

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08rna16w2mtg

Peripherals

- ACMP one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering
- ADC 12-channel, 12-bit resolution for 48-, 32-pin packages; 10-channel, 10-bit resolution for 20-pin package; 8-channel, 10-bit for 16-pin package; 2.5 µs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger
- CRC programmable cyclic redundancy check module
- FTM two flex timer modulators modules including one 6-channel and one 2-channel ones; 16-bit counter;
 each channel can be configured for input capture, output compare, edge- or center-aligned PWM mode
- IIC One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing
- MTIM One modulo timer with 8-bit prescaler and overflow interrupt
- RTC 16-bit real time counter (RTC)
- SCI two serial communication interface (SCI/UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support
- SPI one 8-bit serial peripheral interface (SPI) modules; full-duplex or single-wire bidirectional; master or slave mode
- TSI supporting up to 16 external electrodes; configurable software or hardware scan trigger; fully support freescale touch sensing software library; capability to wake MCU from stop3 mode

Input/Output

- Up to 35 GPIOs including one output-only pin
- One 8-bit keyboard interrupt module (KBI)
- Two true open-drain output pins
- Four, ultra-high current sink pins supporting 20 mA source/sink current

· Package options

- 48-pin LQFP
- 32-pin LQFP
- 20-pin TSSOP
- 16-pin TSSOP

Table of Contents

1	Ord	ering pa	ırts4
	1.1	Determ	nining valid orderable parts4
2	Parl	tidentifi	cation4
	2.1	Descri	otion4
	2.2	Forma	t4
	2.3	Fields.	4
	2.4	Examp	le5
3	Para	ameter (Classification5
4	Rati	ngs	5
	4.1	Therm	al handling ratings5
	4.2	Moistu	re handling ratings6
	4.3	ESD h	andling ratings6
	4.4	Voltage	e and current operating ratings6
5	Ger	eral	7
	5.1	Nonsw	itching electrical specifications7
		5.1.1	DC characteristics7
		5.1.2	Supply current characteristics14
		5.1.3	EMC performance15
	5.2	Switch	ing specifications15
		5.2.1	Control timing

		5.2.2	Debug trace timing specifications	16
		5.2.3	FTM module timing	17
	5.3	Therma	al specifications	18
		5.3.1	Thermal characteristics	18
6	Peri	pheral o	pperating requirements and behaviors	19
	6.1	Externa	al oscillator (XOSC) and ICS characteristics	19
	6.2	NVM s	pecifications	21
	6.3	Analog		23
		6.3.1	ADC characteristics	23
		6.3.2	Analog comparator (ACMP) electricals	25
	6.4	Comm	unication interfaces	26
		6.4.1	SPI switching specifications	26
	6.5	Humar	n-machine interfaces (HMI)	29
		6.5.1	TSI electrical specifications	29
7	Dim	ensions		29
	7.1	Obtain	ing package dimensions	29
8	Pino	out		30
	8.1	Signal	multiplexing and pin assignments	30
	8.2	Device	pin assignment	32
9	Rev	ision his	story	34

naungs

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with Idd current limit at 400mA.
 - I/O pins pass +20/-100 mA I-test with Idd current limit at 1000mA.
 - Supply groups pass 1.5 Vccmax.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

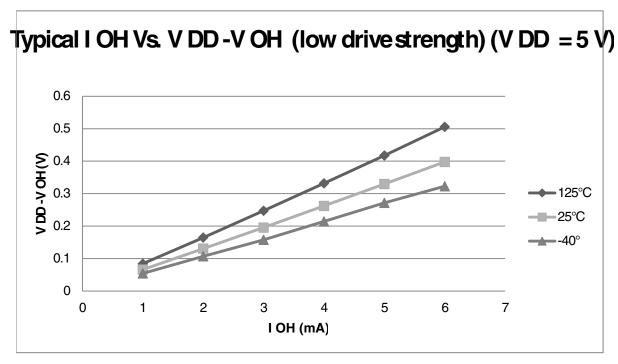


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) ($V_{DD} = 5$ V)

