

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rn16w2vtj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Peripherals
 - ACMP one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering
 - ADC 12-channel, 12-bit resolution for 48-, 32-pin packages; 10-channel, 10-bit resolution for 20-pin package; 8-channel, 10-bit for 16-pin package; 2.5 µs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger
 - CRC programmable cyclic redundancy check module
 - FTM two flex timer modulators modules including one 6-channel and one 2-channel ones; 16-bit counter; each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode
 - IIC One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing
 - MTIM One modulo timer with 8-bit prescaler and overflow interrupt
 - RTC 16-bit real time counter (RTC)
 - SCI two serial communication interface (SCI/UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support
 - SPI one 8-bit serial peripheral interface (SPI) modules; full-duplex or single-wire bidirectional; master or slave mode
 - TSI supporting up to 16 external electrodes; configurable software or hardware scan trigger; fully support freescale touch sensing software library; capability to wake MCU from stop3 mode
- Input/Output
 - Up to 35 GPIOs including one output-only pin
 - One 8-bit keyboard interrupt module (KBI)
 - Two true open-drain output pins
 - Four, ultra-high current sink pins supporting 20 mA source/sink current

Package options

- 48-pin LQFP
- 32-pin LQFP
- 20-pin TSSOP
- 16-pin TSSOP

Table of Contents

1	Orde	ering pa	rts4
	1.1	Determ	ining valid orderable parts4
2	Part	identific	cation4
	2.1	Descrip	otion4
	2.2	Format	
	2.3	Fields	4
	2.4	Examp	le5
3	Para	ameter (Classification5
4	Rati	ngs	5
	4.1	Therma	al handling ratings5
	4.2	Moistur	e handling ratings6
	4.3	ESD ha	andling ratings6
	4.4	Voltage	e and current operating ratings6
5	Gen	eral	
	5.1	Nonswi	itching electrical specifications7
		5.1.1	DC characteristics7
		5.1.2	Supply current characteristics14
		5.1.3	EMC performance15
	5.2	Switchi	ng specifications15
		5.2.1	Control timing15

		5.2.2	Debug trace timing specifications16
		5.2.3	FTM module timing17
	5.3	Therma	al specifications18
		5.3.1	Thermal characteristics18
6	Peri	pheral c	perating requirements and behaviors19
	6.1	Externa	al oscillator (XOSC) and ICS characteristics19
	6.2	NVM s	pecifications21
	6.3	Analog	
		6.3.1	ADC characteristics23
		6.3.2	Analog comparator (ACMP) electricals25
	6.4	Comm	unication interfaces26
		6.4.1	SPI switching specifications26
	6.5	Human	-machine interfaces (HMI)29
		6.5.1	TSI electrical specifications
7	Dim	ensions	
	7.1	Obtaini	ng package dimensions29
8	Pinc	out	
	8.1	Signal	multiplexing and pin assignments
	8.2	Device	pin assignment32
9	Rev	ision his	story

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: RN16 and RN8.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

S 9 S08 RN AA F1 B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
S	Qualification status	• S = fully qualified, general market flow
9	Memory	• 9 = flash based
S08	Core	• S08 = 8-bit CPU
RN	Device family	• RN
AA	Approximate flash size in KB	 16 = 16 KB 8 = 8 KB
F1	Fab and mask set identifier	• W2
В	Temperature range (°C)	• M = -40 to 125
CC	Package designator	• LF = 48-LQFP

Parameter Classification

Field	Description	Values
		 LC = 32-LQFP TJ = 20-TSSOP TG = 16-TSSOP

2.4 Example

This is an example part number:

S9S08RN16W2MLF

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with Idd current limit at 400mA.
 - I/O pins pass +20/-100 mA I-test with Idd current limit at 1000mA.
 - Supply groups pass 1.5 Vccmax.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	С	Descriptions			Min	Typical ¹	Max	Unit
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	0.8	V
	С		strength ²	3 V, I _{load} = 10 mA	_		0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	—	50	
V _{IH}	Р	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			V			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$0.75 \times V_{DD}$	_]		
V _{IL}	Р		All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
С		voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	
V _{hys}	С	Input hysteresis	All digital inputs	—	$0.06 \times V_{DD}$	—	_	mV
{In}	Р	Input leakage current	All input only pins (per pin)	$V{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA
ll _{oz} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA
II _{OZTOT} I	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	-	2	μA
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	—	30.0	—	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{\rm IN} < V_{\rm SS},$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	V _{IN} > V _{DD}	-5	_	25	
C _{In}	С	Input cap	acitance, all pins		_	_	7	pF
V _{RAM}	С	RAM re	etention voltage		2.0	_	<u> </u>	V

	Table 2.	DC characteristics	(continued)
--	----------	--------------------	-------------

