


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | -                                                                      |
| Core Size                  | -                                                                      |
| Speed                      | -                                                                      |
| Connectivity               | -                                                                      |
| Peripherals                | -                                                                      |
| Number of I/O              | -                                                                      |
| Program Memory Size        | -                                                                      |
| Program Memory Type        | -                                                                      |
| EEPROM Size                | -                                                                      |
| RAM Size                   | -                                                                      |
| Voltage - Supply (Vcc/Vdd) | -                                                                      |
| Data Converters            | -                                                                      |
| Oscillator Type            | -                                                                      |
| Operating Temperature      | -                                                                      |
| Mounting Type              | -                                                                      |
| Package / Case             | -                                                                      |
| Supplier Device Package    | -                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rn16w2mlf |
|                            |                                                                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Peripherals
  - ACMP one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering
  - ADC 12-channel, 12-bit resolution for 48-, 32-pin packages; 10-channel, 10-bit resolution for 20-pin package; 8-channel, 10-bit for 16-pin package; 2.5 µs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger
  - CRC programmable cyclic redundancy check module
  - FTM two flex timer modulators modules including one 6-channel and one 2-channel ones; 16-bit counter; each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode
  - IIC One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing
  - MTIM One modulo timer with 8-bit prescaler and overflow interrupt
  - RTC 16-bit real time counter (RTC)
  - SCI two serial communication interface (SCI/UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support
  - SPI one 8-bit serial peripheral interface (SPI) modules; full-duplex or single-wire bidirectional; master or slave mode
  - TSI supporting up to 16 external electrodes; configurable software or hardware scan trigger; fully support freescale touch sensing software library; capability to wake MCU from stop3 mode
- Input/Output
  - Up to 35 GPIOs including one output-only pin
  - One 8-bit keyboard interrupt module (KBI)
  - Two true open-drain output pins
  - Four, ultra-high current sink pins supporting 20 mA source/sink current

#### Package options

- 48-pin LQFP
- 32-pin LQFP
- 20-pin TSSOP
- 16-pin TSSOP



## 1 Ordering parts

### 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: RN16 and RN8.

### 2 Part identification

### 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

### 2.2 Format

Part numbers for this device have the following format:

S 9 S08 RN AA F1 B CC

### 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description                  | Values                                           |
|-------|------------------------------|--------------------------------------------------|
| S     | Qualification status         | • S = fully qualified, general market flow       |
| 9     | Memory                       | • 9 = flash based                                |
| S08   | Core                         | • S08 = 8-bit CPU                                |
| RN    | Device family                | • RN                                             |
| AA    | Approximate flash size in KB | <ul> <li>16 = 16 KB</li> <li>8 = 8 KB</li> </ul> |
| F1    | Fab and mask set identifier  | • W2                                             |
| В     | Temperature range (°C)       | • M = -40 to 125                                 |
| CC    | Package designator           | • LF = 48-LQFP                                   |



**Parameter Classification** 

| Field | Description | Values                                                                         |
|-------|-------------|--------------------------------------------------------------------------------|
|       |             | <ul> <li>LC = 32-LQFP</li> <li>TJ = 20-TSSOP</li> <li>TG = 16-TSSOP</li> </ul> |

### 2.4 Example

This is an example part number:

S9S08RN16W2MLF

### **3** Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

#### Table 1. Parameter Classifications

| Р | Those parameters are guaranteed during production testing on each individual device.                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.                                                                              |
| Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. |
| D | Those parameters are derived mainly from simulations.                                                                                                                                                                  |

### NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

### 4 Ratings

### 4.1 Thermal handling ratings

| Symbol           | Description                   | Min. | Max. | Unit | Notes |
|------------------|-------------------------------|------|------|------|-------|
| T <sub>STG</sub> | Storage temperature           | -55  | 150  | °C   | 1     |
| T <sub>SDR</sub> | Solder temperature, lead-free | _    | 260  | °C   | 2     |

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.



| Symbol                       | С | Descriptions                                                 |                                                                                   |                                   | Min                  | Typical <sup>1</sup> | Max                  | Unit |
|------------------------------|---|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------|----------------------|------|
|                              | С |                                                              | High current drive<br>pins, high-drive                                            | 5 V, I <sub>load</sub><br>=20 mA  | _                    | _                    | 0.8                  | V    |
|                              | С |                                                              | strength <sup>2</sup>                                                             | 3 V, I <sub>load</sub> =<br>10 mA | _                    |                      | 0.8                  | V    |
| I <sub>OLT</sub>             | D | Output low                                                   | Max total I <sub>OL</sub> for all                                                 | 5 V                               | _                    | _                    | 100                  | mA   |
|                              |   | current                                                      | ports                                                                             | 3 V                               | _                    | —                    | 50                   |      |
| V <sub>IH</sub>              | Р | Input high                                                   | All digital inputs                                                                | V <sub>DD</sub> >4.5V             | $0.70 \times V_{DD}$ | —                    |                      | V    |
|                              | С | voltage                                                      |                                                                                   | V <sub>DD</sub> >2.7V             | $0.75 \times V_{DD}$ | _                    |                      | ]    |
| V <sub>IL</sub>              | Р | Input low All digital inputs                                 |                                                                                   | V <sub>DD</sub> >4.5V             | _                    | _                    | $0.30 \times V_{DD}$ | V    |
|                              | С | voltage                                                      |                                                                                   | V <sub>DD</sub> >2.7V             | _                    | _                    | $0.35 \times V_{DD}$ |      |
| V <sub>hys</sub>             | С | Input<br>hysteresis                                          | All digital inputs                                                                | —                                 | $0.06 \times V_{DD}$ | —                    | _                    | mV   |
| <sub>In</sub>                | Р | Input leakage current                                        | All input only pins<br>(per pin)                                                  | $V_{IN} = V_{DD}$ or $V_{SS}$     | _                    | 0.1                  | 1                    | μA   |
| ll <sub>oz</sub> l           | Р | Hi-Z (off-<br>state) leakage<br>current                      | All input/output (per<br>pin)                                                     | $V_{IN} = V_{DD}$ or $V_{SS}$     | _                    | 0.1                  | 1                    | μA   |
| II <sub>OZTOT</sub> I        | С | Total leakage<br>combined for<br>all inputs and<br>Hi-Z pins | All input only and I/O                                                            | $V_{IN} = V_{DD}$ or $V_{SS}$     | _                    | -                    | 2                    | μA   |
| R <sub>PU</sub>              | Р | Pullup<br>resistors                                          | All digital inputs,<br>when enabled (all I/O<br>pins other than PTA2<br>and PTA3) | _                                 | 30.0                 | _                    | 50.0                 | kΩ   |
| R <sub>PU</sub> <sup>3</sup> | Р | Pullup<br>resistors                                          | PTA2 and PTA3 pin                                                                 | —                                 | 30.0                 | —                    | 60.0                 | kΩ   |
| I <sub>IC</sub>              | D | DC injection                                                 | Single pin limit                                                                  | $V_{\rm IN} < V_{\rm SS},$        | -0.2                 | _                    | 2                    | mA   |
|                              |   | current <sup>4, 5, 6</sup>                                   | Total MCU limit,<br>includes sum of all<br>stressed pins                          | V <sub>IN</sub> > V <sub>DD</sub> | -5                   | _                    | 25                   |      |
| C <sub>In</sub>              | С | Input cap                                                    | acitance, all pins                                                                |                                   | _                    | _                    | 7                    | pF   |
| V <sub>RAM</sub>             | С | RAM re                                                       | etention voltage                                                                  |                                   | 2.0                  | _                    | <u> </u>             | V    |