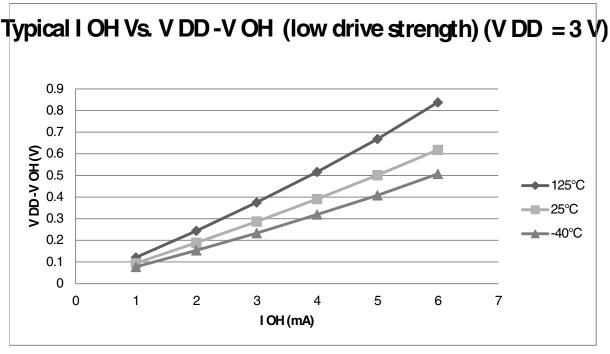


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

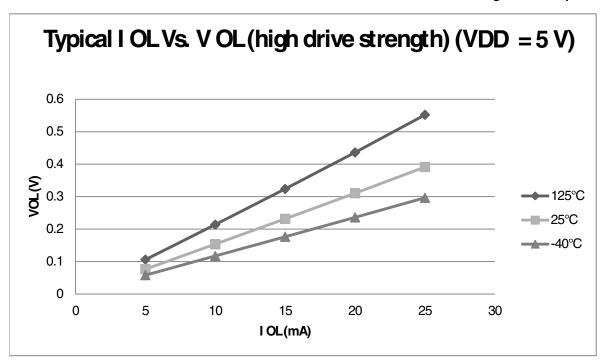


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

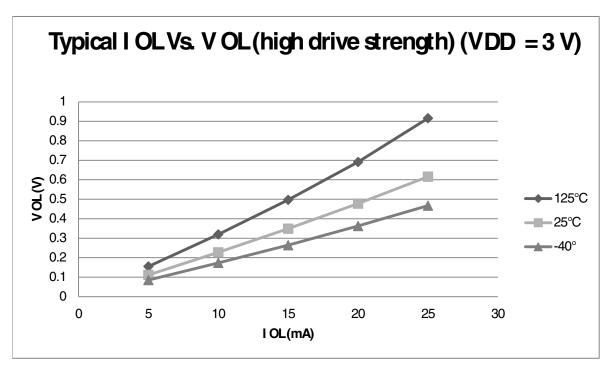


Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	7.60	_	mA	-40 to 125 °C
	С	mode, all modules on; run from flash		10 MHz		4.65	_		
		IIOIII IIasii		1 MHz		1.90	_		
	С			20 MHz	3	7.05	_		
	С			10 MHz		4.40	_		
				1 MHz		1.85	_	1	
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	5.88	_	mA	-40 to 125 °C
	С	mode, all modules off &		10 MHz		3.70	_	1	
		gated; run from flash		1 MHz		1.85	_	1	
	С			20 MHz	3	5.35	_	1	
	С			10 MHz		3.42	_	1	
				1 MHz		1.80	_	1	
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	10.9	14.0	mA	-40 to 125 °C
	С	mode, all modules on; run		10 MHz		6.10	_	1	
		from RAM		1 MHz		1.69	_	1	
	С			20 MHz	3	8.18	_	1	
				10 MHz		5.14	_	1	
				1 MHz		1.44	_	-	
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	8.50	13.0	mA	-40 to 125 °C
	С	mode, all modules off &	55	10 MHz		5.07	_	1	
		gated; run from RAM		1 MHz		1.59	_	-	
	С			20 MHz	3	6.11	_	1	
				10 MHz		4.10	_	1	
				1 MHz		1.34	_	1	
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	5.95		mA	-40 to 125 °C
		mode, all modules on		10 MHz		3.50		1	
				1 MHz		1.24	_	1	
	С			20 MHz	3	5.45	_	+	
				10 MHz		3.25	_	+	
				1 MHz		1.20	_	+	
6	С	Stop3 mode supply	S3I _{DD}		5	4.6	_	μΑ	-40 to 125 °C
	C	current no clocks active	Join	_	3	4.5	_	PA	-40 to 125 °C
		(except 1kHz LPO clock) ^{2, 3}		_ _	5	7.0			70 10 120 0
7	С	ADC adder to stop3	_	_	5	40	_	μA	-40 to 125 °C

Table 4. S	Supply current	characteristics ((continued))
------------	----------------	-------------------	-------------	---

