

Welcome to **E-XFL.COM**

Understanding <u>Embedded - DSP (Digital Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Dataila	
Details	
Product Status	Obsolete
Туре	SC3850 Dual Core
Interface	Ethernet, I ² C, PCI, RGMII, Serial RapidIO, SGMII, SPI, UART/USART
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	576kB
Voltage - I/O	2.50V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8152tvt1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

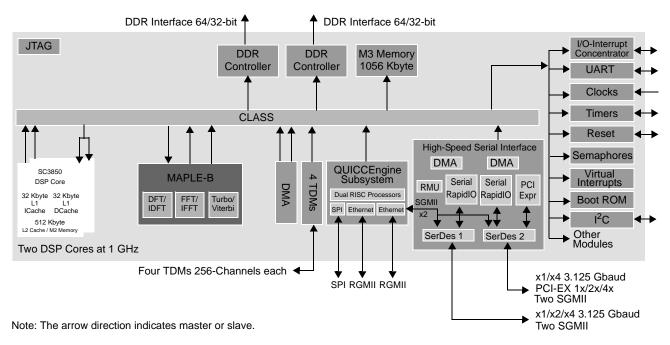


Figure 1. MSC8152 Block Diagram

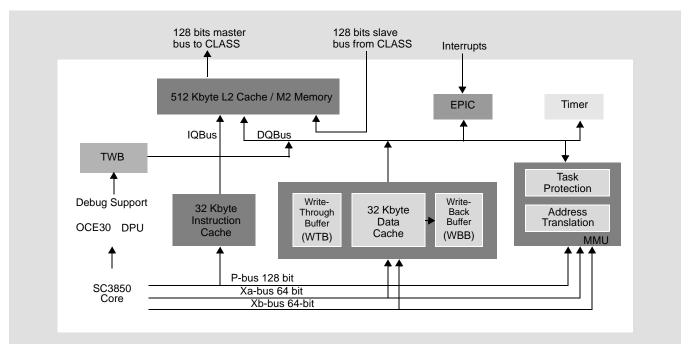


Figure 2. StarCore SC3850 DSP Subsystem Block Diagram

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
G7	M2CKE0	0	GVDD2
G8	M2A11	0	GVDD2
G9	M2A7	0	GVDD2
G10	M2CK2	0	GVDD2
G11	M2APAR_OUT	0	GVDD2
G12	M2ODT1	0	GVDD2
G13	M2APAR_IN	I	GVDD2
G14	M2DQ43	I/O	GVDD2
G15	M2DM5	0	GVDD2
G16	M2DQ44	I/O	GVDD2
G17	M2DQ40	I/O	GVDD2
G18	M2DQ59	I/O	GVDD2
G19	M2DM7	0	GVDD2
G20	M2DQ60	I/O	GVDD2
G21	Reserved	NC	_
G22	Reserved	NC	_
G23	SXPVSS1	Ground	N/A
G24	SXPVDD1	Power	N/A
G25	SR1_IMP_CAL_TX	I	SXCVDD1
G26	SXCVSS1	Ground	N/A
G27	Reserved	NC	_
G28	Reserved	NC	_
H1	GVDD2	Power	N/A
H2	VSS	Ground	N/A
H3	M2DQ18	I/O	GVDD2
H4	GVDD2	Power	N/A
H5	VSS	Ground	N/A
H6	M2DQ20	I/O	GVDD2
H7	GVDD2	Power	N/A
H8	VSS	Ground	N/A
H9	M2A15	0	GVDD2
H10	M2CK2	0	GVDD2
H11	M2MDIC0	I/O	GVDD2
H12	M2VREF	I	GVDD2
H13	M2MDIC1	I/O	GVDD2
H14	M2DQ46	1/0	GVDD2
H15	M2DQ47	I/O	GVDD2
H16	M2DQ45	I/O	GVDD2
H17	M2DQ41	I/O	GVDD2
H18	M2DQ62	I/O	GVDD2
H19	M2DQ63	1/0	GVDD2
H20	M2DQ61	1/0	GVDD2
H21	Reserved	NC	
H22	Reserved	NC NC	
H23	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1
H24	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
H25	SXCVSS1	Ground	N/A	
H26	SXCVDD1	Power	N/A	
H27	SR1_RXD3/SG2_RX ⁴	I	SXCVDD1	
H28	SR1_RXD3/SG2_RX ⁴	I	SXCVDD1	
J1	M2DQS1	I/O	GVDD2	
J2	M2DQS1	I/O	GVDD2	
J3	M2DQ10	I/O	GVDD2	
J4	M2DQ11	I/O	GVDD2	
J5	M2DQ14	I/O	GVDD2	
J6	M2DQ23	I/O	GVDD2	
J7	M2ODT0	0	GVDD2	
J8	M2A12	0	GVDD2	
J9	M2A14	0	GVDD2	
J10	VSS	Ground	N/A	
J11	GVDD2	Power	N/A	
J12	VSS	Ground	N/A	
J13	GVDD2	Power	N/A	
J14	VSS	Ground	N/A	
J15	GVDD2	Power	N/A	
J16	VSS	Ground	N/A	
J17	GVDD2	Power	N/A	
J18	VSS	Ground	N/A	
J19	GVDD2	Power	N/A	
J20	Reserved	NC NC		
J21	Reserved	NC NC	_	
J22	Reserved	NC NC	_	
J23	SXPVDD1	Power	N/A	
J24	SXPVSS1	Ground	N/A	
J25	SXCVDD1	Power	N/A	
J26	SXCVSS1	Ground	N/A	
J27	SXCVDD1	Power	N/A	
J28	SXCVSS1	Ground	N/A	
K1	VSS	Ground	N/A	
K2	GVDD2	Power	N/A	
K3	M2DM1	O	GVDD2	
K4	VSS	Ground	N/A	
K5	GVDD2	Power	N/A N/A	
K6	M2DQ0	I/O	GVDD2	
K7	VSS GVDD2	Ground	N/A	
K8		Power	N/A	
K9	M2DQ5	1/0	GVDD2	
K10	VSS	Ground	N/A	
K11	VDD	Power	N/A	
K12	VSS	Ground	N/A	
K13	VDD	Power	N/A	

