5_IO3	PB6
	TSC_G5_IO4	PB7
	TSC_G6_IO1	PB11
	TSC_G6_IO2	PB12
6 –	TSC_G6_IO3	PB13
	TSC_G6_IO4	PB14

 Table 9. Capacitive sensing GPIOs available on STM32F302x6/8 devices

Table 10. No. of capacitive sensing channels available on STM32F302x6/8 devices

	Number of capacitive sensing channels						
Analog I/O group	STM32F302Rx	STM32F302Cx	STM32F302Kx				
G1	3	3	3				
G2	3	3	3				
G3	3	2	1				
G4	3	3	3				
G5	3	3	3				

			Table 15.	Alternate fund	tions for Port C			
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port & pin name	SYS_AF	TIM2/TIM15/ TIM16/TIM17/ EVENT	I2C3/TIM1/TIM2 /TIM15	I2C3/TIM15/ TSC	I2C1/I2C2/TIM1/ TIM16/TIM17	SPI2/I2S2/ SPI3/I2S3 Infrared	SPI2/I2S2/SPI3/ I2S3/TIM1/ Infrared	USART1/ USART2/ USART3/CAN GPCOMP6
PC0	-	EVENTOUT	TIM1_CH1	-	-	-	-	-
PC1	-	EVENTOUT	TIM1_CH2	-	-	-	-	-
PC2	-	EVENTOUT	TIM1_CH3	-	-	-	-	-
PC3	-	EVENTOUT	TIM1_CH4	-	-	-	TIM1_BKIN2	-
PC4	-	EVENTOUT	TIM1_ETR	-	-	-	-	USART1_TX
PC5	-	EVENTOUT	TIM15_BKIN	TSC_G3_IO1	-	-	-	USART1_RX
PC6	-	EVENTOUT	-	-	-	-	I2S2_MCK	COMP6_OUT
PC7	-	EVENTOUT	-	-	-	-	I2S3_MCK	-
PC8	-	EVENTOUT	-	-	-	-	-	-
PC9	-	EVENTOUT	-	I2C3_SDA	-	I2SCKIN	-	-
PC10	-	EVENTOUT	-	-	-	-	SPI3_SCK/ I2S3_CK	USART3_TX
PC11	-	EVENTOUT	-	-	-	-	SPI3_MISO/ I2S3ext_SD	USART3_RX
PC12	-	EVENTOUT	-	-	-	-	SPI3_MOSI/ I2S3_SD	USART3_CK
PC13	-	-	-	-	TIM1_CH1N	-	-	-
PC14	-	-	-	-	-	-	-	-
PC15	-	-	-	-	-	-	-	-

47/138

STM32F302x6 STM32F302x8

Pinouts and pin description

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 23* are derived from tests performed under the ambient temperature condition summarized in *Table 22*.

Symbol	Parameter	Conditions	Min	Мах	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	20	8	µs/V
+	V _{DDA} rise time rate		0	8	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

Table 23. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 24* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge	1.8 ⁽²⁾	1.88	1.96	V
* POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽³⁾	POR reset temporization	-	1.5	2.5	4.5	ms

Table 24. Embedded reset and power control block characteristics

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Based on characterization, not tested in production.

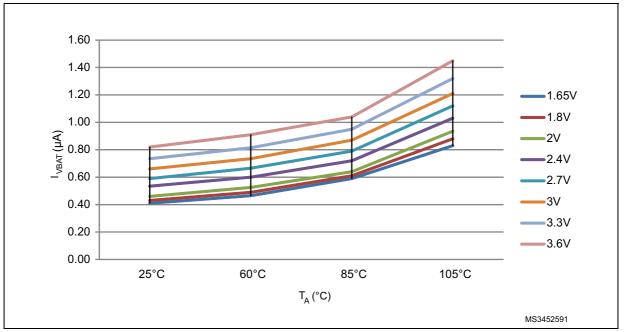


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled, $f_{APB1} = f_{AHB/2}$, $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 36: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

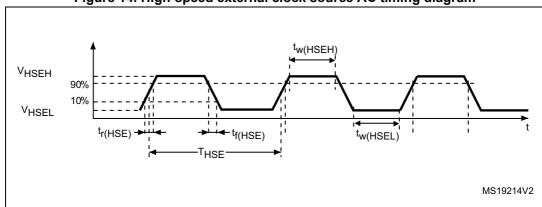
 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.