|  | Table 2. | DC characteristics | (continued) |
|--|----------|--------------------|-------------|
|--|----------|--------------------|-------------|

1. Typical values are measured at 25 °C. Characterized, not tested.

2. Only PTB4, PTB5 support ultra high current output.

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to  $V_{SS}$  and  $V_{DD}$ .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If the positive injection current (V<sub>In</sub> > V<sub>DD</sub>) is higher than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure that external V<sub>DD</sub> load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

nonswitching electrical specifications

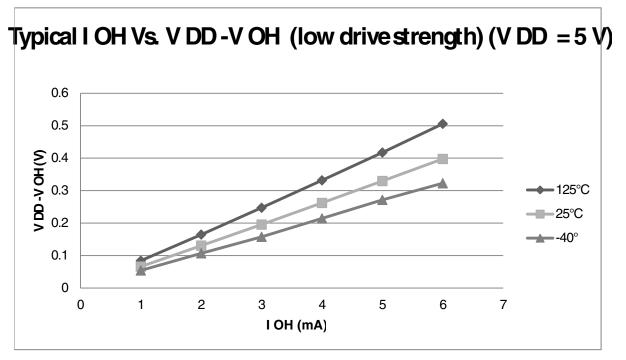



Figure 1. Typical  $I_{OH}$  Vs.  $V_{DD}$ - $V_{OH}$  (standard drive strength) ( $V_{DD}$  = 5 V)

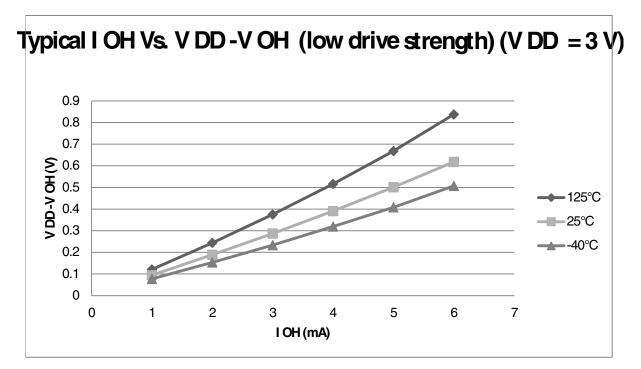



Figure 2. Typical  $I_{OH}$  Vs.  $V_{DD}$ - $V_{OH}$  (standard drive strength) ( $V_{DD}$  = 3 V)



Nonswitching electrical specifications

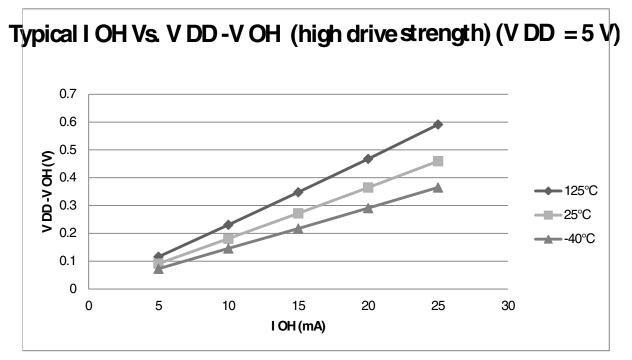



Figure 3. Typical  $I_{OH}$  Vs.  $V_{DD}$ - $V_{OH}$  (high drive strength) ( $V_{DD}$  = 5 V)

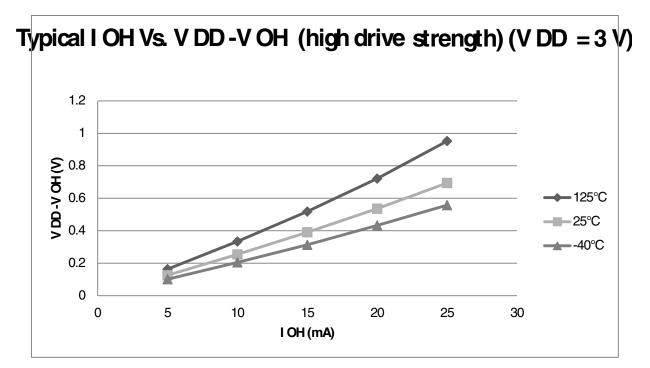



Figure 4. Typical  $I_{OH}$  Vs.  $V_{DD}$ - $V_{OH}$  (high drive strength) ( $V_{DD}$  = 3 V)