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
K15	VDD	Power	N/A
K16	VSS	Ground	N/A
K17	VSS	Ground	N/A
K18	VSS	Ground	N/A
K19	VDD	Power	N/A
K20	Reserved	NC	_
K21	Reserved	NC	_
K22	Reserved	NC	_
K23	SXPVDD2	Power	N/A
K24	SXPVSS2	Ground	N/A
K25	SXCVDD2	Power	N/A
K26	SXCVSS2	Ground	N/A
K27	SXCVDD2	Power	N/A
K28	SXCVSS2	Ground	N/A
L1	M2DQ9	I/O	GVDD2
L2	M2DQ12	I/O	GVDD2
L3	M2DQ13	I/O	GVDD2
L4	M2DQS0	I/O	GVDD2
L5	M2DQS0	I/O	GVDD2
L6	M2DM0	0	GVDD2
L7	M2DQ3	I/O	GVDD2
L8	M2DQ2	I/O	GVDD2
L9	M2DQ4	I/O	GVDD2
L10	VDD	Power	N/A
L11	VSS	Ground	N/A
L12	M3VDD	Power	N/A
L13	VSS	Ground	N/A
L14	VSS	Ground	N/A
L15	VSS	Ground	N/A
L16	VSS	Ground	N/A
L17	VSS	Ground	N/A
L18	VDD	Power	N/A
L19	VSS	Ground	N/A
L20	Reserved	NC NC	_
L21	Reserved	NC NC	_
L22	Reserved	NC	_
L23	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2
L24	SR2_TXD3/PE_TXD3/SG2_TX ⁴	0	SXPVDD2
L25	SXCVSS2	Ground	N/A
L26	SXCVDD2	Power	N/A
L27	SR2_RXD3/PE_RXD3/SG2_RX ⁴	I	SXCVDD2
L28	SR2_RXD3/PE_RXD3/SG2_RX ⁴	<u>'</u>	SXCVDD2
M1	M2DQ8	1/0	GVDD2
M2	VSS	Ground	N/A
M3	GVDD2	Power	N/A
M4	M2DQ15	I/O	GVDD2

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name	
M5	M2DQ1	I/O	GVDD2	
M6	VSS	Ground	N/.A	
M7	GVDD2	Power	N/A	
M8	M2DQ7	I/O	GVDD2	
M9	M2DQ6	I/O	GVDD2	
M10	VSS	Ground	N/A	
M11	VDD	Power	N/A	
M12	VSS	Ground	N/A	
M13	VDD	Power	N/A	
M14	VSS	Ground	N/A	
M15	VSS	Ground	N/A	
M16	VSS	Ground	N/A	
M17	VSS	Ground	N/A	
M18	VSS	Ground	N/A	
M19	VDD	Power	N/A	
M20	Reserved	NC	_	
M21	Reserved	NC		
M22	Reserved	NC	_	
M23	SXPVSS2	Ground	N/A	
M24	SXPVDD2	Power	N/A	
M25	SR2_IMP_CAL_TX	1	SXCVDD2	
M26	SXCVSS2	Ground	N/A	
M27	Reserved	NC		
M28	Reserved	NC	_	
N1	VSS	Ground	N/A	
N2	TRST ⁷	I	QVDD	
N3	PORESET ⁷	· ·	QVDD	
N4	VSS	Ground	N/A	
N5	TMS ⁷	I	QVDD	
N6	CLKOUT	0	QVDD	
N7	VSS	Ground	N/A	
N8	VSS	Ground	N/A	
N9	VSS	Ground	N/A	
N10	VDD	Power	N/A N/A	
N11	VSS	Ground	N/A N/A	
N12	M3VDD	Power	N/A N/A	
N13	VSS	Ground	N/A	
N14	VSS		t	
		Ground Ground	N/A	
N15	VSS		N/A	
N16	VDD	Power	N/A	
N17	VSS	Ground	N/A	
N18	VDD	Power	N/A	
N19	VSS	Ground	N/A	
N20	Reserved	NC P	— N/A	
N21	SXPVDD2	Power	N/A	

