

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rn16w2vtjr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripherals

- ACMP one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering
- ADC 12-channel, 12-bit resolution for 48-, 32-pin packages; 10-channel, 10-bit resolution for 20-pin package; 8-channel, 10-bit for 16-pin package; 2.5 µs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger
- CRC programmable cyclic redundancy check module
- FTM two flex timer modulators modules including one 6-channel and one 2-channel ones; 16-bit counter;
 each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode
- IIC One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing
- MTIM One modulo timer with 8-bit prescaler and overflow interrupt
- RTC 16-bit real time counter (RTC)
- SCI two serial communication interface (SCI/UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support
- SPI one 8-bit serial peripheral interface (SPI) modules; full-duplex or single-wire bidirectional; master or slave mode
- TSI supporting up to 16 external electrodes; configurable software or hardware scan trigger; fully support freescale touch sensing software library; capability to wake MCU from stop3 mode

Input/Output

- Up to 35 GPIOs including one output-only pin
- One 8-bit keyboard interrupt module (KBI)
- Two true open-drain output pins
- Four, ultra-high current sink pins supporting 20 mA source/sink current

· Package options

- 48-pin LQFP
- 32-pin LQFP
- 20-pin TSSOP
- 16-pin TSSOP

Table of Contents

1	Ord	ering pa	ırts4					
	1.1	Determ	nining valid orderable parts4					
2	Parl	tidentifi	cation4					
	2.1	Descrip	otion4					
	2.2	Format	4					
	2.3	Fields.	4					
	2.4	Example						
3	Para	rameter Classification						
4	Rati	ngs	5					
	4.1	Therma	al handling ratings5					
	4.2	Moistu	re handling ratings6					
	4.3	ESD h	andling ratings6					
	4.4	Voltage	e and current operating ratings6					
5	Ger	eral	7					
	5.1	Nonsw	itching electrical specifications7					
		5.1.1	DC characteristics7					
		5.1.2	Supply current characteristics14					
		5.1.3	EMC performance15					
	5.2	Switch	ing specifications15					
		5.2.1	Control timing					

		5.2.2	Debug trace timing specifications	16					
		5.2.3	FTM module timing	17					
	5.3	Therma	al specifications	18					
		5.3.1	Thermal characteristics	18					
6	Peri	pheral o	pperating requirements and behaviors	19					
	6.1	External oscillator (XOSC) and ICS characteristics							
	6.2	NVM specifications							
	6.3	Analog		23					
		6.3.1	ADC characteristics	23					
		6.3.2	Analog comparator (ACMP) electricals	25					
	6.4	Comm	unication interfaces	26					
		6.4.1	SPI switching specifications	26					
	6.5	Humar	n-machine interfaces (HMI)	29					
		6.5.1	TSI electrical specifications	29					
7	Dim	ensions		29					
	7.1	Obtain	ing package dimensions	29					
8	Pino	out		30					
	8.1	Signal	multiplexing and pin assignments	30					
	8.2	Device	pin assignment	32					
9	Rev	ision history34							

Field	Description	Values
		LC = 32-LQFPTJ = 20-TSSOPTG = 16-TSSOP

2.4 Example

This is an example part number:

S9S08RN16W2MLF

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free		260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

Symbol	Description	Min.	Max.	Unit
V_{DD}	Supply voltage	-0.3	5.8	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
_	_	Operating voltage		_	2.7	_	5.5	V
V _{OH}	С	Output high voltage	All I/O pins, standard- drive strength	5 V, I _{load} = -5 mA	V _{DD} - 0.8	_	_	V
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8	_	_	V
	С		High current drive pins, high-drive	5 V, I _{load} = -20 mA	V _{DD} - 0.8	_	_	V
	С		strength ²	3 V, I _{load} = -10 mA	V _{DD} - 0.8	_	_	V
I _{OHT}	D	-	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	_	-50	
V _{OL}	С	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA	_	_	0.8	V
	С			3 V, I _{load} = 2.5 mA	_	_	0.8	V

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol	С	Descriptions			Min	Typical ¹	Max	Unit
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	0.8	V
			strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	٧
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
ll _{OZTOT} l	С	Total leakage combined for all inputs and Hi-Z pins All input only and I/O		$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0	_	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V _{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is higher than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Desc	ription	Min	Тур	Max	Unit
V _{POR}	D	POR re-arr	n voltage ^{1, 2}	1.5	1.75	2.0	V
V _{LVDH}	С	threshold - hig	roltage detect h range (LVDV 1) ³	4.2	4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	riigii rarige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV
V _{LVDL}	С	threshold - low	roltage detect range (LVDV = 0)	2.56	2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С		r-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С		low-voltage nysteresis	_	80	_	mV
V _{BG}	Р	Buffered ban	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