### 5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

| Num | С | Parameter                                                              | Symbol            | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max  | Unit | Temp          |
|-----|---|------------------------------------------------------------------------|-------------------|----------|---------------------|----------------------|------|------|---------------|
| 1   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 7.60                 | —    | mA   | -40 to 125 °C |
|     | С | mode, all modules on; run<br>from flash                                |                   | 10 MHz   |                     | 4.65                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.90                 | —    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 7.05                 | —    |      |               |
|     | С |                                                                        |                   | 10 MHz   |                     | 4.40                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.85                 | —    |      |               |
| 2   | С | Run supply current FEI                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 5.88                 | —    | mA   | -40 to 125 °C |
|     | С | mode, all modules off & gated; run from flash                          |                   | 10 MHz   |                     | 3.70                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.85                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.35                 | _    |      |               |
|     | С |                                                                        |                   | 10 MHz   |                     | 3.42                 | —    | 1    |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.80                 | _    |      |               |
| 3   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 10.9                 | 14.0 | mA   | -40 to 125 °C |
|     | С | mode, all modules on; run<br>from RAM                                  |                   | 10 MHz   |                     | 6.10                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.69                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 8.18                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 5.14                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.44                 | _    |      |               |
| 4   | Р | Run supply current FBE                                                 | RI <sub>DD</sub>  | 20 MHz   | 5                   | 8.50                 | 13.0 | mA   | -40 to 125 °C |
|     | С | mode, all modules off & gated; run from RAM                            |                   | 10 MHz   |                     | 5.07                 | —    |      |               |
|     |   | gated, full non firm                                                   |                   | 1 MHz    |                     | 1.59                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 6.11                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 4.10                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.34                 | _    |      |               |
| 5   | С | Wait mode current FEI                                                  | WI <sub>DD</sub>  | 20 MHz   | 5                   | 5.95                 | _    | mA   | -40 to 125 °C |
|     |   | mode, all modules on                                                   |                   | 10 MHz   |                     | 3.50                 | _    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.24                 | _    |      |               |
|     | С |                                                                        |                   | 20 MHz   | 3                   | 5.45                 | _    |      |               |
|     |   |                                                                        |                   | 10 MHz   |                     | 3.25                 | —    |      |               |
|     |   |                                                                        |                   | 1 MHz    |                     | 1.20                 | _    |      |               |
| 6   | С | Stop3 mode supply                                                      | S3I <sub>DD</sub> | —        | 5                   | 4.6                  | _    | μA   | -40 to 125 °C |
|     | С | current no clocks active<br>(except 1kHz LPO<br>clock) <sup>2, 3</sup> |                   |          | 3                   | 4.5                  | —    |      | -40 to 125 °C |
| 7   | С | ADC adder to stop3                                                     |                   |          | 5                   | 40                   |      | μA   | -40 to 125 °C |

Table 4. Supply current characteristics

Table continues on the next page ...



| Num | С | Parameter                       | Symbol | Bus Freq | V <sub>DD</sub> (V) | Typical <sup>1</sup> | Max | Unit | Temp          |
|-----|---|---------------------------------|--------|----------|---------------------|----------------------|-----|------|---------------|
|     | С | ADLPC = 1                       |        |          | 3                   | 39                   | _   |      |               |
|     |   | ADLSMP = 1                      |        |          |                     |                      |     |      |               |
|     |   | ADCO = 1                        |        |          |                     |                      |     |      |               |
|     |   | MODE = 10B                      |        |          |                     |                      |     |      |               |
|     |   | ADICLK = 11B                    |        |          |                     |                      |     |      |               |
| 8   | С | TSI adder to stop3 <sup>4</sup> | —      | —        | 5                   | 121                  | _   | μA   | -40 to 125 °C |
|     | С | PS = 010B                       |        |          | 3                   | 120                  | —   | ]    |               |
|     |   | NSCN = 0x0F                     |        |          |                     |                      |     |      |               |
|     |   | EXTCHRG = 0                     |        |          |                     |                      |     |      |               |
|     |   | REFCHRG = 0                     |        |          |                     |                      |     |      |               |
|     |   | DVOLT = 01B                     |        |          |                     |                      |     |      |               |
| 9   | С | LVD adder to stop3 <sup>5</sup> | —      | —        | 5                   | 128                  | _   | μA   | -40 to 125 °C |
|     | С |                                 |        |          | 3                   | 124                  |     | 1    |               |

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. RTC adder cause <1  $\mu$ A I<sub>DD</sub> increase typically, RTC clock source is 1kHz LPO clock.

3. ACMP adder cause <10 µA I<sub>DD</sub> increase typically.

4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.

5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

### 5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

### 5.2 Switching specifications

### 5.2.1 Control timing

Table 5. Control timing

| Num | С | Rating                                                 | Symbol           | Min  | Typical <sup>1</sup> | Max  | Unit |
|-----|---|--------------------------------------------------------|------------------|------|----------------------|------|------|
| 1   | Р | Bus frequency (t <sub>cyc</sub> = 1/f <sub>Bus</sub> ) | f <sub>Bus</sub> | DC   | _                    | 20   | MHz  |
| 2   | Р | Internal low power oscillator frequency                | f <sub>LPO</sub> | 0.67 | 1.0                  | 1.25 | KHz  |

Table continues on the next page ...



| Symbol          | Description              | Min. | Max. | Unit |
|-----------------|--------------------------|------|------|------|
| t <sub>wh</sub> | High pulse width         | 2    | —    | ns   |
| t <sub>r</sub>  | Clock and data rise time | —    | 3    | ns   |
| t <sub>f</sub>  | Clock and data fall time | _    | 3    | ns   |
| t <sub>s</sub>  | Data setup               | 3    | _    | ns   |
| t <sub>h</sub>  | Data hold                | 2    | _    | ns   |

Table 6. Debug trace operating behaviors (continued)