6.3.7 External clock source characteristics

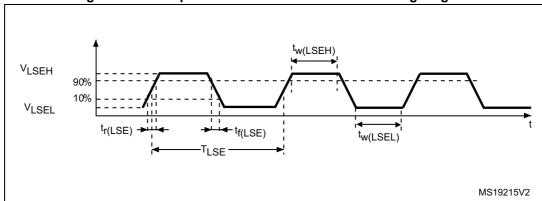
High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design.

Figure 14. High-speed external clock source AC timing diagram

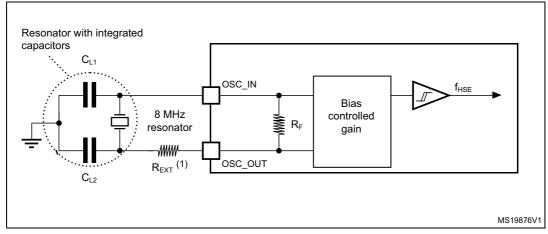

Low-speed external user clock generated from an external source

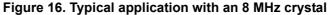
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	10

 Table 40. Low-speed external user clock characteristics

1. Guaranteed by design.





For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

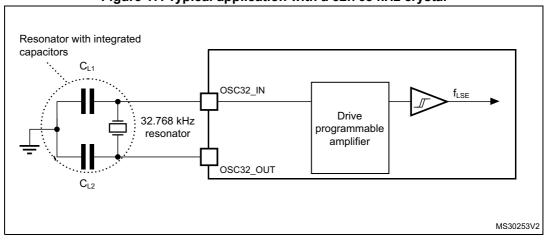


Figure 17. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Low-speed internal (LSI) RC oscillator

Table 44. LSI oscillator cl	haracteristics ⁽¹⁾
-----------------------------	-------------------------------

Symbol	Symbol Parameter		Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μΑ

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

6.3.9 PLL characteristics

The parameters given in *Table 45* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

Symbol	Parameter		Value		Unit	
Symbol	Falameter	Min	Тур	Мах	Unit	
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	-	24 ⁽²⁾	MHz	
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	72	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps	

Table 45. PLL characteristics

1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 48. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

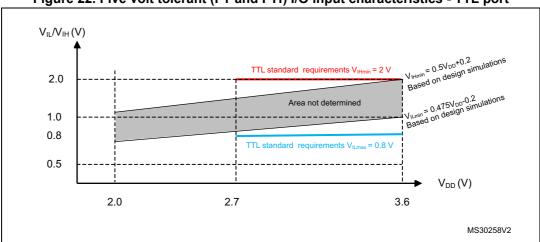


Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

6.3.17 Communications interfaces

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 60. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by design.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

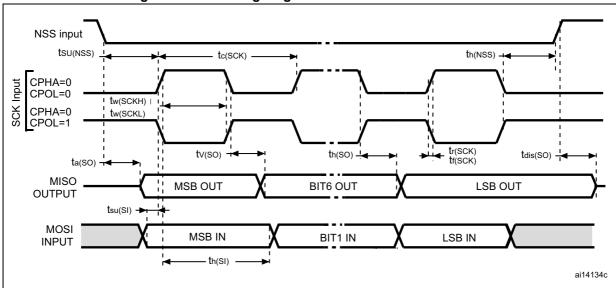
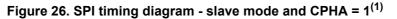
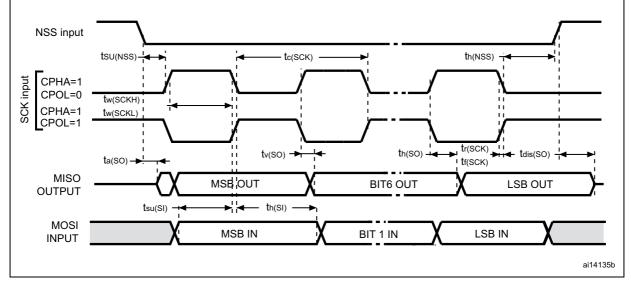