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	39	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	_	_	5	121	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	120	_		
		NSCN = 0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	128	_	μΑ	-40 to 125 °C
	С				3	124	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μ A I $_{DD}$ increase typically, RTC clock source is 1kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz

Figure 13. Timer external clock

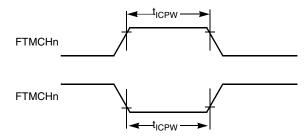


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

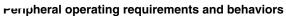

Symbol Value Unit Rating °С Operating temperature range T_L to T_H -40 to 125 (packaged) Junction temperature range T_J -40 to 135 °C Thermal resistance single-layer board 48-pin LQFP 82 °C/W θ_{JA} °C/W 32-pin LQFP 88 θ_{IA} 20-pin TSSOP °C/W 116 θ_{JA} 16-pin TSSOP °C/W 130 θ_{JA}

Table 8. Thermal characteristics

Thermal resistance four-layer board

Table continues on the next page...

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

6.1 External oscillator (XOSC) and ICS characteristics

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	32	_	40	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Load capacitors		C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	_	_	_	ΜΩ
			Low Frequency, High-Gain Mode		_	10	_	MΩ
			High Frequency, Low- Power Mode		_	1	_	МΩ
		High Frequency, High-Gain Mode		_	1	_	MΩ	
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R _S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 39.0625 kHz	Low range, high power		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}		20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz
9	Р	Average inter	nal reference frequency - trimmed	f _{int_t}	_	39.0625	_	kHz
10	Р	DCO output fi	requency range - trimmed	f _{dco_t}	16	_	20	MHz
11	Р	Total deviation of DCO output from trimmed	Over full voltage range and temperature range of -40 to 125 °C	Δf_{dco_t}	_	_	±2.0	
	С	frequency ⁵	Over full voltage range and temperature range of -40 to 105 °C				±1.5	%f _{dco}

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
	С	Over fixed voltage temperature range 70 °C				±1.0	
12	С	FLL acquisition time ⁵ , ⁷	t _{Acquire}	_	_	2	ms
13	С	Long term jitter of DCO output clo (averaged over 2 ms interval) ⁸		_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

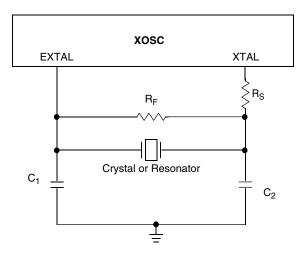


Figure 15. Typical crystal or resonator circuit

reripheral operating requirements and behaviors

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 10. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 125 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

		-	_			
Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Absolute	V_{DDA}	2.7	_	5.5	V	_
Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
	V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
	C _{ADIN}	_	4.5	5.5	pF	
	R _{ADIN}	_	3	5	kΩ	_
12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
• f _{ADCK} < 4 MHz		_	_	5		
10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
• f _{ADCK} < 4 MHz		_	_	10		
8-bit mode		_	_	10		
(all valid f _{ADCK})						
High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	<u> </u>
Low power (ADLPC=1)		0.4	_	4.0		
• • • • • • • • • • • • • • • • • • •	Absolute Delta to V _{DD} (V _{DD} -V _{DDAD}) Delta to V _{SS} (V _{SS} -V _{SSA}) ² 12-bit mode • f _{ADCK} > 4 MHz • f _{ADCK} < 4 MHz 10-bit mode • f _{ADCK} > 4 MHz • f _{ADCK} < 1 MHz	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Absolute V _{DDA} 2.7 Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 V _{ADIN} V _{REFL} C _{ADIN} — R _{ADIN} — 12-bit mode F _{ADCK} > 4 MHz • f _{ADCK} > 4 MHz — 10-bit mode — • f _{ADCK} > 4 MHz — • f _{ADCK} < 4 MHz	Absolute	Absolute V _{DDA} 2.7 — 5.5 Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 0 +100 Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 0 +100 V _{ADIN} V _{REFL} — V _{REFH} C _{ADIN} — 4.5 5.5 R _{ADIN} — 3 5 12-bit mode • f _{ADCK} > 4 MHz — 2 • f _{ADCK} < 4 MHz	Absolute V _{DDA} 2.7 — 5.5 V Delta to V _{DD} (V _{DD} -V _{DDAD}) ΔV _{DDA} -100 0 +100 mV Delta to V _{SS} (V _{SS} -V _{SSA}) ² ΔV _{SSA} -100 0 +100 mV V _{ADIN} V _{REFL} — V _{REFH} V C _{ADIN} — 4.5 5.5 pF R _{ADIN} — 3 5 kΩ 12-bit mode • f _{ADCK} > 4 MHz — 2 kΩ • f _{ADCK} < 4 MHz