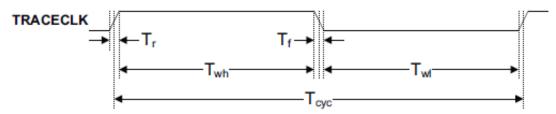



Figure 11. TRACE\_CLKOUT specifications

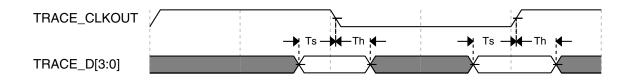



Figure 12. Trace data specifications

### 5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

| No. | С | Function                     | Symbol            | Min | Мах                 | Unit             |
|-----|---|------------------------------|-------------------|-----|---------------------|------------------|
| 1   | D | External clock<br>frequency  | f <sub>TCLK</sub> | 0   | f <sub>Bus</sub> /4 | Hz               |
| 2   | D | External clock period        | t <sub>TCLK</sub> | 4   |                     | t <sub>cyc</sub> |
| 3   | D | External clock<br>high time  | t <sub>clkh</sub> | 1.5 |                     | t <sub>cyc</sub> |
| 4   | D | External clock<br>low time   | t <sub>clkl</sub> | 1.5 |                     | t <sub>cyc</sub> |
| 5   | D | Input capture<br>pulse width | t <sub>ICPW</sub> | 1.5 |                     | t <sub>cyc</sub> |



rempheral operating requirements and behaviors

### 6.1 External oscillator (XOSC) and ICS characteristics

### Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

| Num | С | C                                                     | Characteristic                                                       | Symbol             | Min     | Typical <sup>1</sup>  | Max  | Unit              |
|-----|---|-------------------------------------------------------|----------------------------------------------------------------------|--------------------|---------|-----------------------|------|-------------------|
| 1   | С | Oscillator                                            | Low range (RANGE = 0)                                                | f <sub>lo</sub>    | 32      |                       | 40   | kHz               |
|     | С | crystal or<br>resonator                               | High range (RANGE = 1)<br>FEE or FBE mode <sup>2</sup>               | f <sub>hi</sub>    | 4       | —                     | 20   | MHz               |
|     | С |                                                       | High range (RANGE = 1),<br>high gain (HGO = 1),<br>FBELP mode        | f <sub>hi</sub>    | 4       |                       | 20   | MHz               |
|     | С |                                                       | High range (RANGE = 1),<br>low power (HGO = 0),<br>FBELP mode        | f <sub>hi</sub>    | 4       | _                     | 20   | MHz               |
| 2   | D | Lo                                                    | bad capacitors                                                       | C1, C2             |         | See Note <sup>3</sup> |      |                   |
| 3   | D | Feedback<br>resistor                                  | Low Frequency, Low-Power<br>Mode <sup>4</sup>                        | R <sub>F</sub>     | _       | —                     | _    | MΩ                |
|     |   |                                                       | Low Frequency, High-Gain<br>Mode                                     |                    | _       | 10                    | —    | MΩ                |
|     |   | High Frequency,<br>Power Mode                         |                                                                      |                    | _       | 1                     | —    | MΩ                |
|     |   |                                                       | High Frequency, High-Gain<br>Mode                                    |                    | _       | 1                     | —    | MΩ                |
| 4   | D | Series resistor -                                     | Low-Power Mode <sup>4</sup>                                          | R <sub>S</sub>     | _       | —                     |      | kΩ                |
|     |   | Low Frequency                                         | High-Gain Mode                                                       |                    | _       | 200                   |      | kΩ                |
| 5   | D | Series resistor -<br>High Frequency                   | Low-Power Mode <sup>4</sup>                                          | R <sub>S</sub>     | —       | —                     | —    | kΩ                |
|     | D | Series resistor -                                     | 4 MHz                                                                |                    | _       | 0                     |      | kΩ                |
|     | D | High<br>Frequency,                                    | 8 MHz                                                                |                    | _       | 0                     |      | kΩ                |
|     | D | High-Gain Mode                                        | 16 MHz                                                               |                    | —       | 0                     | _    | kΩ                |
| 6   | С | Crystal start-up                                      | Low range, low power                                                 | t <sub>CSTL</sub>  | _       | 1000                  | _    | ms                |
|     | С | time Low range<br>= 39.0625 kHz                       | Low range, high power                                                |                    |         | 800                   | _    | ms                |
|     | С | crystal; High                                         | High range, low power                                                | t <sub>CSTH</sub>  | _       | 3                     |      | ms                |
|     | С | range = 20 MHz<br>crystal <sup>5</sup> , <sup>6</sup> | High range, high power                                               |                    | —       | 1.5                   | —    | ms                |
| 7   | Т | Internal re                                           | eference start-up time                                               | t <sub>IRST</sub>  | _       | 20                    | 50   | μs                |
| 8   | D | Square wave                                           | FEE or FBE mode <sup>2</sup>                                         | f <sub>extal</sub> | 0.03125 |                       | 5    | MHz               |
|     | D | input clock<br>frequency                              | FBELP mode                                                           |                    | 0       | —                     | 20   | MHz               |
| 9   | Ρ | Average inter                                         | nal reference frequency -<br>trimmed                                 | f <sub>int_t</sub> | _       | 39.0625               |      | kHz               |
| 10  | Р | DCO output f                                          | requency range - trimmed                                             | f <sub>dco_t</sub> | 16      |                       | 20   | MHz               |
| 11  | Р | Total deviation<br>of DCO output<br>from trimmed      | Over full voltage range and<br>temperature range of -40 to<br>125 °C | $\Delta f_{dco_t}$ | _       | _                     | ±2.0 |                   |
|     | С | frequency <sup>5</sup>                                | Over full voltage range and<br>temperature range of -40 to<br>105 °C |                    |         |                       | ±1.5 | %f <sub>dco</sub> |

Table continues on the next page...



# Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)(continued)

| Num | С | Characteristic                                                                  |  | Symbol               | Min | Typical <sup>1</sup> | Max  | Unit              |
|-----|---|---------------------------------------------------------------------------------|--|----------------------|-----|----------------------|------|-------------------|
|     | С | Over fixed voltage and<br>temperature range of 0 to<br>70 °C                    |  |                      |     |                      | ±1.0 |                   |
| 12  | С | FLL acquisition time <sup>5</sup> , <sup>7</sup>                                |  | t <sub>Acquire</sub> | _   | —                    | 2    | ms                |
| 13  | С | Long term jitter of DCO output clock (averaged over 2 ms interval) <sup>8</sup> |  | C <sub>Jitter</sub>  |     | 0.02                 | 0.2  | %f <sub>dco</sub> |

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C<sub>1</sub>,C<sub>2</sub>), feedback resistor (R<sub>F</sub>) and series resistor (R<sub>S</sub>) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f<sub>Bus</sub>. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V<sub>DD</sub> and V<sub>SS</sub> and variation in crystal oscillator frequency increase the C<sub>Jitter</sub> percentage for a given interval.

