



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | AVR                                                                        |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 66MHz                                                                      |
| Connectivity               | Ethernet, I²C, SPI, SSC, UART/USART, USB OTG                               |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 69                                                                         |
| Program Memory Size        | 128KB (128K x 8)                                                           |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 32K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 3.6V                                                               |
| Data Converters            | A/D 8x10b                                                                  |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 100-TQFP                                                                   |
| Supplier Device Package    | 100-TQFP (14x14)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a1128-aut |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 6.2 Voltage Regulator

# 6.2.1 Single Power Supply

The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. Two input decoupling capacitors must be placed close to the chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and GND as close to the chip as possible



Refer to Section 38.3 on page 765 for decoupling capacitors values and regulator characteristics

# 6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent from leakage current.





The following GPIO registers are mapped on the local bus:

 Table 12-2.
 Local bus mapped GPIO registers

| Port | Register                             | Mode   | Local Bus<br>Address | Access     |
|------|--------------------------------------|--------|----------------------|------------|
| 0    | Output Driver Enable Register (ODER) | WRITE  | 0x4000_0040          | Write-only |
|      |                                      | SET    | 0x4000_0044          | Write-only |
|      |                                      | CLEAR  | 0x4000_0048          | Write-only |
|      |                                      | TOGGLE | 0x4000_004C          | Write-only |
|      | Output Value Register (OVR)          | WRITE  | 0x4000_0050          | Write-only |
|      |                                      | SET    | 0x4000_0054          | Write-only |
|      |                                      | CLEAR  | 0x4000_0058          | Write-only |
|      |                                      | TOGGLE | 0x4000_005C          | Write-only |
|      | Pin Value Register (PVR)             | -      | 0x4000_0060          | Read-only  |
| 1    | Output Driver Enable Register (ODER) | WRITE  | 0x4000_0140          | Write-only |
|      |                                      | SET    | 0x4000_0144          | Write-only |
|      |                                      | CLEAR  | 0x4000_0148          | Write-only |
|      |                                      | TOGGLE | 0x4000_014C          | Write-only |
|      | Output Value Register (OVR)          | WRITE  | 0x4000_0150          | Write-only |
|      |                                      | SET    | 0x4000_0154          | Write-only |
|      |                                      | CLEAR  | 0x4000_0158          | Write-only |
|      |                                      | TOGGLE | 0x4000_015C          | Write-only |
|      | Pin Value Register (PVR)             | -      | 0x4000_0160          | Read-only  |
| 2    | Output Driver Enable Register (ODER) | WRITE  | 0x4000_0240          | Write-only |
|      |                                      | SET    | 0x4000_0244          | Write-only |
|      |                                      | CLEAR  | 0x4000_0248          | Write-only |
|      |                                      | TOGGLE | 0x4000_024C          | Write-only |
|      | Output Value Register (OVR)          | WRITE  | 0x4000_0250          | Write-only |
|      |                                      | SET    | 0x4000_0254          | Write-only |
|      |                                      | CLEAR  | 0x4000_0258          | Write-only |
|      |                                      | TOGGLE | 0x4000_025C          | Write-only |
|      | Pin Value Register (PVR)             | -      | 0x4000_0260          | Read-only  |



- Optional Manchester Encoding
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
  - NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
  - Communication at up to 115.2 Kbps
- Test Modes
  - Remote Loopback, Local Loopback, Automatic Echo
- SPI Mode
  - Master or Slave
  - Serial Clock Programmable Phase and Polarity
  - SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
- Supports Connection of Two Peripheral DMA Controller Channels (PDC)
  - Offers Buffer Transfer without Processor Intervention

#### 12.11.8 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
- · Contains an independent receiver and transmitter and a common clock divider
- · Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal
- 12.11.9 Timer Counter
- Three 16-bit Timer Counter Channels
- Wide range of functions including:
  - Frequency Measurement
  - Event Counting
  - Interval Measurement
  - Pulse Generation
  - Delay Timing
  - Pulse Width Modulation
  - Up/down Capabilities
- Each channel is user-configurable and contains:
  - Three external clock inputs
  - Five internal clock inputs
  - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels

### 12.11.10 Pulse Width Modulation Controller

- 7 channels, one 20-bit counter per channel
- · Common clock generator, providing Thirteen Different Clocks
  - A Modulo n counter providing eleven clocks
  - Two independent Linear Dividers working on modulo n counter outputs
- Independent channel programming
  - Independent Enable Disable Commands
  - Independent Clock
  - Independent Period and Duty Cycle, with Double Bufferization
  - Programmable selection of the output waveform polarity
  - Programmable center or left aligned output waveform



#### **PAGEN: Page number**

The PAGEN field is used to address a page or fuse bit for certain operations. In order to simplify programming, the PAGEN field is automatically updated every time the page buffer is written to. For every page buffer write, the PAGEN field is updated with the page number of the address being written to. Hardware automatically masks writes to the PAGEN field so that only bits representing valid page numbers can be written, all other bits in PAGEN are always 0. As an example, in a flash with 1024 pages (page 0 - page 1023), bits 15:10 will always be 0.

**Table 18-6.** Semantic of PAGEN field in different commands

| Command                             | PAGEN description                           |
|-------------------------------------|---------------------------------------------|
| No operation                        | Not used                                    |
| Write Page                          | The number of the page to write             |
| Clear Page Buffer                   | Not used                                    |
| Lock region containing given Page   | Page number whose region should be locked   |
| Unlock region containing given Page | Page number whose region should be unlocked |
| Erase All                           | Not used                                    |
| Write General-Purpose Fuse Bit      | GPFUSE #                                    |
| Erase General-Purpose Fuse Bit      | GPFUSE #                                    |
| Set Security Bit                    | Not used                                    |
| Program GP Fuse Byte                | WriteData[7:0], ByteAddress[2:0]            |
| Erase All GP Fuses                  | Not used                                    |
| Quick Page Read                     | Page number                                 |
| Write User Page                     | Not used                                    |
| Erase User Page                     | Not used                                    |
| Quick Page Read User Page           | Not used                                    |

#### **KEY: Write protection key**

This field should be written with the value 0xA5 to enable the command defined by the bits of the register. If the field is written with a different value, the write is not performed and no action is started.

This field always reads as 0.



# 19.7.5 Bus Matrix Master Remap Control Register

| Register Name | e: MRCR | MRCR       |       |       |       |      |      |  |
|---------------|---------|------------|-------|-------|-------|------|------|--|
| Access Type:  | Read/W  | Read/Write |       |       |       |      |      |  |
| Reset:        | 0x0000_ | _0000      |       |       |       |      |      |  |
| 31            | 30      | 29         | 28    | 27    | 26    | 25   | 24   |  |
| -             | -       | -          | -     | -     | -     | -    | -    |  |
| 23            | 22      | 21         | 20    | 19    | 18    | 17   | 16   |  |
| _             | -       | -          | _     | -     | -     | _    | _    |  |
| 15            | 14      | 13         | 12    | 11    | 10    | 9    | 8    |  |
| RCB15         | RCB14   | RCB13      | RCB12 | RCB11 | RCB10 | RCB9 | RCB8 |  |
| 7             | 6       | 5          | 4     | 3     | 2     | 1    | 0    |  |
| RCB7          | RCB6    | RCB5       | RCB4  | RCB3  | RCB2  | RCB1 | RCB0 |  |