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
N23	SR2_TXD2/PE_TXD2/SG1_TX ⁴	0	SXPVDD2
N24	SR2_TXD2/PE_TXD2/SG1_TX ⁴	0	SXPVDD2
N25	SXCVDD2	Power	N/A
N26	SXCVSS2	Ground	N/A
N27	SR2_RXD2/PE_RXD2/SG1_RX ⁴	1	SXCVDD2
N28	SR2_RXD2/PE_RXD2/SG1_RX ⁴	1	SXCVDD2
P1	CLKIN	I	QVDD
P2	EE0	I	QVDD
P3	QVDD	Power	N/A
P4	VSS	Ground	N/A
P5	STOP_BS	I	QVDD
P6	QVDD	Power	N/A
P7	VSS	Ground	N/A
P8	PLL0_AVDD ⁹	Power	VDD
P9	PLL2_AVDD ⁹	Power	VDD
P10	VSS	Ground	N/A
P11	VDD	Power	N/A
P12	VSS	Ground	N/A
P13	VDD	Power	N/A
P14	VSS	Ground	N/A
P15	MVDD	Power	N/A
P16	VSS	Ground	N/A
P17	MVDD	Power	N/A
P18	VSS	Ground	N/A
P19	VDD	Power	N/A
P20	Reserved	NC	_
P21	Reserved	NC	_
P22	Reserved	NC	_
P23	SXPVDD2	Power	N/A
P24	SXPVSS2	Ground	N/A
P25	SR2_PLL_AGND ⁹	Ground	SXCVSS2
P26	SR2_PLL_AVDD ⁹	Power	SXCVDD2
P27	SXCVSS2	Ground	N/A
P28	SXCVDD2	Power	N/A
R1	VSS	Ground	N/A
R2	NMI	I	QVDD
R3	NMI_OUT ⁶	0	QVDD
R4	HRESET ^{6,7}	I/O	QVDD
R5	INT_OUT ⁶	0	QVDD
R6	EE1	0	QVDD
R7	VSS	Ground	N/A
R8	PLL1_AVDD ⁹	Power	VDD
R9	VSS	Ground	N/A
R10	VDD	Power	N/A
R11	VSS	Non-user	N/A
R12	VDD	Power	N/A

Table 1. Signal List by Ball Number (continued)

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AB1	M1DQS2	I/O	GVDD1
AB2	M1DQS2	I/O	GVDD1
AB3	M1DQ19	I/O	GVDD1
AB4	M1DM2	0	GVDD1
AB5	M1DQ21	I/O	GVDD1
AB6	M1DQ22	I/O	GVDD1
AB7	M1CKE0	0	GVDD1
AB8	M1A11	0	GVDD1
AB9	M1A7	0	GVDD1
AB10	M1CK2	0	GVDD1
AB11	M1APAR_OUT	0	GVDD1
AB12	M1ODT1	0	GVDD1
AB13	M1APAR_IN	I	GVDD1
AB14	M1DQ43	I/O	GVDD1
AB15	M1DM5	0	GVDD1
AB16	M1DQ44	I/O	GVDD1
AB17	M1DQ40	I/O	GVDD1
AB18	M1DQ59	I/O	GVDD1
AB19	M1DM7	0	GVDD1
AB20	M1DQ60	I/O	GVDD1
AB21	VSS	Ground	N/A
AB22	GPIO31/I2C_SDA ^{5,8}	I/O	NVDD
AB23	GPIO27/TMR4/RCW_SRC0 ^{5,8}	I/O	NVDD
AB24	GPIO25/TMR2/RCW_SRC1 ^{5,8}	I/O	NVDD
AB25	GPIO24/TMR1/RCW_SRC2 ^{5,8}	I/O	NVDD
AB26	GPIO10/IRQ10/RC10 ^{5,8}	I/O	NVDD
AB27	GPIO5/IRQ5/RC5 ^{5,8}	I/O	NVDD
AB28	GPIO0/IRQ0/RC0 ^{5,8}	I/O	NVDD
AC1	VSS	Ground	N/A
AC2	GVDD1	Power	N/A
AC3	M1DQ16	I/O	GVDD1
AC4	VSS	Ground	N/A
AC5	GVDD1	Power	N/A
AC6	M1DQ17	I/O	GVDD1
AC7	VSS	Ground	N/A
AC8	GVDD1	Power	N/A
AC9	M1BA2	0	GVDD1
AC10	VSS	Ground	N/A
AC11	GVDD1	Power	N/A
AC12	M1A4	0	GVDD1
AC13	VSS	Ground	N/A
AC14	GVDD1	Power	N/A
AC15	M1DQ42	I/O	GVDD1
AC16	VSS	Ground	N/A
AC17	GVDD1	Power	N/A
AC18	M1DQ58	I/O	GVDD1

27

2.5.1.2 DDR3 (1.5V) SDRAM DC Electrical Characteristics

Table 7 provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM.