Figure 25. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at 0.5V $_{\text{DD}}$ and with external C $_{\text{L}}$ = 30 pF.

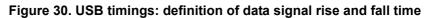
USB characteristics

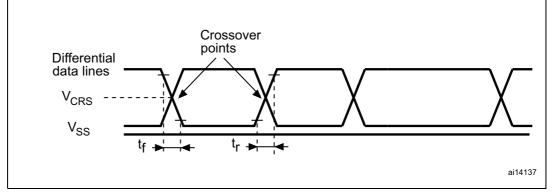
Table 6	63. USB	startup	time
---------	---------	---------	------

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Table 64. USB DC electrical characteristics	Table 64.	USB DC	electrical	characteristics
---	-----------	--------	------------	-----------------


Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit			
Input levels								
V_{DD}	USB operating voltage ⁽²⁾		3.0 ⁽³⁾	3.6	V			
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-				
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V			
$V_{SE}^{(4)}$	Single ended receiver threshold		1.3	2.0				
Output levels								
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	v			
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6				


1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design.
- 5. R_L is the load connected on the USB drivers.

Table 65. USB: Full-speed electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Driver charac	teristics					
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns

Figure 31 illustrates the ADC current consumption as per the clock frequency in singleended and differential modes.

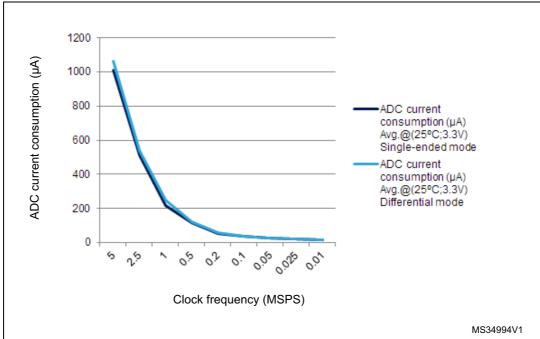
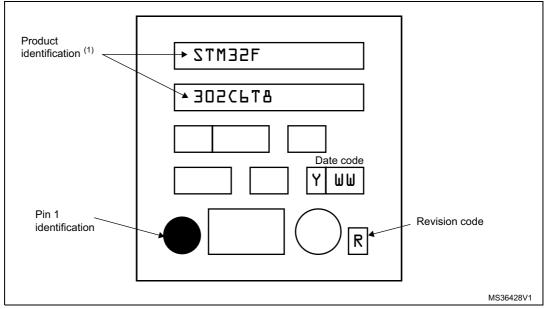
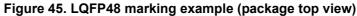


Figure 31. ADC typical current consumption in single-ended and differential modes


Table 67. Maximum ADC R_{AIN} ⁽¹⁾


	Sampling	Sampling		R _{AIN} max (kΩ)	
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾
	1.5	20.83	0.018	NA	NA
	2.5	34.72	0.150	NA	0.022
	4.5	62.50	0.470	0.220	0.180
12 bits	7.5	104.17	0.820	0.560	0.470
12 Dits	19.5	270.83	2.70	1.80	1.50
	61.5	854.17	8.20	6.80	4.70
	181.5	2520.83	22.0	18.0	15.0
	601.5	8354.17	82.0	68.0	47.0

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