1. Typical values are measured at 25 °C. Characterized, not tested.

2. Only PTB4, PTB5 support ultra high current output.

- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	threshold - hig	oltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold - low	Falling low-voltage detect threshold - low range (LVDV = 0)		2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		-voltage detect eresis	_	40	—	mV
V _{HYSWL}	С		low-voltage hysteresis	_	80	—	mV
V _{BG}	Р	Buffered ban	dgap output 4	1.14	1.16	1.18	V

Table 3. LVD and POR	Specification
----------------------	---------------

1. Maximum is highest voltage that POR is guaranteed.

2. POR ramp time must be longer than 20us/V to get a stable startup.

3. Rising thresholds are falling threshold + hysteresis.

4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

nonswitching electrical specifications

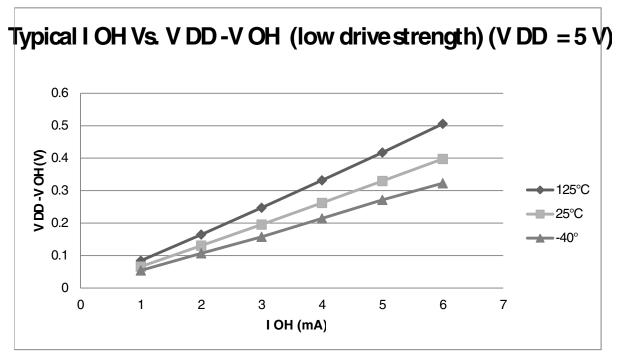


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

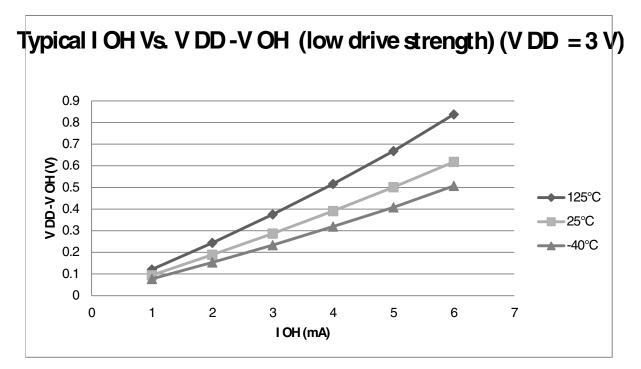


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

nonswitching electrical specifications

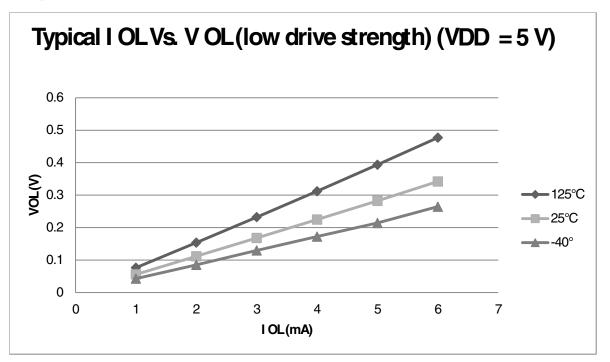


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 5 V)

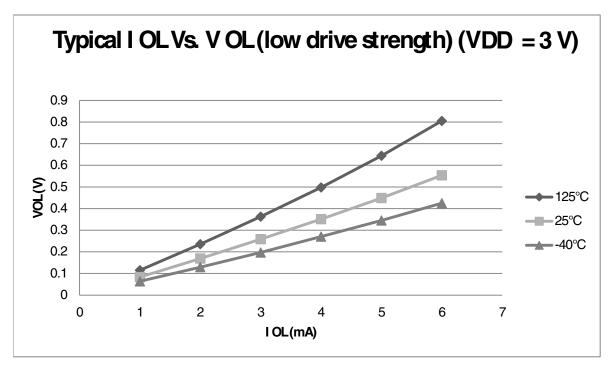


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) (V_{DD} = 3 V)

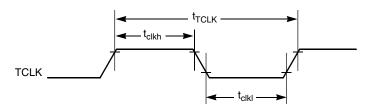


Figure 13. Timer external clock

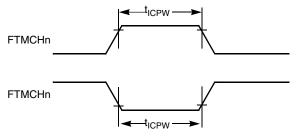


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T_L to T_H -40 to 125	°C
Junction temperature range	TJ	-40 to 135	°C
	Thermal resistance	e single-layer board	
48-pin LQFP	θ _{JA}	82	°C/W
32-pin LQFP	θ _{JA}	88	°C/W
20-pin TSSOP	θ _{JA}	116	°C/W
16-pin TSSOP	θ _{JA}	130	°C/W
	Thermal resistance	ce four-layer board	

Table 8. Thermal characteristics

Table continues on the next page...

