

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rn16w2vlc

naungs

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with Idd current limit at 400mA.
 - I/O pins pass +20/-100 mA I-test with Idd current limit at 1000mA.
 - Supply groups pass 1.5 Vccmax.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	0.8	V
	С		strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA
ll _{OZTOT} l	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0	_	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V _{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is higher than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

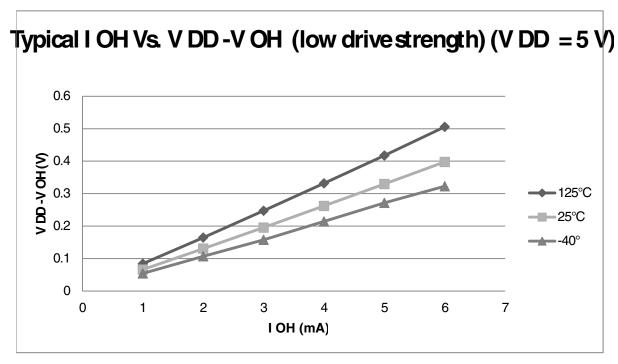


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) ($V_{DD} = 5$ V)

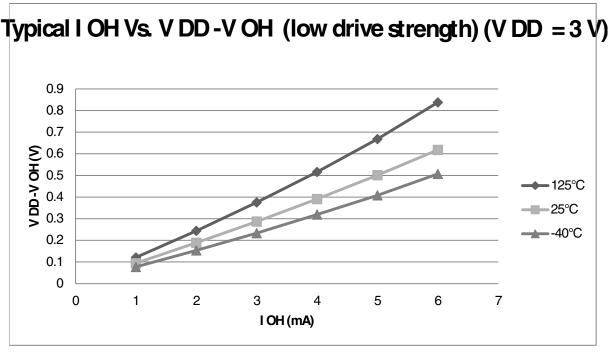


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

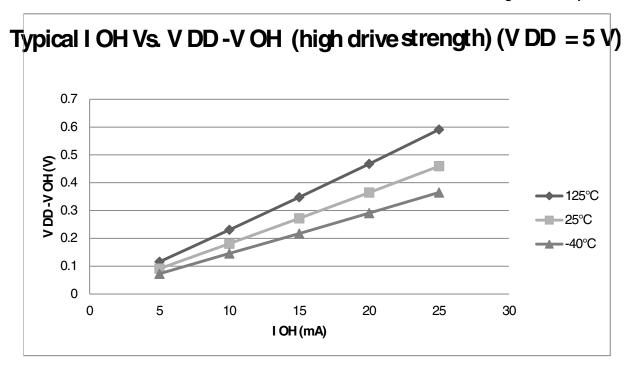


Figure 3. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 5 V)

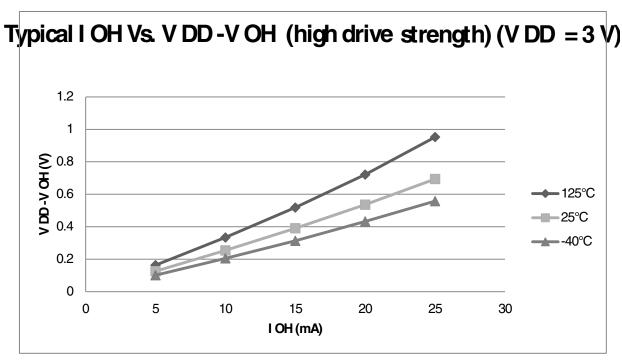


Figure 4. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) ($V_{DD} = 3$ V)