# RCB: Remap Command Bit for Master x

0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master



| Register Name: | SFR0   | SFR0SFR15 |    |    |    |    |    |  |
|----------------|--------|-----------|----|----|----|----|----|--|
| Access Type:   | Read/W | /rite     |    |    |    |    |    |  |
| Reset:         |        |           |    |    |    |    |    |  |
| 31             | 30     | 29        | 28 | 27 | 26 | 25 | 24 |  |
|                |        |           | SI | R  |    |    |    |  |
| 23             | 22     | 21        | 20 | 19 | 18 | 17 | 16 |  |
|                |        |           | SI | R  |    |    |    |  |
| 15             | 14     | 13        | 12 | 11 | 10 | 9  | 8  |  |
|                |        |           | SI | R  |    |    |    |  |
| 7              | 6      | 5         | 4  | 3  | 2  | 1  | 0  |  |
|                |        |           | SI | FR |    |    |    |  |

# 19.7.6 Bus Matrix Special Function Registers

# • SFR: Special Function Register Fields

The bitfields of these registers are described in the Peripherals chapter.



## 20.5.2 Connection Examples

Figure 20-2 shows an example of connections between the EBI and external devices.

EBI D0-D15 RAS CAS SDCK SDCK SDCK AUNBS0 NWR1/NBS1 A1/NWR2/NBS3 NRD/NOE NWR0/NWE 2M x 8 SDRAM 2M x 8 SDRAM D8-D15 D0-D7 D0-D7 cs CS CLK CKE WE RAS CAS DQM CLK CKE WE RAS CAS DQM A0-A9, A1 A0-A9, A1 A2-A11, A1 A11. A1 A10 BA0 BA1 SDWE A10 BA0 SDA10 A16/BA0 SDWE A16/BA0 BA1 A17/BA SDA10 A2-A15 A16/BA0 A17/BA1 A18-A23 NCS0 NCS1/SDCS NCS2 NCS3 128K x 8 128K x 8 SRAM SRAM A1-A17 A1-A17 D0-D7 A0-A16 D0-D7 A0-A16 D0-D7 D8-D15 cs cs OE WE OE WE NRD/NOE NWR1/NBS NRD/NO A0/NW

Figure 20-2. EBI Connections to Memory Devices



transfer. The address will be increased by either 1, 2 or 4 depending on the size of the DMA transfer (Byte, Half-Word or Word). The Memory Address Register can be read at any time during transfer.

### 21.4.3 Transfer Counter

Each channel has a 16-bit Transfer Counter Register (TCR). This register must be programmed with the number of transferred to be performed. TCR should contain the number of data items to be transferred independently of the transfer size. The Transfer Counter Register can be read at any time during transfer to see the number of remaining transfers.

### 21.4.4 Reload Registers

Both the Memory Address Register and the Transfer Counter Register have a reload register, respectively Memory Address Reload Register (MARR) and Transfer Counter Reload Register (TCRR). These registers provide the possibility for the PDCA to work on two memory buffers for each channel. When one buffer has completed, MAR and TCR will be reloaded with the values in MARR and TCRR. The reload logic is always enabled and will trigger if the TCR reaches zero while TCRR holds a non-zero value.

### 21.4.5 Peripheral Selection

The Peripheral Select Register decides which peripheral should be connected to the PDCA channel. Configuring PSR will both select the direction of the transfer (memory to peripheral or peripheral to memory), which handshake interface to use, and the address of the peripheral holding register.

### 21.4.6 Transfer Size

The transfer size can be set individually for each channel to be either Byte, Half-Word or Word (8-bit, 16-bit or 32-bit respectively). Transfer size is set by programming the SIZE bit-field in the Mode Register (MR).

# 21.4.7 Enabling and Disabling

Each DMA channel is enabled by writing '1' to the Transfer Enable bit (TEN) in the Control Register (CR) and disabled by writing '1' to the Transfer Disable bit (TDIS). The current status can be read from the Status Register (SR).

### 21.4.8 Interrupts

Interrupts can be enabled by writing to the Interrupt Enable Register (IER) and disabled by writing to Interrupt Disable Register (IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or not. The current status of an interrupt source can be read through the Interrupt Status Register (ISR).

The PDCA has three interrupt sources:

- Reload Counter Zero The Transfer Counter Reload Register is zero.
- Transfer Finished Both the Transfer Counter Register and Transfer Counter Reload Register are zero.
- Transfer Error An error has occurred in accessing memory.