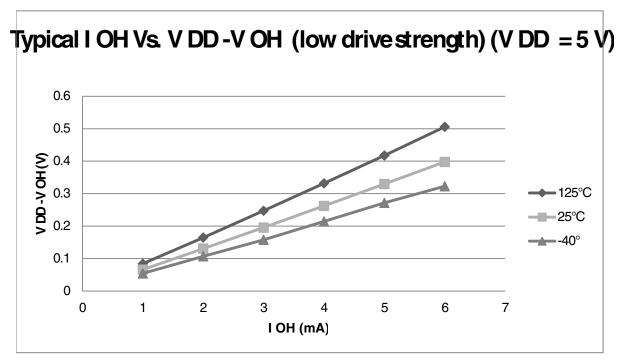


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) ($V_{DD} = 5$ V)

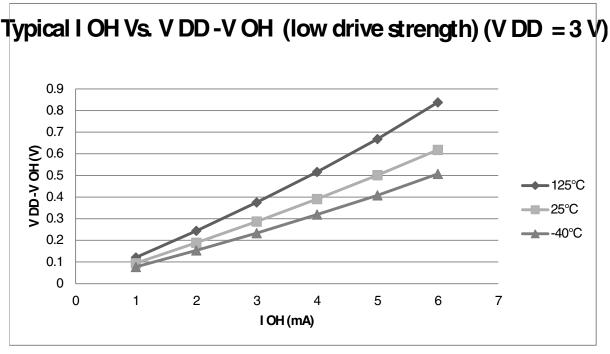


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

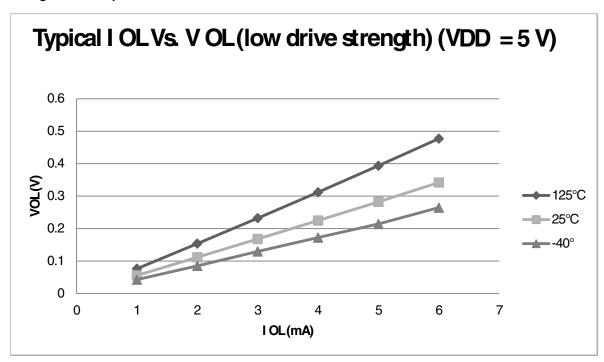


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

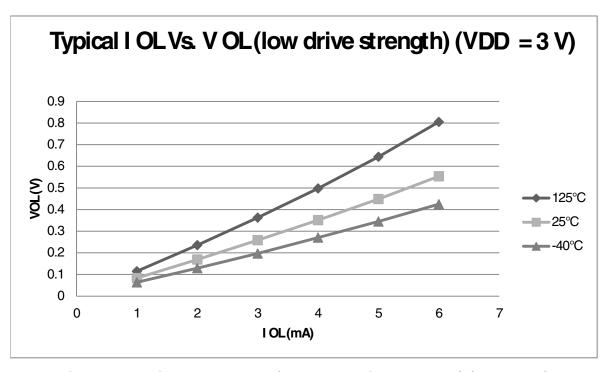


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

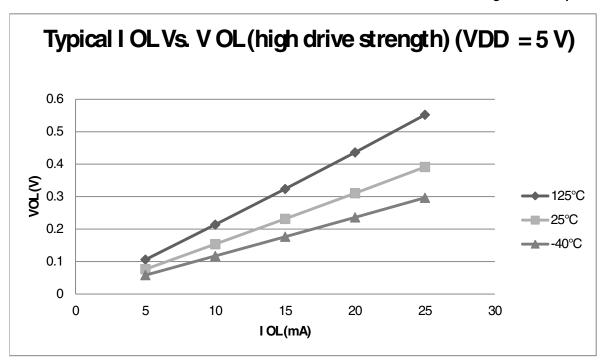


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

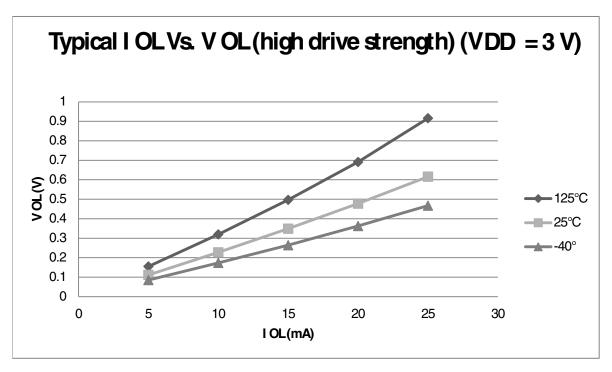


Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 125 °C
C C C	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		IIOIII IIasii		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85	_	1	
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	_	mA	-40 to 125 °C
	С	mode, all modules off &		10 MHz		3.70	_	1	
		gated; run from flash		1 MHz		1.85	_	1	
	С			20 MHz	3	5.35	_	1	
	С			10 MHz		3.42	_	1	
			1 MHz		1.80	_	1		
3	Р	Run supply current FBE mode, all modules on; run	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 125 °C
				10 MHz		6.10	_	1	
		from RAM		1 MHz		1.69	_	1	
	С			20 MHz	3	8.18	_	1	
				10 MHz		5.14	_	1	
				1 MHz		1.44	_	-	
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 125 °C
	С	mode, all modules off &	55	10 MHz		5.07	_	1	
		gated; run from RAM		1 MHz		1.59	_	-	
	С			20 MHz	3	6.11	_	1	
				10 MHz		4.10	_	1	
				1 MHz		1.34	_	1	
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95		mA	-40 to 125 °C
		mode, all modules on		10 MHz		3.50		1	
				1 MHz		1.24	_	1	
	С			20 MHz	3	5.45	_	+	
				10 MHz		3.25	_	+	
				1 MHz		1.20	_	+	
6	С	Stop3 mode supply	S3I _{DD}		5	4.6	_	μΑ	-40 to 125 °C
	C	current no clocks active	Join	_	3	4.5	_	PA	-40 to 125 °C
		(except 1kHz LPO clock) ^{2, 3}		_ _	5	7.0			70 10 120 0
7	С	ADC adder to stop3	_	_	5	40	_	μA	-40 to 125 °C

Table 4.	Supply current	characteristics	(continued))
----------	-----------------------	-----------------	-------------	---

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop34	_	_	5	121	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	120	_		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	128	_	μA	-40 to 125 °C
	С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μ A I $_{DD}$ increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz

switching specifications

Table 5. Control timing (continued)

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