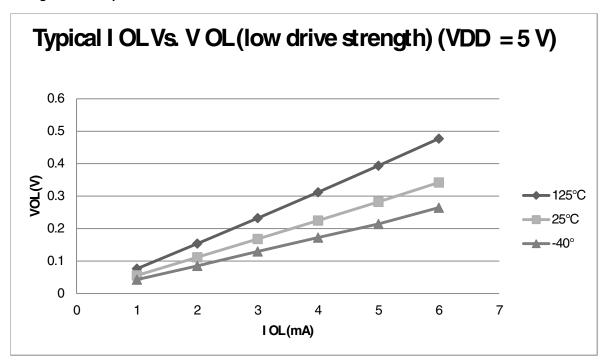


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

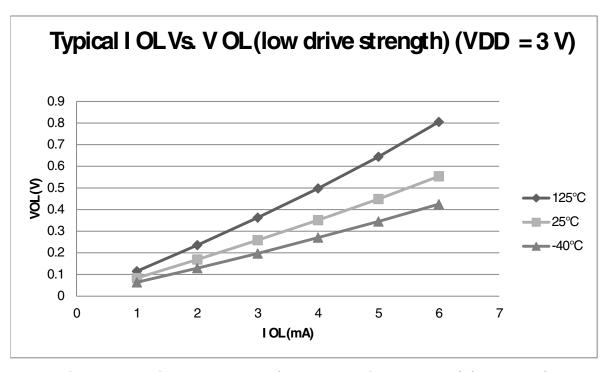


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 125 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		IIOIII IIasii		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85	_	1	
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	_	mA	-40 to 125 °C
	С	mode, all modules off &		10 MHz		3.70	_	1	
		gated; run from flash		1 MHz		1.85	_	1	
	С			20 MHz	3	5.35	_	1	
	С			10 MHz		3.42	_	1	
				1 MHz		1.80	_	1	
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 125 °C
	С	mode, all modules on; run		10 MHz		6.10	_	1	
		from RAM		1 MHz		1.69	_	1	
	С			20 MHz	3	8.18	_	1	
				10 MHz		5.14	_	1	
				1 MHz		1.44	_	-	
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 125 °C
	С	mode, all modules off &	55	10 MHz		5.07	_	1	
		gated; run from RAM		1 MHz		1.59	_	-	
	С			20 MHz	3	6.11	_	1	
				10 MHz		4.10	_	1	
				1 MHz		1.34	_	1	
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95		mA	-40 to 125 °C
		mode, all modules on		10 MHz		3.50		1	
				1 MHz		1.24	_	1	
	С			20 MHz	3	5.45	_	+	
				10 MHz		3.25	_	+	
				1 MHz		1.20	_	+	
6	С	Stop3 mode supply	S3I _{DD}		5	4.6	_	μΑ	-40 to 125 °C
	С	current no clocks active	Join	_	3	4.5	_	PA	-40 to 125 °C
		(except 1kHz LPO clock) ^{2, 3}		_ _	5	7.0			70 10 120 0
7	С	ADC adder to stop3	_	_	5	40	_	μA	-40 to 125 °C

Table 4. S	Supply current	characteristics ((continued))
------------	----------------	-------------------	-------------	---

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	_	_	5	121	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	120	_		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	128	_	μΑ	-40 to 125 °C
	С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μ A I $_{DD}$ increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz

Table 6.	Debug trace o	perating behaviors	s (continued)
----------	---------------	--------------------	---------------

Symbol	Description	Min.	Max.	Unit
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

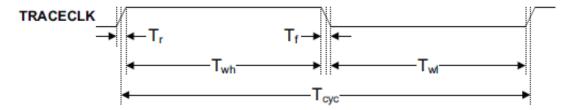


Figure 11. TRACE_CLKOUT specifications

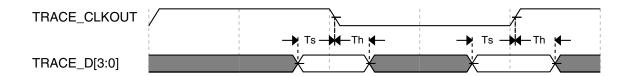


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 7. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

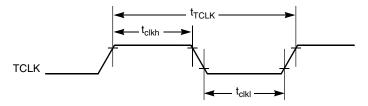


Figure 13. Timer external clock

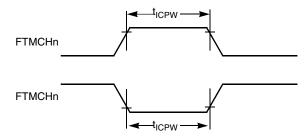


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Symbol Value Unit Rating °С Operating temperature range T_L to T_H -40 to 125 (packaged) Junction temperature range T_J -40 to 135 °C Thermal resistance single-layer board 48-pin LQFP 82 °C/W θ_{JA} °C/W 32-pin LQFP 88 θ_{IA} 20-pin TSSOP °C/W 116 θ_{JA} 16-pin TSSOP °C/W 130 θ_{JA}

Table 8. Thermal characteristics

Thermal resistance four-layer board

Table continues on the next page...

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

Table 8. Thermal characteristics (c	continued)
-------------------------------------	------------

Rating	Symbol	Value	Unit
48-pin LQFP	θ_{JA}	58	°C/W
32-pin LQFP	θ_{JA}	59	°C/W
20-pin TSSOP	θ_{JA}	76	°C/W
16-pin TSSOP	θ_{JA}	87	°C/W

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

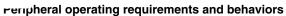
 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:


$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 External oscillator (XOSC) and ICS characteristics

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	32	_	40	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	MΩ
			High Frequency, Low- Power Mode		_	1	_	МΩ
			High Frequency, High-Gain Mode		_	1	_	MΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 39.0625 kHz	Low range, high power		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}		20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_	39.0625	_	kHz
10	Р	DCO output fi	requency range - trimmed	f _{dco_t}	16	_	20	MHz
11	Р	Total deviation of DCO output from trimmed	Over full voltage range and temperature range of -40 to 125 °C	Δf_{dco_t}	_	_	±2.0	
	С	frequency ⁵	Over full voltage range and temperature range of -40 to 105 °C				±1.5	%f _{dco}

reripheral operating requirements and behaviors

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 10. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 125 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