At recommended operating conditions (see Table 3) with $V_{DDDDR} = 1.5 \text{ V}$.

Table 7. DDR3 SDRAM Interface DC Electrical Characteristics

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O reference voltage	MV _{REF}	0.49 × V _{DDDDR}	0.51 × V _{DDDDR}	V	2,3,4
Input high voltage	V _{IH}	MV _{REF} + 0.100	V_{DDDDR}	V	5
Input low voltage	V _{IL}	GND	MV _{REF} - 0.100	V	5
I/O leakage current	I _{OZ}	-50	50	μА	6

Notes:

- V_{DDDDR} is expected to be within 50 mV of the DRAM V_{DD} at all times. The DRAM and memory controller can use the same or different sources.
- MV_{REF} is expected to be equal to $0.5 \times V_{DDDDR}$, and to track V_{DDDDR} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±1% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF} with a minimum value of $MV_{REF} - 0.4$ and a maximum value of $MV_{REF} + 0.04$ V. V_{TT} should track variations in the DC-level of MV_{REF}.
- The voltage regulator for MV $_{\mbox{\scriptsize REF}}$ must be $\underline{\mbox{able}}$ to supply up to 250 $\mu\mbox{\scriptsize A}.$
- Input capacitance load for DQ, DQS, and DQS signals are available in the IBIS models.
- Output leakage is measured with all outputs are disabled, $0 \text{ V} \leq V_{OUT} \leq V_{DDDDR}$.

2.5.1.3 DDR2/DDR3 SDRAM Capacitance

Table 8 provides the DDR controller interface capacitance for DDR2 and DDR3 memory.

At recommended operating conditions (see Table 3) with V_{DDDDR} = 1.8 V for DDR2 memory or V_{DDDDR} = 1.5 V for Note: DDR3 memory.

Table 8. DDR2/DDR3 SDRAM Capacitance

Parameter	Symbol	Min	Max	Unit
I/O capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF
Delta I/O capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF
Note: Guaranteed by FAB process and micro-construction.				

Table 14. Serial RapidIO Receiver DC Specifications

Parameter	Symbol	Min	Typical	Max	Units	Notes
Differential input voltage	V _{IN}	200	_	1600	mVp-p	1
Notes: 1. Measured at receiver						

2.5.3.4 DC-Level Requirements for SGMII Configurations

Note: Specifications are valid at the recommended operating conditions listed in Table 3

Table 15 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs $(SR[1-2]_TX[n])$ and $\overline{SR[1-2]_TX[n]}$ as shown in Figure 10.

Table 15. SGMII DC Transmitter Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output high voltage	V _{OH}	_	_	$XV_{DD_SRDS-Typ}/2 + V_{OD} _{-max}/2$	mV	1
Output low voltage	V _{OL}	$XV_{DD_SRDS-Typ}/2 - V_{OD} _{-max}/2$	_	_	mV	1
Output differential	V _{OD}	323	500	725	mV	2,3,4
voltage (XV _{DD-Typ} at 1.0 V)		296	459	665		2,3,5
1.0 V)		269	417	604		2,3,6
		243	376	545		2,3,7
		215	333	483		2,3,8
		189	292	424		2,3,9
		162	250	362		2,3,10
Output impedance (single-ended)	R _O	40	50	60	Ω	_

Notes:

- 1. This does not align to DC-coupled SGMII. $XV_{DD SRDS2-Tvp} = 1.1 \text{ V}$.
- 2. The |V_{OD}| value shown in the table assumes full multitude by setting srd_smit_lvl as 000 and the following transmit equalization setting in the XMITEQAB (for lanes A and B) or XMITEQEF (for lanes E and F) bit field of Control Register:
 - The MSB (bit 0) of the above bit field is set to zero (selecting the full V_{DD-DIFF-p-p} amplitude which is power up default);
 - The LSB (bit [1–3]) of the above bit field is set based on the equalization settings listed in notes 4 through 10.
- 3. The $|V_{OD}|$ value shown in the Typ column is based on the condition of $XV_{DD_SRDS2-Typ} = 1.0 \text{ V}$, no common mode offset variation ($V_{OS} = 500 \text{mV}$), SerDes transmitter is terminated with $100-\Omega$ differential load between
- 4. Equalization setting: 1.0x: 0000.
- Equalization setting: 1.09x: 1000.
- 6. Equalization setting: 1.2x: 0100.
- 7. Equalization setting: 1.33x: 1100.
- **8.** Equalization setting: 1.5x: 0010.
- 9. Equalization setting: 1.71x: 1010.
- 10. Equalization setting: 2.0x: 0110.
- 11. $|V_{OD}| = |V_{SR[1-2]}|_{TX_D} V_{\overline{SR[1-2]}}|_{TX_D}|_{TX_D}$ is also referred to as output differential peak voltage. $V_{TX-DIFF_{D-D}} = 2^*|V_{OD}|$

37

2.6 AC Timing Characteristics

This section describes the AC timing characteristics for the MSC8152.