3	D	External reset pulse width ²		t _{extrst}	1.5 ×		_	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u	0 0	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter u		t _{MSH}	100	_	_	ns
7	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	standard drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

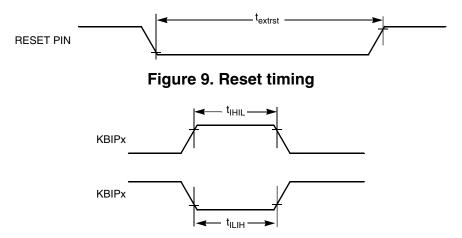


Figure 10. KBIPx timing

5.2.2 Debug trace timing specifications

Table 6. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit	
t _{cyc}	Clock period	Frequency	dependent	MHz	
t _{wl}	t _{wl} Low pulse width 2 —				

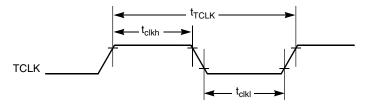


Figure 13. Timer external clock

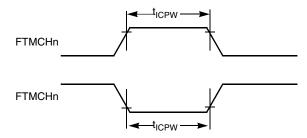


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Symbol Value Unit Rating °С Operating temperature range T_L to T_H -40 to 125 (packaged) Junction temperature range T_J -40 to 135 °C Thermal resistance single-layer board 48-pin LQFP 82 °C/W θ_{JA} °C/W 32-pin LQFP 88 θ_{IA} 20-pin TSSOP °C/W 116 θ_{JA} 16-pin TSSOP °C/W 130 θ_{JA}

Table 8. Thermal characteristics

Thermal resistance four-layer board

Table continues on the next page...

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

Table 8. Thermal characteristics (c	continued)
-------------------------------------	------------

Rating	Symbol	Value	Unit
48-pin LQFP	θ_{JA}	58	°C/W
32-pin LQFP	θ_{JA}	59	°C/W
20-pin TSSOP	θ_{JA}	76	°C/W
16-pin TSSOP	θ_{JA}	87	°C/W

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
	С	Over fixed voltage temperature range 70 °C				±1.0	
12	С	FLL acquisition time ⁵ , ⁷	t _{Acquire}	_	_	2	ms
13	С	Long term jitter of DCO output clo (averaged over 2 ms interval) ⁸		_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

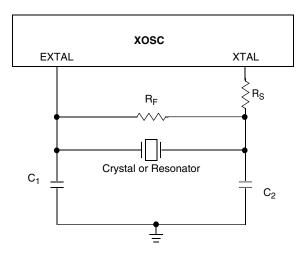


Figure 15. Typical crystal or resonator circuit

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ³
Error ²	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	P ⁴		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
Linearity	10-bit mode ⁵	Р		_	±0.25	±0.5	
	8-bit mode ⁵	P ⁴		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	_
Zero-scale error ⁶	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	P ⁴		_	±0.65	±1.0	
Full-scale error ⁷	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	1
	8-bit mode	Т		_	±0.5	±1.0	1
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁸	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	1
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