### 23.7.3.1 Master Mode Block Diagram



Figure 23-5. Master Mode Block Diagram



| eset value:                                                                                   |                                                                                  |                                    |                                    |                                    |                                    |                                   |                                   |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|
| 31                                                                                            | 30                                                                               | 29                                 | 28                                 | 27                                 | 26                                 | 25                                | 24                                |
| -                                                                                             | -                                                                                | -                                  | -                                  | -                                  | -                                  | -                                 | -                                 |
| 23                                                                                            | 22                                                                               | 21                                 | 20                                 | 19                                 | 18                                 | 17                                | 16                                |
| -                                                                                             | -                                                                                | -                                  | -                                  | -                                  | -                                  | -                                 | -                                 |
| 15                                                                                            | 14                                                                               | 13                                 | 12                                 | 11                                 | 10                                 | 9                                 | 8                                 |
| _                                                                                             | -                                                                                | _                                  | -                                  | -                                  | -                                  | _                                 | -                                 |
| 7                                                                                             | 6                                                                                | 5                                  | 4                                  | 3                                  | 2                                  | 1                                 | 0                                 |
|                                                                                               |                                                                                  |                                    | RXL                                | DAIA                               |                                    |                                   |                                   |
| 4.14.12 TW                                                                                    | 'l Transmit Hold                                                                 | ling Register                      | -                                  |                                    |                                    |                                   |                                   |
| 4.14.12 TW<br>ame:                                                                            | <b>'I Transmit Holc</b><br>THR                                                   | ling Register                      | -                                  |                                    |                                    |                                   |                                   |
| 4.14.12 TW<br>ame:<br>ccess:                                                                  | ' <b>I Transmit Holc</b><br>THR<br>Read-write                                    | ling Register                      | -                                  |                                    |                                    |                                   |                                   |
| 4.14.12 TW<br>ame:<br>ccess:<br>eset Value:                                                   | ' <b>I Transmit Holc</b><br>THR<br>Read-write<br>0x00000000                      | ling Register                      | -                                  |                                    |                                    |                                   |                                   |
| 4.14.12 TW<br>ame:<br>ccess:<br>eset Value:<br>31                                             | <b>Transmit Hold</b><br>THR<br>Read-write<br>0x00000000<br>30                    | ling Register                      | 28                                 | 27                                 | 26                                 | 25                                | 24                                |
| 4.14.12 TW<br>ame:<br>ccess:<br>eset Value:<br>31<br>-                                        | THR<br>Read-write<br>0x00000000<br>30<br>–                                       | ling Register<br>29<br>–           | 28                                 | 27                                 | 26<br>-                            | 25                                | 24                                |
| 4.14.12 TW<br>ame:<br>ccess:<br>eset Value:<br>31<br>-<br>23                                  | <b>ThR</b><br>Read-write<br>0x00000000<br>30<br>22                               | ling Register 29 - 21              | 28<br>-<br>20                      | 27<br><br>19                       | 26<br><br>18                       | 25<br>-<br>17                     | 24<br><br>16                      |
| 4.14.12 TW<br>ame:<br>.ccess:<br>eset Value:<br>31<br>-<br>23<br>-                            | <b>'I Transmit Hold</b><br>THR<br>Read-write<br>0x00000000<br>30<br>-<br>22<br>- | 29<br>-<br>21<br>-                 | 28<br>-<br>20<br>-                 | 27<br>-<br>19<br>-                 | 26<br>-<br>18<br>-                 | 25<br>-<br>17<br>-                | 24<br>-<br>16<br>-                |
| 4.14.12 TW<br>ame:<br>.ccess:<br>eset Value:<br>31<br>-<br>23<br>-<br>-<br>15                 | <b>Transmit Hold</b> THR Read-write 0x00000000 30 - 22 - 14                      | 29<br>-<br>21<br>-<br>13           | 28<br>-<br>20<br>-<br>12           | 27<br>-<br>19<br>-<br>11           | 26<br>-<br>18<br>-<br>10           | 25<br>-<br>17<br>-<br>9           | 24<br>-<br>16<br>-<br>8           |
| 4.14.12 TW<br>ame:<br>ccess:<br>eset Value:<br>31<br>-<br>23<br>-<br>15<br>-<br>15<br>-       | <b>Transmit Hold</b> THR Read-write 0x0000000 30 - 22 - 14 - 14 -                | 29<br>-<br>21<br>-<br>13<br>-      | 28<br>-<br>20<br>-<br>12<br>-      | 27<br>-<br>19<br>-<br>11<br>-      | 26<br>-<br>18<br>-<br>10<br>-      | 25<br>-<br>17<br>-<br>9<br>-      | 24<br>-<br>16<br>-<br>8<br>-      |
| 4.14.12 TW<br>ame:<br>.ccess:<br>eset Value:<br>31<br>-<br>23<br>-<br>23<br>-<br>15<br>-<br>7 | <b>Transmit Hold</b> THR Read-write 0x0000000 30 - 22 - 14 - 14 - 6              | 29<br>-<br>21<br>-<br>13<br>-<br>5 | 28<br>-<br>20<br>-<br>12<br>-<br>4 | 27<br>-<br>19<br>-<br>11<br>-<br>3 | 26<br>-<br>18<br>-<br>10<br>-<br>2 | 25<br>-<br>17<br>-<br>9<br>-<br>1 | 24<br>-<br>16<br>-<br>8<br>-<br>0 |