2.6.1 DDR SDRAM AC Timing Specifications

This section describes the AC electrical characteristics for the DDR SDRAM interface.

2.6.1.1 DDR SDRAM Input AC Timing Specifications

Table 18 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 1.8 V.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8 V Interface

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V _{IL}	_	MV _{REF} - 0.20	V
AC input high voltage	V _{IH}	MV _{REF} + 0.20	_	V
Note: At recommended operating conditions with V_{DDDDR} of 1.8 \pm 5%.				

Table 19 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 1.5 V.

Table 19. DDR3 SDRAM Input AC Timing Specifications for 1.5 V Interface

Parameter	Symbol	Min	Max	Unit
AC input low voltage	V _{IL}	_	MV _{REF} – 0.175	V
AC input high voltage	V _{IH}	MV _{REF} + 0.175	_	V
Note: At recommended operating conditions with V_{DDDDR} of 1.5 \pm 5%.				

Table 20 provides the input AC timing specifications for the DDR SDRAM interface.

Table 20. DDR SDRAM Input AC Timing Specifications

Parameter	Symbol	Min	Max	Unit	Notes
Controller Skew for MDQS—MDQ/MECC/MDM	t _{CISKEW}				1, 2
800 MHz data rate	5.5	-200	200	ps	
667 MHz data rate		-240	240	ps	
Tolerated Skew for MDQS—MDQ/MECC/MDM	t _{DISKEW}				2, 3
800 MHz data rate		-425	425	ps	
667 MHz data rate		– 510	510	ps	

Notes:

- t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget.
- 2. At recommended operating conditions with V_{DDDDR} (1.8 V or 1.5 V) \pm 5%
- 3. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ±(T ÷ 4 abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

Figure 21 shows the TDM transmit signal timing.

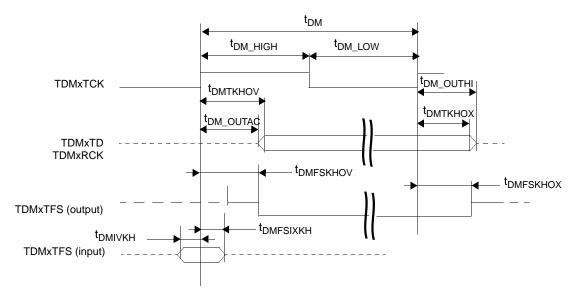


Figure 21. TDM Transmit Signals

Figure 22 provides the AC test load for the TDM/SI.

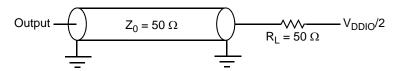


Figure 22. TDM AC Test Load

2.6.4 Timers AC Timing Specifications

Table 32 lists the timer input AC timing specifications.

Table 32. Timers Input AC Timing Specifications

Characteristics			Symbol	Minimum	Unit	Notes
Timers inputs—minimum pulse width			T _{TIWID}	8	ns	1, 2
Notes: 1. The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately.						
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any						
	external synchronous logic. Timer inputs are required to be valid for at least triving as to ensure proper operation.					

Note: For recommended operating conditions, see Table 3.

Figure 23 shows the AC test load for the timers.

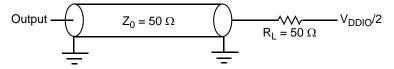


Figure 23. Timer AC Test Load

2.6.5.2 RGMII AC Timing Specifications

Table 34 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.

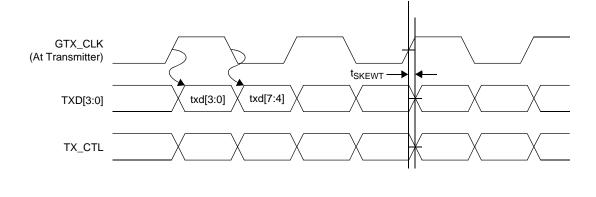
Table 34. RGMII at 1 Gbps² with On-Board Delay³ AC Timing Specifications

Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to clock output skew (at transmitter) ⁴	t _{SKEWT}	0.5		0.5	ns
Data to clock input skew (at receiver) 4	t _{SKEWR}	1	_	2.6	ns

Notes: 1. At recommended operating conditions with V_{DDIO} of 2.5 V \pm 5%.

- 2. RGMII at 100 Mbps support is guaranteed by design.
- **3.** Program GCR4 as 0x00000000.
- 4. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns is added to the associated clock signal.

Table 35 presents the RGMII AC timing specification for applications required non-delayed clock on board.


Table 35. RGMII at 1 Gbps² with No On-Board Delay³ AC Timing Specifications

Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to clock output skew (at transmitter) ⁴	t _{SKEWT}	-2.6	_	-1.0	ns
Data to clock input skew (at receiver) ⁴	t _{SKEWR}	-0.5		0.5	ns

Notes: 1. At recommended operating conditions with V_{DDIO} of 2.5 V \pm 5%.