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

reripheral operating requirements and behaviors

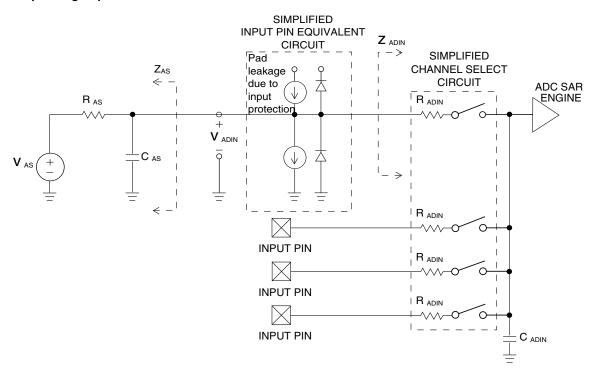


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		T	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μА
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

6.3.2 Analog comparator (ACMP) electricals

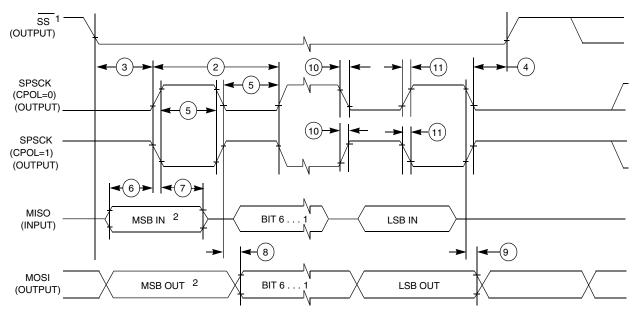
Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V_{H}	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

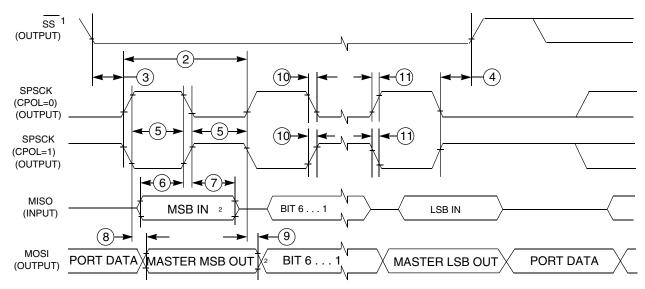
6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_


Table 14. SPI master mode timing (continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

^{1.} If configured as an output.

Figure 17. SPI master mode timing (CPHA=0)

^{1.}If configured as output

Figure 18. SPI master mode timing (CPHA=1)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

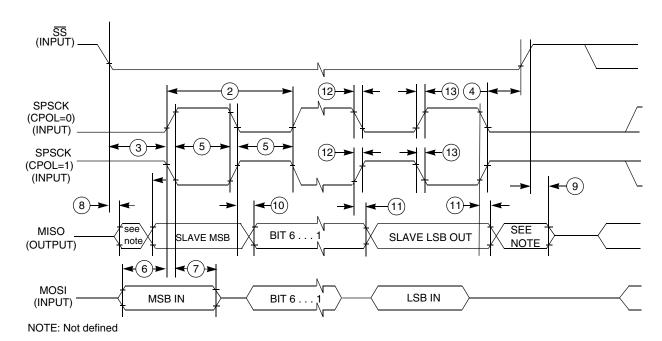


Figure 19. SPI slave mode timing (CPHA = 0)