• TXDATA: Master or Slave Transmit Holding Data

Read-only

Access:



After initialization, as soon as DS field is modified and self-refresh mode is activated, the Extended Mode Register is accessed automatically and DS bits are updated before entry in self-refresh mode.

### • TIMEOUT: Time to define when low-power mode is enabled

| 00 | The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.      |
|----|--------------------------------------------------------------------------------------------------------------|
| 01 | The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last transfer.  |
| 10 | The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last transfer. |
| 11 | Reserved.                                                                                                    |



AT32UC3A

### 29.7.28 MACB Statistic Registers

These registers reset to zero on a read and stick at all ones when they count to their maximum value. They should be read frequently enough to prevent loss of data. The receive statistics registers are only incremented when the receive enable bit is set in the network control register. To write to these registers, bit 7, WESTAT, in the network control register, NCR, must be set. The statistics register block contains the following registers.

| Register Name: | : PFR  |       |    |    |    |    |    |
|----------------|--------|-------|----|----|----|----|----|
| Access Type:   | Read/W | Vrite |    |    |    |    |    |
| 31             | 30     | 29    | 28 | 27 | 26 | 25 | 24 |
| -              | -      | -     | -  | -  | -  | -  | -  |
| 23             | 22     | 21    | 20 | 19 | 18 | 17 | 16 |
| -              | -      | _     | -  | -  | -  | _  | Ι  |
| 15             | 14     | 13    | 12 | 11 | 10 | 9  | 8  |
|                |        |       | FR | OK |    |    |    |
| 7              | 6      | 5     | 4  | 3  | 2  | 1  | 0  |
|                |        |       | FR | OK |    |    |    |
|                |        |       |    |    |    |    |    |

#### 29.7.28.1 Pause Frames Received Register Register Name: PFR

### • FROK: Pause Frames received OK

A 16-bit register counting the number of good pause frames received. A good frame has a length of 64 to 1518 (1536 if bit 8, BIG, in network configuration register, NCFGR, is set, 10240 if bit 3, JFRAME in network configuration register, NCFGR, is set) and has no FCS, alignment or receive symbol errors.