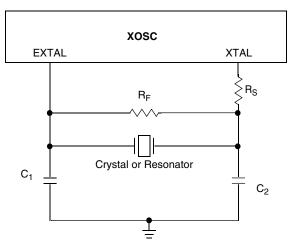



Figure 15. Typical crystal or resonator circuit



rempheral operating requirements and behaviors

### 6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

| С | Characteristic                                                                                                              | Symbol                  | Min <sup>1</sup> | Typical <sup>2</sup> | Max <sup>3</sup> | Unit <sup>4</sup> |
|---|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|----------------------|------------------|-------------------|
| D | Supply voltage for program/erase -40 °C<br>to 125 °C                                                                        | V <sub>prog/erase</sub> | 2.7              | -                    | 5.5              | V                 |
| D | Supply voltage for read operation                                                                                           | V <sub>Read</sub>       | 2.7              | _                    | 5.5              | V                 |
| D | NVM Bus frequency                                                                                                           | f <sub>NVMBUS</sub>     | 1                | _                    | 25               | MHz               |
| D | NVM Operating frequency                                                                                                     | f <sub>NVMOP</sub>      | 0.8              | 1                    | 1.05             | MHz               |
| D | Erase Verify All Blocks                                                                                                     | t <sub>VFYALL</sub>     | —                | —                    | 17338            | t <sub>cyc</sub>  |
| D | Erase Verify Flash Block                                                                                                    | t <sub>RD1BLK</sub>     | —                | —                    | 16913            | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Block                                                                                                   | t <sub>RD1BLK</sub>     | —                | _                    | 810              | t <sub>cyc</sub>  |
| D | Erase Verify Flash Section                                                                                                  | t <sub>RD1SEC</sub>     | —                | —                    | 484              | t <sub>cyc</sub>  |
| D | Erase Verify EEPROM Section                                                                                                 | t <sub>DRD1SEC</sub>    | —                | _                    | 555              | t <sub>cyc</sub>  |
| D | Read Once                                                                                                                   | t <sub>RDONCE</sub>     | —                | _                    | 450              | t <sub>cyc</sub>  |
| D | Program Flash (2 word)                                                                                                      | t <sub>PGM2</sub>       | 0.12             | 0.12                 | 0.29             | ms                |
| D | Program Flash (4 word)                                                                                                      | t <sub>PGM4</sub>       | 0.20             | 0.21                 | 0.46             | ms                |
| D | Program Once                                                                                                                | t <sub>PGMONCE</sub>    | 0.20             | 0.21                 | 0.21             | ms                |
| D | Program EEPROM (1 Byte)                                                                                                     | t <sub>DPGM1</sub>      | 0.10             | 0.10                 | 0.27             | ms                |
| D | Program EEPROM (2 Byte)                                                                                                     | t <sub>DPGM2</sub>      | 0.17             | 0.18                 | 0.43             | ms                |
| D | Program EEPROM (3 Byte)                                                                                                     | t <sub>DPGM3</sub>      | 0.25             | 0.26                 | 0.60             | ms                |
| D | Program EEPROM (4 Byte)                                                                                                     | t <sub>DPGM4</sub>      | 0.32             | 0.33                 | 0.77             | ms                |
| D | Erase All Blocks                                                                                                            | t <sub>ERSALL</sub>     | 96.01            | 100.78               | 101.49           | ms                |
| D | Erase Flash Block                                                                                                           | t <sub>ERSBLK</sub>     | 95.98            | 100.75               | 101.44           | ms                |
| D | Erase Flash Sector                                                                                                          | t <sub>ERSPG</sub>      | 19.10            | 20.05                | 20.08            | ms                |
| D | Erase EEPROM Sector                                                                                                         | t <sub>DERSPG</sub>     | 4.81             | 5.05                 | 20.57            | ms                |
| D | Unsecure Flash                                                                                                              | t <sub>UNSECU</sub>     | 96.01            | 100.78               | 101.48           | ms                |
| D | Verify Backdoor Access Key                                                                                                  | t <sub>VFYKEY</sub>     | —                | —                    | 464              | t <sub>cyc</sub>  |
| D | Set User Margin Level                                                                                                       | t <sub>MLOADU</sub>     | _                | —                    | 407              | t <sub>cyc</sub>  |
| С | FLASH Program/erase endurance $T_L$ to $T_H$ = -40 °C to 125 °C                                                             | N <sub>FLPE</sub>       | 10 k             | 100 k                | _                | Cycles            |
| С | EEPROM Program/erase endurance TL<br>to TH = -40 °C to 125 °C                                                               | n <sub>FLPE</sub>       | 50 k             | 500 k                | _                | Cycles            |
| С | Data retention at an average junction<br>temperature of T <sub>Javg</sub> = 85°C after up to<br>10,000 program/erase cycles | t <sub>D_ret</sub>      | 15               | 100                  |                  | years             |

Table 10. Flash characteristics

1. Minimum times are based on maximum  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$ 

- 2. Typical times are based on typical  $f_{\text{NVMOP}}$  and maximum  $f_{\text{NVMBUS}}$
- 3. Maximum times are based on typical  $f_{\text{NVMOP}}$  and typical  $f_{\text{NVMBUS}}$  plus aging
- 4.  $t_{cyc} = 1 / f_{NVMBUS}$



Program and erase operations do not require any special power sources other than the normal  $V_{DD}$  supply. For more detailed information about program/erase operations, see the Memory section.