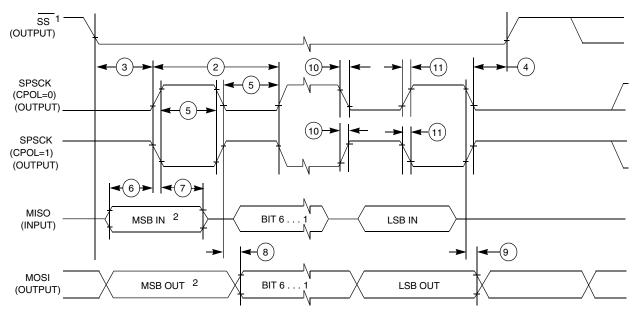
^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

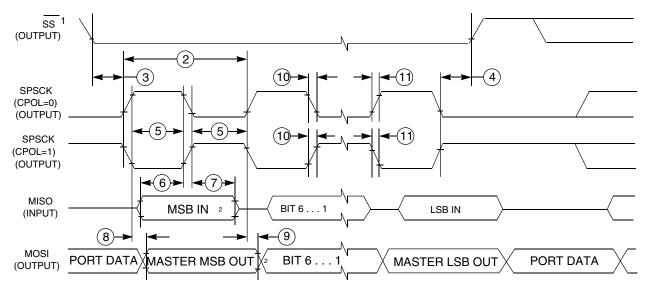
^{4. 10-}bit mode only for package LQFP48/32, TSSOP20/16. Those parameters are only achieved by the design characterization

^{5.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{6.} $V_{ADIN} = V_{SSA}$


^{7.} $V_{ADIN} = V_{DDA}$

^{8.} I_{In} = leakage current (refer to DC characteristics)


Table 14. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} If configured as an output.

Figure 17. SPI master mode timing (CPHA=0)

^{1.}If configured as output

Figure 18. SPI master mode timing (CPHA=1)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Table 17. Pin availability by package pin-count (continued)

	Pin	Number		Lowest Priority <> Highest					
48-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
19	_	_	_	PTD6	_	_	_	_	
20	_	_	_	PTD5	_	_	_	_	
21	13	11	_	PTC1	_	FTM2CH1	ADP9	TSI7	
22	14	12	_	PTC0	_	FTM2CH0	ADP8	TSI6	
23	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
24	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
25	17	15	11	PTB1	KBI0P5	TXD0	ADP5	TSI3	
26	18	16	12	PTB0	KBI0P4	RXD0	ADP4	TSI2	
27	19	_	_	PTA7	_	FTM2FAULT2	ADP3	TSI1	
28	20	_	_	PTA6	_	FTM2FAULT1	ADP2	TSI0	
29	_	_	_	NC					
30	_	_	_	_	_	_	_	Vss	
31	_	_	_	_	_	_	_	V_{DD}	
32	_	_	_	PTD4	_	_	_	_	
33	21	_	_	PTD3	_	_	_	TSI15	
34	22	_	_	PTD2	_	_	_	TSI14	
35	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	_	
36	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	_	
37	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
38	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
39	27	_	_	PTC7	_	TxD1	_	TSI13	
40	28	_	_	PTC6	_	RxD1	_	TSI12	
41	_	_	_	NC					
42	_	_	_	PTE2	_	MISO0	_	_	
43	_	_	_	PTE1	_	MOSI0	_	_	
44	_	_	_	PTE0	_	SPSCK0	_	_	
45	29	_	_	PTC5	_	FTM0CH1	_	TSI11	
46	30	_	_	PTC4	_	FTM0CH0	_	TSI10	
47	31	1	1	_	_	_	_	RESET	
48	32	2	2	_	_	_	BKGD	MS	

^{1.} This is a high current drive pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The

^{2.} This is a true open-drain pin when operated as output.

			Ī	
RESET	1	16		PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0
BKGD/MS	2	15		PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1
V_{DD}	3	14		PTA2/KBI0P2/RxD0/SDA ²
V_{SS}	4	13		PTA3/KBI0P3/TxD0/SCL ²
PTB7/SCL/EXTAL	5	12		PTB0/KBI0P4/RxD0/ADP4/TSI2
PTB6/SDA/XTAL	6	11		PTB1/KBI0P5/TxD0/ADP5/TSI3
PTB5/FTM2CH5/SS0 ¹	7	10		PTB2/KBI0P6/SPSCK0/ADP6/TSI4
PTB4/FTM2CH4/MISO0 ¹	8	9		PTB3/KBI0P7/MOSI0/ADP7/TSI5
			J	

High source/sink current pins
 True open drain pins

Figure 24. S9S08RN16 16-pin TSSOP package

Revision history 9

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
1	02/2014	Initial Release

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior and Processor Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