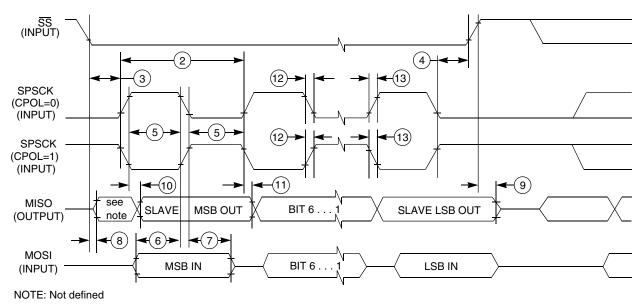


Figure 20. SPI slave mode timing (CPHA=1)

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 16. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μА
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10	_	10	%

7 Dimensions

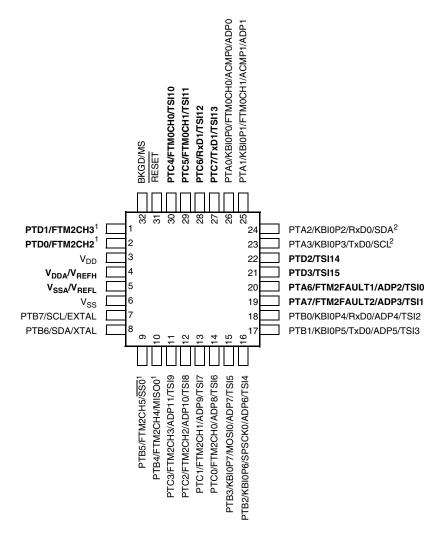
7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

S9S08RN16 Series Data Sheet, Rev1, 02/2014.

Table 17. Pin availability by package pin-count (continued)

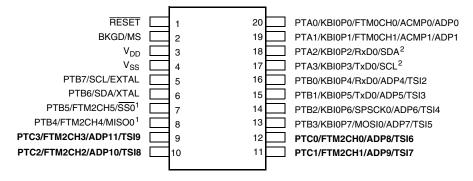
	Pin	Number			Lowes	st Priority <> F	lighest	
48-LQFP	32-LQFP	20-TSSOP	16-TSSOP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
19	_	_	_	PTD6	_	_	_	_
20	_	_	_	PTD5	_	_	_	_
21	13	11	_	PTC1	_	FTM2CH1	ADP9	TSI7
22	14	12	_	PTC0	_	FTM2CH0	ADP8	TSI6
23	15	13	9	PTB3	KBI0P7	MOSI0	ADP7	TSI5
24	16	14	10	PTB2	KBI0P6	SPSCK0	ADP6	TSI4
25	17	15	11	PTB1	KBI0P5	TXD0	ADP5	TSI3
26	18	16	12	PTB0	KBI0P4	RXD0	ADP4	TSI2
27	19	_	_	PTA7	_	FTM2FAULT2	ADP3	TSI1
28	20	_	_	PTA6	_	FTM2FAULT1	ADP2	TSI0
29	_	_	_	NC				
30	_	_	_	_	_	_	_	Vss
31	_	_	_	_	_	_	_	V_{DD}
32	_	_	_	PTD4	_	_	_	_
33	21	_	_	PTD3	_	_	_	TSI15
34	22	_	_	PTD2	_	_	_	TSI14
35	23	17	13	PTA3 ²	KBI0P3	TXD0	SCL	_
36	24	18	14	PTA2 ²	KBI0P2	RXD0	SDA	_
37	25	19	15	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1
38	26	20	16	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0
39	27	_	_	PTC7	_	TxD1	_	TSI13
40	28	_	_	PTC6	_	RxD1	_	TSI12
41	_	_	_	NC				
42	_	_	_	PTE2	_	MISO0	_	_
43	_	_	_	PTE1	_	MOSI0	_	_
44	_	_	_	PTE0	_	SPSCK0	_	_
45	29	_	_	PTC5	_	FTM0CH1	_	TSI11
46	30	_	_	PTC4	_	FTM0CH0	_	TSI10
47	31	1	1	_	_	_	_	RESET
48	32	2	2	_	_	_	BKGD	MS


^{1.} This is a high current drive pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The

^{2.} This is a true open-drain pin when operated as output.



Pins in bold are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 22. S9S08RN16 32-pin LQFP package

Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 23. S9S08RN16 20-pin TSSOP package

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior and Processor Expert are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