### 6.3 Analog

### 6.3.1 ADC characteristics

| Characteri<br>stic               |                                                                      |                   | Min               | Typ <sup>1</sup> | Max               | Unit | Comment            |
|----------------------------------|----------------------------------------------------------------------|-------------------|-------------------|------------------|-------------------|------|--------------------|
| Supply                           | Absolute                                                             | V <sub>DDA</sub>  | 2.7               |                  | 5.5               | V    |                    |
| voltage                          | Delta to V <sub>DD</sub> (V <sub>DD</sub> -V <sub>DDAD</sub> )       | ΔV <sub>DDA</sub> | -100              | 0                | +100              | mV   |                    |
| Ground<br>voltage                | Delta to $V_{SS} (V_{SS} - V_{SSA})^2$                               | ΔV <sub>SSA</sub> | -100              | 0                | +100              | mV   |                    |
| Input<br>voltage                 |                                                                      | V <sub>ADIN</sub> | V <sub>REFL</sub> | _                | V <sub>REFH</sub> | V    |                    |
| Input<br>capacitance             |                                                                      |                   | _                 | 4.5              | 5.5               | pF   |                    |
| Input<br>resistance              |                                                                      | R <sub>ADIN</sub> |                   | 3                | 5                 | kΩ   | _                  |
| Analog<br>source                 | 12-bit mode<br>• f <sub>ADCK</sub> > 4 MHz                           | R <sub>AS</sub>   |                   | _                | 2                 | kΩ   | External to<br>MCU |
| resistance                       | • f <sub>ADCK</sub> < 4 MHz                                          | _                 |                   |                  | 5                 | -    |                    |
|                                  | <ul> <li>10-bit mode</li> <li>f<sub>ADCK</sub> &gt; 4 MHz</li> </ul> |                   | _                 | _                | 5                 |      |                    |
|                                  | • $f_{ADCK} < 4 \text{ MHz}$                                         |                   | _                 | _                | 10                |      |                    |
|                                  | 8-bit mode                                                           |                   | —                 | —                | 10                |      |                    |
|                                  | (all valid f <sub>ADCK</sub> )                                       |                   |                   |                  |                   |      |                    |
| ADC                              | High speed (ADLPC=0)                                                 | f <sub>ADCK</sub> | 0.4               | _                | 8.0               | MHz  | _                  |
| conversion<br>clock<br>frequency | Low power (ADLPC=1)                                                  |                   | 0.4               | —                | 4.0               |      |                    |

1. Typical values assume  $V_{DDA} = 5.0 \text{ V}$ , Temp = 25°C,  $f_{ADCK}=1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.



| Characteristic                       | Conditions                   | С              | Symb                | Min  | Typ <sup>1</sup>                  | Мах   | Unit             |  |
|--------------------------------------|------------------------------|----------------|---------------------|------|-----------------------------------|-------|------------------|--|
|                                      | Low power (ADLPC<br>= 1)     |                |                     | 1.25 | 2                                 | 3.3   |                  |  |
| Conversion time<br>(including sample | Short sample<br>(ADLSMP = 0) | Т              | t <sub>ADC</sub>    | _    | 20                                | _     | ADCK<br>cycles   |  |
| time)                                | Long sample<br>(ADLSMP = 1)  |                |                     | —    | 40                                | _     | -                |  |
| Sample time                          | Short sample<br>(ADLSMP = 0) | Т              | t <sub>ADS</sub>    | —    | 3.5                               | _     | ADCK<br>cycles   |  |
|                                      | Long sample<br>(ADLSMP = 1)  |                |                     | _    | 23.5                              | _     |                  |  |
| Total unadjusted                     | 12-bit mode                  | Т              | E <sub>TUE</sub>    | —    | ±5.0                              | _     | LSB <sup>3</sup> |  |
| Error <sup>2</sup>                   | 10-bit mode                  | Р              |                     | _    | ±1.5                              | ±2.0  |                  |  |
|                                      | 8-bit mode                   | P <sup>4</sup> |                     | _    | ±0.7                              | ±1.0  |                  |  |
| Differential Non-                    | 12-bit mode                  | Т              | DNL                 |      | ±1.0                              | —     | LSB <sup>3</sup> |  |
| Linearity                            | 10-bit mode <sup>5</sup>     | Р              |                     |      | ±0.25                             | ±0.5  |                  |  |
|                                      | 8-bit mode <sup>5</sup>      | P <sup>4</sup> |                     | _    | ±0.15                             | ±0.25 |                  |  |
| Integral Non-Linearity               | 12-bit mode                  | Т              | INL                 |      | ±1.0                              | —     | LSB <sup>3</sup> |  |
|                                      | 10-bit mode                  | Т              |                     | _    | ±0.3                              | ±0.5  |                  |  |
|                                      | 8-bit mode                   | Т              |                     | _    | ±0.15                             | ±0.25 |                  |  |
| Zero-scale error <sup>6</sup>        | 12-bit mode                  | С              | E <sub>zs</sub>     | _    | ±2.0                              | —     | LSB <sup>3</sup> |  |
|                                      | 10-bit mode                  | Р              |                     | _    | ±0.25                             | ±1.0  | 1                |  |
|                                      | 8-bit mode                   | P <sup>4</sup> |                     | _    | ±0.65                             | ±1.0  |                  |  |
| Full-scale error <sup>7</sup>        | 12-bit mode                  | Т              | E <sub>FS</sub>     | _    | ±2.5                              | —     | LSB <sup>3</sup> |  |
|                                      | 10-bit mode                  | Т              |                     | _    | ±0.5                              | ±1.0  |                  |  |
|                                      | 8-bit mode                   | Т              |                     | _    | ±0.5                              | ±1.0  | 1                |  |
| Quantization error                   | ≤12 bit modes                | D              | Eq                  | _    | _                                 | ±0.5  | LSB <sup>3</sup> |  |
| Input leakage error <sup>8</sup>     | all modes                    | D              | E <sub>IL</sub>     |      | I <sub>In</sub> * R <sub>AS</sub> | 1     | mV               |  |
| Temp sensor slope                    | -40°C– 25°C                  | D              | m                   | —    | 3.266                             | —     | mV/°C            |  |
|                                      | 25°C– 125°C                  |                |                     | _    | 3.638                             |       | 1                |  |
| Temp sensor voltage                  | 25°C                         | D              | V <sub>TEMP25</sub> |      | 1.396                             | _     | V                |  |