Peripheral operating requirements and behaviors

Rating	Symbol	Value	Unit
48-pin LQFP	θ _{JA}	58	°C/W
32-pin LQFP	θ _{JA}	59	°C/W
20-pin TSSOP	θ _{JA}	76	°C/W
16-pin TSSOP	θ _{JA}	87	°C/W

 Table 8.
 Thermal characteristics (continued)

The average chip-junction temperature (T_J) in °C can be obtained from:

 $T_{J} = T_{A} + (P_{D} \times \theta_{JA})$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = K \div (T_{\rm J} + 273 \ ^{\circ}{\rm C})$

Solving the equations above for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

6 Peripheral operating requirements and behaviors

rempheral operating requirements and behaviors

6.1 External oscillator (XOSC) and ICS characteristics

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	С	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	32		40	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	—	20	MHz
	С	High range (RANGE = 1), high gain (HGO = 1), FBELP mode		f _{hi}	4		20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Lo	bad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	_	—	_	MΩ
			Low Frequency, High-Gain Mode		_	10	—	MΩ
			High Frequency, Low- Power Mode		_	1	—	MΩ
			High Frequency, High-Gain Mode		_	1	—	MΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	—		kΩ
		Low Frequency	High-Gain Mode		_	200		kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	—	—	—	kΩ
	D	Series resistor -	4 MHz		_	0		kΩ
	D	High Frequency,	8 MHz		_	0		kΩ
	D	High-Gain Mode	16 MHz		—	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 39.0625 kHz	Low range, high power			800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		—	1.5	—	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125		5	MHz
	D	input clock frequency	FBELP mode		0	—	20	MHz
9	Ρ	Average inter	nal reference frequency - trimmed	f _{int_t}	_	39.0625		kHz
10	Р	DCO output f	requency range - trimmed	f _{dco_t}	16		20	MHz
11	Р	Total deviation of DCO output from trimmed	Over full voltage range and temperature range of -40 to 125 °C	Δf_{dco_t}	_	_	±2.0	
	С	frequency ⁵	Over full voltage range and temperature range of -40 to 105 °C				±1.5	%f _{dco}

Table continues on the next page...

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7		5.5	V	
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV _{DDA}	-100	0	+100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}		3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}		_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz	_			5	-	
	 10-bit mode f_{ADCK} > 4 MHz 		_	_	5		
	• $f_{ADCK} < 4 \text{ MHz}$		_	_	10		
	8-bit mode		—	—	10		
	(all valid f _{ADCK})						
ADC conversion clock frequency	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
	Low power (ADLPC=1)		0.4	—	4.0		

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Мах	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			—	40	_	-
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	—	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	—	±5.0	_	LSB ³
Error ²	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	P ⁴		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL		±1.0	—	LSB ³
Linearity	10-bit mode ⁵	Р			±0.25	±0.5	
	8-bit mode ⁵	P ⁴		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL		±1.0	—	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	-
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁶	12-bit mode	С	E _{zs}	_	±2.0	—	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	1
	8-bit mode	P ⁴		_	±0.65	±1.0	
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5	—	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	1
Quantization error	≤12 bit modes	D	Eq	_	_	±0.5	LSB ³
Input leakage error ⁸	all modes	D	E _{IL}		I _{In} * R _{AS}	1	mV
Temp sensor slope	-40°C– 25°C	D	m	—	3.266	—	mV/°C
	25°C– 125°C			_	3.638		1
Temp sensor voltage	25°C	D	V _{TEMP25}		1.396	_	V

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK}=1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

2. Includes quantization.

3. 1 LSB = ($V_{REFH} - V_{REFL}$)/2^N

- 4. 10-bit mode only for package LQFP48/32, TSSOP20/16. Those parameters are only achieved by the design characterization.
- 5. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes
- 6. $V_{ADIN} = V_{SSA}$
- 7. $V_{ADIN} = V_{DDA}$
- 8. I_{In} = leakage current (refer to DC characteristics)

rempheral operating requirements and behaviors

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	—
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	_
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	—
8	t _a	Slave access time	—	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	—	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)		25	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output				

Table 15. SPI slave mode timing

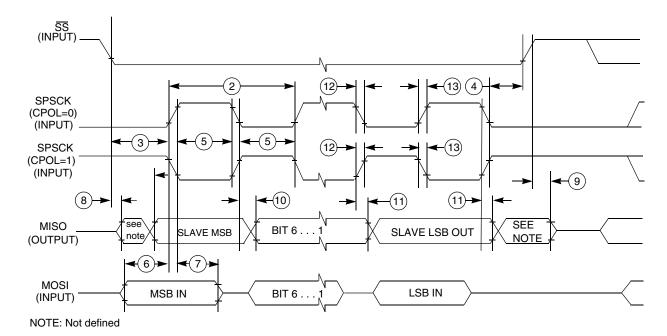
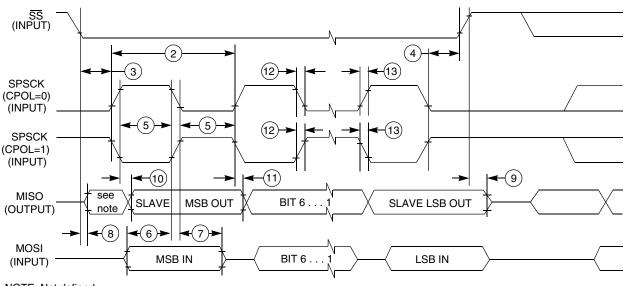