- 2. RGMII at 100 Mbps support is guaranteed by design.
- 3. GCR4 should be programmed as 0x000CC330.
- 4. This implies that PC board design requires clocks to be routed with no additional trace delay

Figure 25 shows the RGMII AC timing and multiplexing diagrams.

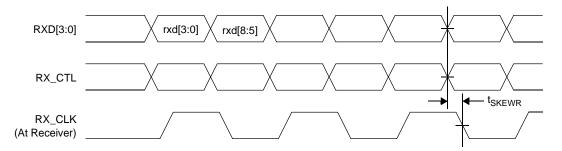


Figure 25. RGMII AC Timing and Multiplexing

2.6.6 SPI Timing

Table 36 lists the SPI input and output AC timing specifications.

Table 36. SPI AC Timing Specifications

Parameter	Symbol ¹	Min	Max	Unit	Note
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns	2
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5	_	ns	2
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}	_	12	ns	2
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2	_	ns	2
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	12	_	ns	_
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	_	ns	_
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	_	ns	_
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	_	ns	_

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin.

Figure 26 provides the AC test load for the SPI.

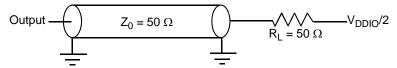
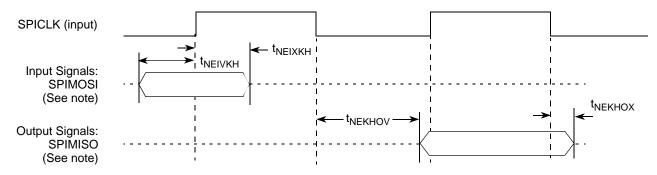



Figure 26. SPI AC Test Load

Figure 27 and Figure 28 represent the AC timings from Table 36. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 27 shows the SPI timings in slave mode (external clock).

Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0

Figure 27. SPI AC Timing in Slave Mode (External Clock)

Figure 28 shows the SPI timings in master mode (internal clock).

2.6.7 Asynchronous Signal Timing

Table 35 lists the asynchronous signal timing specifications.

Table 37. Signal Timing

Characteristics	Symbol	Туре	Min		
Input	t _{IN}	Asynchronous	One CLKIN cycle		
Output	t _{OUT}	Asynchronous	Application dependent		
Note: Input value relevant for EE0, IRQ[15–0], and NMI only.					

The following interfaces use the specified asynchronous signals:

 GPIO. Signals GPIO[31–0], when used as GPIO signals, that is, when the alternate multiplexed special functions are not selected.

Note: When used as a general purpose input (GPI), the input signal should be driven until it is acknowledged by the MSC8152 device, that is, when the expected input value is read from the GPIO data register.

- EE port. Signals EE0, EE1.
- Boot function. Signal STOP_BS.
- *I*²*C interface*. Signals I2C_SCL and I2C_SDA.
- Interrupt inputs. Signals $\overline{IRQ[15-0]}$ and \overline{NMI} .
- Interrupt outputs. Signals INT_OUT and NMI_OUT (minimum pulse width is 32 ns).

2.6.8 JTAG Signals

Table 38 lists the JTAG timing specifications shown in Figure 29 through Figure 32.

Table 38. JTAG Timing

Characteristics	Symbol	All frequencies		Unit	
Cital acteristics		Min	Max	Onit	
TCK cycle time	t _{TCKX}	36.0	_	ns	
TCK clock high phase measured at V _M = V _{DDIO} /2	t _{TCKH}	15.0	_	ns	
Boundary scan input data setup time	t _{BSVKH}	0.0		ns	
Boundary scan input data hold time	t _{BSXKH}	15.0	_	ns	
TCK fall to output data valid	t _{TCKHOV}	_	20.0	ns	
TCK fall to output high impedance	t _{TCKHOZ}	_	24.0	ns	
TMS, TDI data setup time	t _{TDIVKH}	0.0		ns	
TMS, TDI data hold time		5.0		ns	
TCK fall to TDO data valid		_	10.0	ns	
TCK fall to TDO high impedance		_	12.0	ns	
TRST assert time		100.0	_	ns	
Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.					

Figure 29 shows the test clock input timing diagram

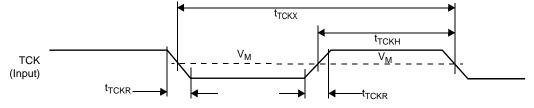


Figure 29. Test Clock Input Timing

ware Design Considerations

2. After the above rails rise to 90% of their nominal voltage, the following I/O power rails may rise in any sequence (see Figure 34): QVDD, NVDD, GVDD1, and GVDD2.

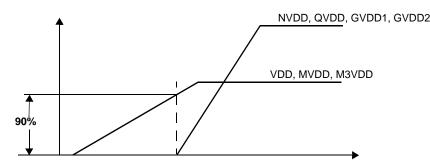


Figure 34. Supply Ramp-Up Sequence

Notes: 1. If the M3 memory is not used, M3VDD can be tied to GND.