### Table 12. 12-bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

1. Typical values assume  $V_{DDA} = 5.0 \text{ V}$ , Temp = 25°C,  $f_{ADCK}=1.0 \text{ MHz}$  unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

3. 1 LSB = ( $V_{REFH} - V_{REFL}$ )/2<sup>N</sup>

- 4. 10-bit mode only for package LQFP48/32, TSSOP20/16. Those parameters are only achieved by the design characterization.
- 5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 6.  $V_{ADIN} = V_{SSA}$
- 7.  $V_{ADIN} = V_{DDA}$
- 8. I<sub>In</sub> = leakage current (refer to DC characteristics)



#### rempheral operating requirements and behaviors

| Nu<br>m. | Symbol              | Description                    | Min.                  | Max.                  | Unit             | Comment                                           |
|----------|---------------------|--------------------------------|-----------------------|-----------------------|------------------|---------------------------------------------------|
| 1        | f <sub>op</sub>     | Frequency of operation         | 0                     | f <sub>Bus</sub> /4   | Hz               | f <sub>Bus</sub> is the bus clock as defined in . |
| 2        | t <sub>SPSCK</sub>  | SPSCK period                   | 4 x t <sub>Bus</sub>  | —                     | ns               | $t_{Bus} = 1/f_{Bus}$                             |
| 3        | t <sub>Lead</sub>   | Enable lead time               | 1                     | —                     | t <sub>Bus</sub> | —                                                 |
| 4        | t <sub>Lag</sub>    | Enable lag time                | 1                     | —                     | t <sub>Bus</sub> | _                                                 |
| 5        | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>Bus</sub> - 30 | —                     | ns               | _                                                 |
| 6        | t <sub>SU</sub>     | Data setup time (inputs)       | 15                    | —                     | ns               | —                                                 |
| 7        | t <sub>HI</sub>     | Data hold time (inputs)        | 25                    | —                     | ns               | —                                                 |
| 8        | t <sub>a</sub>      | Slave access time              | —                     | t <sub>Bus</sub>      | ns               | Time to data active from<br>high-impedance state  |
| 9        | t <sub>dis</sub>    | Slave MISO disable time        | —                     | t <sub>Bus</sub>      | ns               | Hold time to high-<br>impedance state             |
| 10       | t <sub>v</sub>      | Data valid (after SPSCK edge)  |                       | 25                    | ns               | —                                                 |
| 11       | t <sub>HO</sub>     | Data hold time (outputs)       | 0                     | —                     | ns               | —                                                 |
| 12       | t <sub>RI</sub>     | Rise time input                | _                     | t <sub>Bus</sub> - 25 | ns               | —                                                 |
|          | t <sub>FI</sub>     | Fall time input                |                       |                       |                  |                                                   |
| 13       | t <sub>RO</sub>     | Rise time output               | _                     | 25                    | ns               | —                                                 |
|          | t <sub>FO</sub>     | Fall time output               |                       |                       |                  |                                                   |

### Table 15. SPI slave mode timing

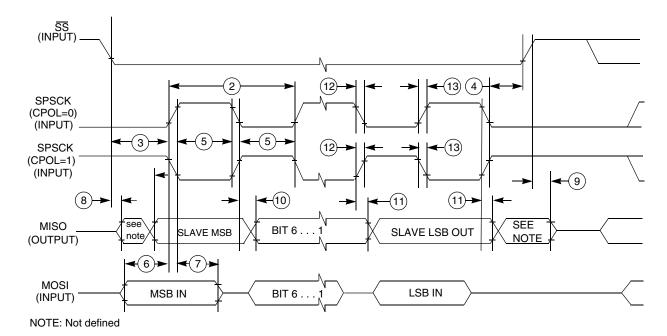
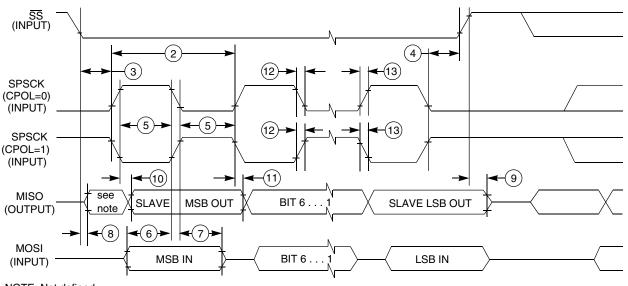




Figure 19. SPI slave mode timing (CPHA = 0)





NOTE: Not defined



### 6.5 Human-machine interfaces (HMI)

### 6.5.1 TSI electrical specifications

#### Table 16. TSI electrical specifications

| Symbol    | nbol Description                                                                      |     | Туре | Max | Unit |
|-----------|---------------------------------------------------------------------------------------|-----|------|-----|------|
| TSI_RUNF  | Fixed power consumption in run mode                                                   | —   | 100  | —   | μA   |
| TSI_RUNV  | Variable power consumption in run mode<br>(depends on oscillator's current selection) | 1.0 | —    | 128 | μA   |
| TSI_EN    | Power consumption in enable mode                                                      | —   | 100  |     | μA   |
| TSI_DIS   | Power consumption in disable mode                                                     | —   | 1.2  |     | μA   |
| TSI_TEN   | TSI analog enable time                                                                | _   | 66   |     | μs   |
| TSI_CREF  | TSI_CREF TSI reference capacitor                                                      |     | 1.0  |     | pF   |
| TSI_DVOLT | Voltage variation of VP & VM around nominal values                                    | -10 | _    | 10  | %    |

## 7 Dimensions

### 7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.



To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 16-pin TSSOP                             | 98ASH70247A                   |
| 20-pin TSSOP                             | 98ASH70169A                   |
| 32-pin LQFP                              | 98ASH70029A                   |
| 48-pin LQFP                              | 98ASH00962A                   |