Figure 19. SPI slave mode timing (CPHA = 0)

NOTE: Not defined

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 16. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	—	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	—	128	μA
TSI_EN	Power consumption in enable mode	—	100		μA
TSI_DIS	Power consumption in disable mode	—	1.2		μA
TSI_TEN	I_TEN TSI analog enable time		66		μs
TSI_CREF TSI reference capacitor		—	1.0		pF
TSI_DVOLT			_	10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
16-pin TSSOP	98ASH70247A
20-pin TSSOP	98ASH70169A
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A

8 Pinout

8.1 Signal multiplexing and pin assignments

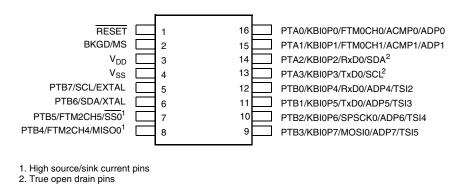
The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

	Pin	Number			Lowes	st Priority <> H	lighest	
48-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	_	—	PTD1 ¹		FTM2CH3	_	
2	2	_	—	PTD0 ¹	_	FTM2CH2	—	_
3	—	_	—	PTE4	_	TCLK2	_	_
4	—	_	—	PTE3	—	BUSOUT	—	—
5	3	3	3	_	_		—	V _{DD}
6	4	—	—	_	—		V _{DDA}	V _{REFH}
7	5	_	—	—	_		V _{SSA}	V _{REFL}
8	6	4	4	_	_		—	V _{SS}
9	7	5	5	PTB7	_	—	SCL	EXTAL
10	8	6	6	PTB6	_	_	SDA	XTAL
11	_	_	—	_	_		_	Vss
12	—	_	—	NC				
13	—	_	—	NC				
14	9	7	7	PTB5 ¹		FTM2CH5	SS0	_
15	10	8	8	PTB4 ¹		FTM2CH4	MISO0	—
16	11	9	—	PTC3		FTM2CH3	ADP11	TSI9
17	12	10	—	PTC2	_	FTM2CH2	ADP10	TSI8
18	_		_	PTD7		—	—	

Table 17. Pin availability by package pin-count

Table continues on the next page...

8.2


highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0 PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1 PTC4/FTM0CH0/TSI10 PTC5/FTM0CH1/TSI11 PTC6/RxD1/TS112 PTC7/TxD1/TSI13 PTE0/SPSCK0 PTE1/MOSI0¹ PTE2/MISO0 **BKGD/MS** RESET g 39 38 37 PTD1/FTM2CH3 PTA2/KBI0P2/RxD0/SDA2 36 PTD0/FTM2CH21 35 PTA3/KBI0P3/TxD0/SCL² 2 PTE4/TCLK2 З 34 PTD2/TSI14 PTE3/BUSOUT 4 33 PTD3/TSI15 V_{DD} 5 32 PTD4 31 V_{DDA} /V_{REFF} 6 V_{DD} V_{SSA} /V_{REFI} 30 VSS 29 NC Vss 8 PTB7/SCL/EXTAL PTA6/FTM2FAULT1/ADP2/TSI0 9 28 PTB6/SDA/XTAL 10 PTA7/FTM2FAULT2/ADP3/TSI1 27 V_{SS} 26 PTB0/KBI0P4/RxD0/ADP4/TSI2 NC PTB1/KBI0P5/TxD0/ADP5/TSI3 2 20 PTD6 PTD5 PTC2/FTM2CH2/ADP10/TSI8 PTC1/FTM2CH1/ADP9/TSI7 PTC0/FTM2CH0/ADP8/TSI6 PTD7 PTB3/KBI0P7/MOSI0/ADP7/TSI5 TB2/KBI0P6/SPSCK0/ADP6/TSI4 PTC3/FTM2CH3/ADP11/TSI9 g PTB4/FTM2CH4/MISO0 PTB5/FTM2CH5/SS0 1. High source/sink current pins 2. True open drain pins

Figure 21. S9S08RN16 48-pin LQFP package

Device pin assignment

9 Revision history

The following table provides a revision history for this document.

Table 18.	Revision	history
-----------	----------	---------

Rev. No.	Date	Substantial Changes
1	02/2014	Initial Release

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior and Processor Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number S9S08RN16DS Revision 1, 02/2014