- 2. If the MAPLE-B is not used, MVDD can be tied to GND.
- 3. If the HSSI port1 is not used, SXCVDD1 and SXPVDD1 must be connected to the designated power supplies.
- 4. If the HSSI port2 is not used, SXCVDD2 and SXPVDD2 must be connected to the designated power supplies.
- 5. If the DDR port 1 interface is not used, it is recommended that GVDD1 be left unconnected.
- **6.** If the DDR port 2 interface is not used, it is recommended that GVDD2 be left unconnected.

3.1.4 Reset Guidelines

When a debugger is not used, implement the connection scheme shown in Figure 35.

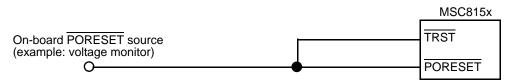


Figure 35. Reset Connection in Functional Application

When a debugger is used, implement the connection scheme shown in Figure 36.

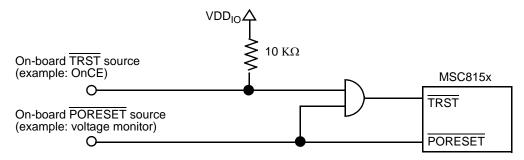


Figure 36. Reset Connection in Debugger Application

3.3 Clock and Timing Signal Board Layout Considerations

When laying out the system board, use the following guidelines:

- Keep clock and timing signal paths as short as possible and route with 50 Ω impedance.
- Use a serial termination resistor placed close to the clock buffer to minimize signal reflection. Use the following equation to compute the resistor value:

Rterm = Rim - Rbuf

where Rim = trace characteristic impedance

Rbuf = clock buffer internal impedance.

3.4 SGMII AC-Coupled Serial Link Connection Example

Figure 39 shows an example of a 4-wire AC-coupled serial link connection. For additional layout suggestions, see *AN3556 MSC815x High Speed Serial Interface Hardware Design Considerations*, available on the Freescale website or from your local sales office or representative.

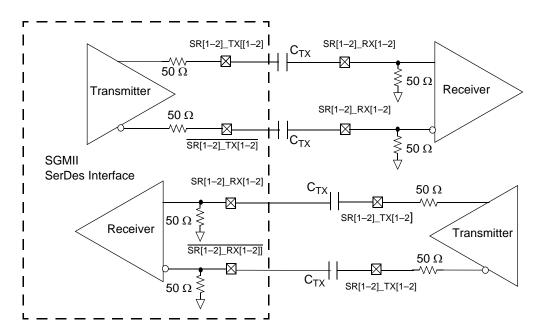


Figure 39. 4-Wire AC-Coupled SGMII Serial Link Connection Example

3.5.1.2 DDR Interface Is Used With 32-Bit DDR Memory Only

Table 41 lists unused pin connection when using 32-bit DDR memory. The 32 most significant data lines are not used.

Table 41. Connectivity of DDR Related Pins When Using 32-bit DDR Memory Only

Signal Name	Pin Connection
MDQ[31-0]	in use
MDQ[63–32]	NC
MDQS[3-0]	in use
MDQS[7-4]	NC
MDQS[3-0]	in use
MDQS[7-4]	NC
MA[15-0]	in use
MCK[2-0]	in use
MCK[2-0]	in use
MCS[1-0]	in use
MDM[3-0]	in use
MDM[7-4]	NC
MBA[2-0]	in use
MCAS	in use
MCKE[1-0]	in use
MODT[1-0]	in use
MMDIC[1-0]	in use
MRAS	in use
MWE	in use
MVREF	in use
GVDD1/GVDD2	in use

Notes:

- : 1. For the signals listed in this table, the initial M stands for M1 or M2 depending on which DDR controller is not used.
- 2. For MSC8152 Revision 1 silicon, these pins were connected to GND (or VDD). For newer revisions of the MSC8152, connecting these pins to GND increases device power consumption.

3.5.1.3 ECC Unused Pin Connections

When the error code correction mechanism is not used in any 32- or 64-bit DDR configuration, refer to Table 42 to determine the correct pin connections.

Table 42. Connectivity of Unused ECC Mechanism Pins

Signal Name	Pin connection
MECC[7-0]	NC
MDM8	NC
MDQS8	NC
MDQS8	NC

Notes: 1. For the signals listed in this table, the initial M stands for M1 or M2 depending on which DDR controller is not used.

For MSC8152 Revision 1 silicon, these pins were connected to GND (or VDD). For newer revisions of the MSC8152, connecting these pins to GND increases device power consumption.

MSC8152 Dual-Core Digital Signal Processor Data Sheet, Rev. 6

3.5.1.4 DDR2 Unused MAPAR Pin Connections

When the MAPAR signals are not used, refer to Table 43 to determine the correct pin connections.