### 8 Pinout

### 8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

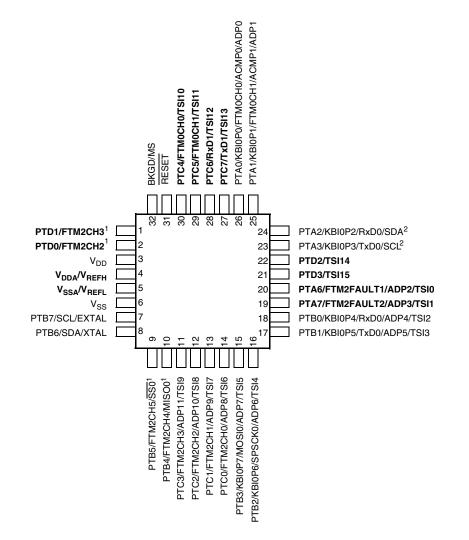
|         | Pin     | Number   |          | Lowest Priority <> Highest |       |         |                  |                   |
|---------|---------|----------|----------|----------------------------|-------|---------|------------------|-------------------|
| 48-LQFP | 32-LQFP | 20-TSSOP | 16-TSSOP | Port Pin                   | Alt 1 | Alt 2   | Alt 3            | Alt 4             |
| 1       | 1       | _        | —        | PTD1 <sup>1</sup>          |       | FTM2CH3 | _                |                   |
| 2       | 2       | _        | —        | PTD0 <sup>1</sup>          | _     | FTM2CH2 | —                | _                 |
| 3       | —       | _        | —        | PTE4                       | _     | TCLK2   | _                | _                 |
| 4       | —       | _        | —        | PTE3                       | —     | BUSOUT  | —                | —                 |
| 5       | 3       | 3        | 3        | _                          | _     |         | —                | V <sub>DD</sub>   |
| 6       | 4       | —        | —        | _                          | —     | _       | V <sub>DDA</sub> | V <sub>REFH</sub> |
| 7       | 5       | _        | —        | —                          | _     |         | V <sub>SSA</sub> | V <sub>REFL</sub> |
| 8       | 6       | 4        | 4        | _                          | _     |         | —                | V <sub>SS</sub>   |
| 9       | 7       | 5        | 5        | PTB7                       | _     | —       | SCL              | EXTAL             |
| 10      | 8       | 6        | 6        | PTB6                       | _     | _       | SDA              | XTAL              |
| 11      | _       | _        | —        | _                          | _     |         | _                | Vss               |
| 12      | —       | _        | —        | NC                         |       |         |                  |                   |
| 13      | —       | _        | —        | NC                         |       |         |                  |                   |
| 14      | 9       | 7        | 7        | PTB5 <sup>1</sup>          |       | FTM2CH5 | SS0              | _                 |
| 15      | 10      | 8        | 8        | PTB4 <sup>1</sup>          |       | FTM2CH4 | MISO0            | —                 |
| 16      | 11      | 9        | —        | PTC3                       |       | FTM2CH3 | ADP11            | TSI9              |
| 17      | 12      | 10       | —        | PTC2                       | _     | FTM2CH2 | ADP10            | TSI8              |
| 18      | _       |          | _        | PTD7                       |       | —       | —                |                   |

Table 17. Pin availability by package pin-count

Table continues on the next page...



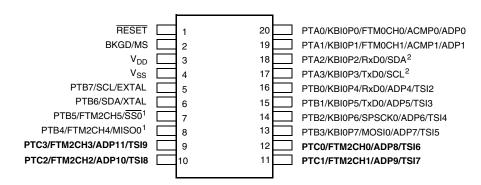
8.2


highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

#### PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 PTC4/FTM0CH0/TSI10 PTC5/FTM0CH1/TSI11 PTC6/RxD1/TS112 PTC7/TxD1/TSI13 PTE0/SPSCK0 PTE1/MOSI0<sup>1</sup> PTE2/MISO0 **BKGD/MS** RESET g 39 38 37 PTD1/FTM2CH3 PTA2/KBI0P2/RxD0/SDA2 36 PTD0/FTM2CH21 35 PTA3/KBI0P3/TxD0/SCL<sup>2</sup> 2 PTE4/TCLK2 З 34 PTD2/TSI14 PTE3/BUSOUT 4 33 PTD3/TSI15 $V_{DD}$ 5 32 PTD4 31 V<sub>DDA</sub> /V<sub>REFF</sub> 6 $V_{DD}$ V<sub>SSA</sub> /V<sub>REFI</sub> 30 VSS 29 NC Vss 8 PTB7/SCL/EXTAL PTA6/FTM2FAULT1/ADP2/TSI0 9 28 PTB6/SDA/XTAL 10 PTA7/FTM2FAULT2/ADP3/TSI1 27 V<sub>SS</sub> 26 PTB0/KBI0P4/RxD0/ADP4/TSI2 NC PTB1/KBI0P5/TxD0/ADP5/TSI3 2 20 PTD6 PTD5 PTC2/FTM2CH2/ADP10/TSI8 PTC1/FTM2CH1/ADP9/TSI7 PTC0/FTM2CH0/ADP8/TSI6 PTD7 PTB3/KBI0P7/MOSI0/ADP7/TSI5 TB2/KBI0P6/SPSCK0/ADP6/TSI4 PTC3/FTM2CH3/ADP11/TSI9 g PTB4/FTM2CH4/MISO0 PTB5/FTM2CH5/SS0 1. High source/sink current pins 2. True open drain pins

Figure 21. S9S08RN16 48-pin LQFP package

Device pin assignment

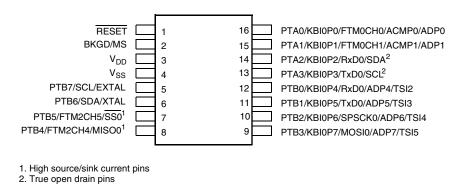





Pins in bold are not available on less pin-count packages.

High source/sink current pins
 True open drain pins






Pins in **bold** are not available on less pin-count packages.

High source/sink current pins
 True open drain pins

#### Figure 23. S9S08RN16 20-pin TSSOP package







### 9 Revision history

The following table provides a revision history for this document.

| Table 18. | Revision | history |
|-----------|----------|---------|
|-----------|----------|---------|

| Rev. No. | Date    | Substantial Changes |
|----------|---------|---------------------|
| 1        | 02/2014 | Initial Release     |