		-	_			
Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Absolute	V_{DDA}	2.7	_	5.5	V	_
Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
	V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
	C _{ADIN}	_	4.5	5.5	pF	
	R _{ADIN}	_	3	5	kΩ	_
12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
• f _{ADCK} < 4 MHz		_	_	5		
10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
• f _{ADCK} < 4 MHz		_	_	10		
8-bit mode		_	_	10		
(all valid f _{ADCK})						
High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	<u> </u>
Low power (ADLPC=1)		0.4	_	4.0		
	Absolute Delta to V _{DD} (V _{DD} -V _{DDAD}) Delta to V _{SS} (V _{SS} -V _{SSA}) ² 12-bit mode • f _{ADCK} > 4 MHz • f _{ADCK} < 4 MHz 10-bit mode • f _{ADCK} > 4 MHz • f _{ADCK} < 4 MHz • d _{ADCK} < 4 MHz	$\begin{array}{c ccccc} Absolute & V_{DDA} \\ \hline Delta to V_{DD} (V_{DD}\text{-}V_{DDAD}) & \Delta V_{DDA} \\ \hline Delta to V_{SS} (V_{SS}\text{-}V_{SSA})^2 & \Delta V_{SSA} \\ \hline & V_{ADIN} \\ \hline & C_{ADIN} \\ \hline & R_{ADIN} \\ \hline & 12\text{-bit mode} \\ \bullet & f_{ADCK} > 4 \text{ MHz} \\ \bullet & f_{ADCK} < 4 \text{ MHz} \\ \hline 10\text{-bit mode} \\ \bullet & f_{ADCK} < 4 \text{ MHz} \\ \hline \bullet & f_{ADCK} < 4 \text{ MHz} \\ \hline \bullet & f_{ADCK} < 4 \text{ MHz} \\ \hline & \theta_{ADCK} < 10\text{ MHz} \\ \hline & \theta_{$	Absolute V _{DDA} 2.7 Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 V _{ADIN} V _{REFL} C _{ADIN} — R _{ADIN} — 12-bit mode F _{ADCK} > 4 MHz • f _{ADCK} > 4 MHz — 10-bit mode — • f _{ADCK} < 4 MHz	Absolute V _{DDA} 2.7 — Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 0 Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 0 V _{ADIN} V _{REFL} — C _{ADIN} — 4.5 R _{ADIN} — 3 *** The state of the stat	Absolute V _{DDA} 2.7 — 5.5 Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 0 +100 Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 0 +100 V _{ADIN} V _{REFL} — V _{REFH} C _{ADIN} — 4.5 5.5 R _{ADIN} — 3 5 12-bit mode • f _{ADCK} > 4 MHz — 2 • f _{ADCK} < 4 MHz	Absolute V _{DDA} 2.7 — 5.5 V Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 0 +100 mV Delta to V _{SS} (V _{SS} -V _{SSA})² ΔV _{SSA} -100 0 +100 mV V _{ADIN} V _{REFL} — V _{REFH} V C _{ADIN} — 4.5 5.5 pF R _{ADIN} — 3 5 kΩ 12-bit mode • f _{ADCK} > 4 MHz — 2 kΩ • f _{ADCK} > 4 MHz — — 5 + C A — 5 + A A — 5 + A<

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

reripheral operating requirements and behaviors

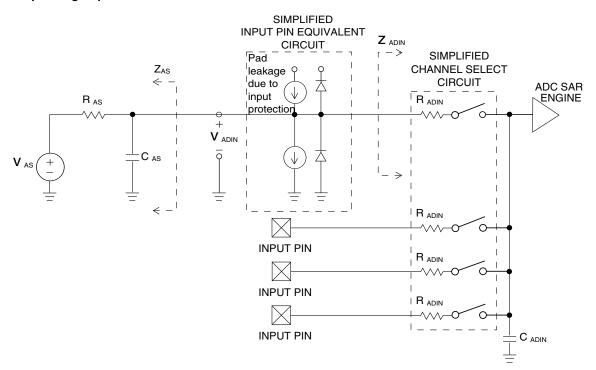


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		T	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μA
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted Error ²	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	P ⁴		_	±0.7	±1.0	
Differential Non- Linearity	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
	10-bit mode ⁵	Р		_	±0.25	±0.5	
	8-bit mode ⁵	P ⁴		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁶	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	P ⁴		_	±0.65	±1.0	
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	1
	8-bit mode	Т		_	±0.5	±1.0	1
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁸	all modes	D	E _{IL}		I _{In} * R _{AS}	•	mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
2	25°C- 125°C			_	3.638	_	1
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4. 10-}bit mode only for package LQFP48/32, TSSOP20/16. Those parameters are only achieved by the design characterization

^{5.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{6.} $V_{ADIN} = V_{SSA}$

^{7.} $V_{ADIN} = V_{DDA}$

^{8.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.

Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t_{Lag}	Enable lag time	1/2	_	t _{SPSCK}	
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_

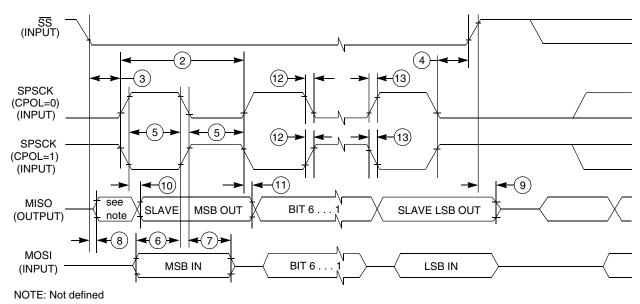


Figure 20. SPI slave mode timing (CPHA=1)

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 16. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μА
TSI_EN	Power consumption in enable mode	_	100	_	μΑ
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10	_	10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

Fmodf

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
20-pin TSSOP	98ASH70169A
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 17. Pin availability by package pin-count

	Pin	Number		Lowest Priority <> Highest					
48-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
1	1	_	_	PTD1 ¹	_	FTM2CH3	_	_	
2	2	_	_	PTD0 ¹	_	FTM2CH2	_	_	
3	_	_	_	PTE4	_	TCLK2	_	_	
4	_	_	_	PTE3	_	BUSOUT	_	_	
5	3	3	3	_	_	_	_	V_{DD}	
6	4	_	_	_	_	_	V_{DDA}	V _{REFH}	
7	5	_	_	_	_	_	V _{SSA}	V _{REFL}	
8	6	4	4	_	_	_	_	V _{SS}	
9	7	5	5	PTB7	_	_	SCL	EXTAL	
10	8	6	6	PTB6	_	_	SDA	XTAL	
11	_	_	_	_	_	_	_	Vss	
12	_	_	_	NC					
13	_	_	_	NC					
14	9	7	7	PTB5 ¹	_	FTM2CH5	SS0	_	
15	10	8	8	PTB4 ¹	_	FTM2CH4	MISO0	_	
16	11	9	_	PTC3	_	FTM2CH3	ADP11	TSI9	
17	12	10	_	PTC2	_	FTM2CH2	ADP10	TSI8	
18	_		_	PTD7		_	_	_	

Table 17. Pin availability by package pin-count (continued)

	Pin	Number			Lowes	st Priority <> F	lighest	
48-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
19	_	_	_	PTD6	_	_	_	_
20	_	_	_	PTD5	_	_	_	_
21	13	11	_	PTC1	_	FTM2CH1	ADP9	TSI7
22	14	12	_	PTC0	_	FTM2CH0	ADP8	TSI6
23	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	TSI5
24	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	TSI4
25	17	15	11	PTB1	KBI0P5	TXD0	ADP5	TSI3
26	18	16	12	PTB0	KBI0P4	RXD0	ADP4	TSI2
27	19	_	_	PTA7	_	FTM2FAULT2	ADP3	TSI1
28	20	_	_	PTA6	_	FTM2FAULT1	ADP2	TSI0
29	_	_	_	NC				
30	_	_	_	_	_	_	_	Vss
31	_	_	_	_	_	_	_	V_{DD}
32	_	_	_	PTD4	_	_	_	_
33	21	_	_	PTD3	_	_	_	TSI15
34	22	_	_	PTD2	_	_	_	TSI14
35	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	_
36	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	_
37	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1
38	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0
39	27	_	_	PTC7	_	TxD1	_	TSI13
40	28	_	_	PTC6	_	RxD1	_	TSI12
41	_	_	_	NC				
42	_	_	_	PTE2	_	MISO0	_	_
43	_	_	_	PTE1	_	MOSI0	_	_
44	_	_	_	PTE0	_	SPSCK0	_	_
45	29	_	_	PTC5	_	FTM0CH1	_	TSI11
46	30	_	_	PTC4	_	FTM0CH0	_	TSI10
47	31	1	1	_	_	_	_	RESET
48	32	2	2	_	_	_	BKGD	MS

^{1.} This is a high current drive pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The

^{2.} This is a true open-drain pin when operated as output.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior and Processor Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