### 29.7.28.2 Frames Transmitted OK Register

| Register Name: | FTO    | -     |    |       |    |    |    |
|----------------|--------|-------|----|-------|----|----|----|
| Access Type:   | Read/V | Vrite |    |       |    |    |    |
| 31             | 30     | 29    | 28 | 27    | 26 | 25 | 24 |
| -              | _      | _     | -  | -     | -  | -  | -  |
| 23             | 22     | 21    | 20 | 19    | 18 | 17 | 16 |
|                |        |       | F1 | rok – |    |    |    |
| 15             | 14     | 13    | 12 | 11    | 10 | 9  | 8  |
|                |        |       | F1 | ſOK   |    |    |    |
| 7              | 6      | 5     | 4  | 3     | 2  | 1  | 0  |
|                |        |       | F1 | TOK   |    |    |    |

# • FTOK: Frames Transmitted OK

A 24-bit register counting the number of frames successfully transmitted, i.e., no underrun and not too many retries.



# 30.8.2.19 USB Device DMA Channel X Control Register (UDDMAX\_CONTROL)

| Offset:       |    | 0x0318 | 0x0318 + (X - 1) . 0x10 |             |    |    |    |
|---------------|----|--------|-------------------------|-------------|----|----|----|
| Register Name | e: | UDDMA  | AX_CONTROL              | , X in [16] |    |    |    |
| Access Type:  |    | Read/W | /rite                   |             |    |    |    |
| Reset Value:  |    | 0x0000 | 0x0000000               |             |    |    |    |
| 31            | 30 | 29     | 28                      | 27          | 26 | 25 | 24 |
|               |    |        | CH_BYTE                 | LENGTH      |    |    |    |
|               |    |        | rv                      | vu          |    |    |    |
| 0             | 0  | 0      | 0                       | 0           | 0  | 0  | 0  |
| 23            | 22 | 21     | 20                      | 19          | 18 | 17 | 16 |
|               |    |        | CH_BYTE                 | LENGTH      |    |    |    |
|               |    |        | rv                      | vu          |    |    |    |
| 0             | 0  | 0      | 0                       | 0           | 0  | 0  | 0  |
| 15            | 14 | 13     | 12                      | 11          | 10 | 9  | 8  |
| _             | _  | -      | _                       | _           | _  | _  | _  |

| 7                 | 6                  | 5                | 4          | 3         | 2                    | 1                     | 0     |
|-------------------|--------------------|------------------|------------|-----------|----------------------|-----------------------|-------|
| BURST_LOCK<br>_EN | DESC_LD_<br>IRQ_EN | EOBUFF<br>IRQ_EN | EOT_IRQ_EN | DMAEND_EN | BUFF_CLOSE<br>_IN_EN | LD_NXT_CH_<br>DESC_EN | CH_EN |
| rwu               | rwu                | rwu              | rwu        | rwu       | rwu                  | rwu                   | rwu   |
| 0                 | 0                  | 0                | 0          | 0         | 0                    | 0                     | 0     |

## • CH\_EN: Channel Enable

Set this bit to enable this channel data transfer.

Clear this bit to disable the channel data transfer.

This may be used to start or resume any requested transfer.

This bit is cleared by hardware when the HSB source channel is disabled at end of dma buffer.

### LD\_NXT\_CH\_DESC\_EN: Load Next Channel Descriptor Enable

Set this bit to allow automatic next descriptor loading at the end of the channel transfer.

Clear this bit to disable this feature.

If set, the dma channel controller loads the next descriptor when the UDDMAX\_STATUS.CH\_EN bit is reset due to software of hardware event (for example at the end of the current transfer).

### • BUFF\_CLOSE\_IN\_EN: Buffer Close Input Enable

Set this bit to automatically closed the current dma transfer at the end of the usb OUT data transfer (received short packet).

Clear this bit to disable this feature.

### • DMAEND\_EN: End of DMA Buffer Output Enable

Set this bit to properly complete the usb transfer at the end of the dma transfer.

For IN endpoint, it means that a short packet (or a Zero Length Packet) will be sent to the usb line to properly closed the usb transfer at the end of the dma transfer.