Table 43. Connectivity of MAPAR Pins for DDR2

Signal Name		Signal Name	Pin connection	
MAPAR_OUT			NC	
MAPAR_IN			NC	
Notes:	 For the signals listed in this table, the initial M stands for M1 or M2 depending on which DDR controller is used for DDR2. For MSC8152 Revision 1 silicon, these pins were connected to GND. For newer revisions of the MSC8152, connecting thes pins to GND increases device power consumption. 			

3.5.2 HSSI-Related Pins

3.5.2.1 HSSI Port Is Not Used

The signal names in Table 44 and Table 45 are generic names for a RapidIO interface. For actual pin names refer to Table 1.

Table 44. Connectivity of Serial RapidIO Interface Related Pins When the RapidIO Interface Is Not Used

Signal Name	Pin Connection			
SR_IMP_CAL_RX	NC			
SR_IMP_CAL_TX	NC			
SR[1-2]_REF_CLK	SXCVSS			
SR[1-2]_REF_CLK	SXCVSS			
SR[1-2]_RXD[3-0]	SXCVSS			
SR[1-2]_RXD[3-0]	SXCVSS			
SR[1-2]_TXD[3-0]	NC			
SR[1-2]_TXD[3-0]	NC			
SR[1-2]_PLL_AVDD	In use			
SR[1-2]_PLL_AGND	In use			
SXPVSS	In use			
SXCVSS	In use			
SXPVDD	In use			
SXCVDD In use				
Note: All lanes in the HSSI SerDes should be powered down. Refer to the MSC8152 Reference Manual for details.				

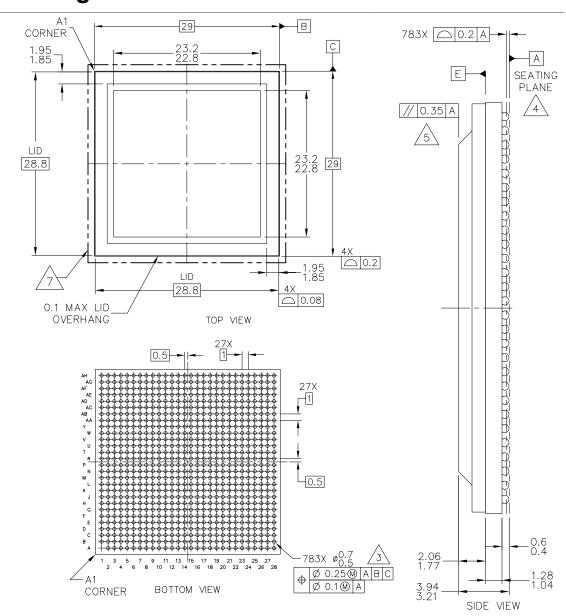

3.5.2.2 HSSI Specific Lane Is Not Used

Table 45. Connectivity of HSSI Related Pins When Specific Lane Is Not Used

Signal Name	Pin Connection
SR_IMP_CAL_RX	In use
SR_IMP_CAL_TX	In use
SR[1-2]_REF_CLK	In use
SR[1-2]_REF_CLK	In use

5 Package Information

NOTES:

- ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

MAXIMUM SOLDER BALL DIAMETER MEASURE PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

A PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

- 6. ALL DIMENSIONS ARE SYMMETRIC ACROSS THE PACKAGE CENTER LINES, UNLESS DIMENSIONED OTHERWISE.
- 7. 29.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y.

Figure 40. MSC8152 Mechanical Information, 783-ball FC-PBGA Package

MSC8152 Dual-Core Digital Signal Processor Data Sheet, Rev. 6

6 Product Documentation

Following is a general list of supporting documentation:

- *MSC8152 Technical Data Sheet* (MSC8152). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8152 device.
- *MSC8152 Reference Manual* (MSC8152RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8152 device.
- QUICC Engine Block Reference Manual with Protocol Interworking (QEIWRM). Provides detailed information regarding the QUICC Engine technology including functional description, registers, and programming information.
- *SC3850 DSP Core Reference Manual*. Covers the SC3850 core architecture, control registers, clock registers, program control, and instruction set.
- MSC8156SC3850 DSP Core Subsystem Reference Manual. Covers core subsystem architecture, functionality, and registers.

7 Revision History

Table 50 provides a revision history for this data sheet.

Table 50. Document Revision History

Rev.	Date	Description
0	Jun. 2010	Initial public release.
1	Dec 2010	 Updated Table 16. Updated Section 3.1.2, Power-On Ramp Time.
2	Mar 2011	 Updated Table 8. Updated Table 15. Updated Table 17. Updated Table 33. Updated Table 35. Updated Table 39.
3	May 2011	 Updated Table 1. Changed the pin types for the following: F25 from ground to power. F26 from power to ground. T6 from power to O.
4	Oct 2011	• Updated Table 34 and Table 35 to reflect 1 Gbps and 100 Mbps data rate instead of 1 GHz and 100 MHz.
5	Dec 2011	Added note 4 to Table 39.
6	Aug 2013	Updated Section 4, "Ordering Information".