For OUT endpoint, it means that all the banks will be properly released. (NBUSYBK=0) at the end of the dma transfer.



# • ACPA: RA Compare Effect on TIOA

| AC | Effect |        |
|----|--------|--------|
| 0  | 0      | none   |
| 0  | 1      | set    |
| 1  | 0      | clear  |
| 1  | 1      | toggle |

ACPC: RC Compare Effect on TIOA

| AC | Effect |        |
|----|--------|--------|
| 0  | 0      | none   |
| 0  | 1      | set    |
| 1  | 0      | clear  |
| 1  | 1      | toggle |

• AEEVT: External Event Effect on TIOA

| AEI | Effect |        |
|-----|--------|--------|
| 0   | 0      | none   |
| 0   | 1      | set    |
| 1   | 0      | clear  |
| 1   | 1      | toggle |

• ASWTRG: Software Trigger Effect on TIOA

| ASW | Effect |        |
|-----|--------|--------|
| 0   | 0      | none   |
| 0   | 1      | set    |
| 1   | 0      | clear  |
| 1   | 1      | toggle |

• BCPB: RB Compare Effect on TIOB

| ВСРВ |   | Effect |
|------|---|--------|
| 0    | 0 | none   |



| Register Name | e:    | IDR     |       |       |       |       |       |
|---------------|-------|---------|-------|-------|-------|-------|-------|
| Access Type:  |       | Write-c | only  |       |       |       |       |
| 31            | 30    | 29      | 28    | 27    | 26    | 25    | 24    |
| -             | -     | -       | -     | -     | -     | -     | -     |
| 23            | 22    | 21      | 20    | 19    | 18    | 17    | 16    |
| -             | -     | -       | -     | -     | -     | -     | -     |
| 15            | 14    | 13      | 12    | 11    | 10    | 9     | 8     |
| -             | -     | -       | Ι     | Ι     | Ι     | Ι     | —     |
| 7             | 6     | 5       | 4     | 3     | 2     | 1     | 0     |
| -             | CHID6 | CHID5   | CHID4 | CHID3 | CHID2 | CHID1 | CHID0 |

# 32.7.7 PWM Interrupt Disable Register

## • CHIDx: Channel ID.

0 = No effect.

1 = Disable interrupt for PWM channel x.



| 33.7.2 Mod   | e Register |         |        |    |         |     |       |
|--------------|------------|---------|--------|----|---------|-----|-------|
| Name:        | MR         |         |        |    |         |     |       |
| Access Type: | Read/W     | rite    |        |    |         |     |       |
| Offset:      | 0x04       |         |        |    |         |     |       |
| Reset Value: | 0x00000    | 0000    |        |    |         |     |       |
| 31           | 30         | 29      | 28     | 27 | 26      | 25  | 24    |
| _            | _          | _       | _      |    | SH      | TIM |       |
| 23           | 22         | 21      | 20     | 19 | 18      | 17  | 16    |
| _            | -          | _       |        |    | STARTUP |     |       |
| 15           | 14         | 13      | 12     | 11 | 10      | 9   | 8     |
| -            | -          | PRESCAL |        |    |         |     |       |
| 7            | 6          | 5       | 4      | 3  | 2       | 1   | 0     |
| _            | -          | SLEEP   | LOWRES |    | TRGSEL  |     | TRGEN |

# • SHTIM: Sample & Hold Time Sample & Hold Time = (SHTIM+1) / ADCClock

- STARTUP: Start Up Time Startup Time = (STARTUP+1) \* 8 / ADCClock
- PRESCAL: Prescaler Rate Selection ADCClock = CLK\_ADC / ((PRESCAL+1)\*2)

# • SLEEP: Sleep Mode

| SLEEP | Selected Mode |
|-------|---------------|
| 0     | Normal Mode   |
| 1     | Sleep Mode    |

# • LOWRES: Resolution

| LOWRES | Selected Resolution |
|--------|---------------------|
| 0      | 10-bit resolution   |
| 1      | 8-bit resolution    |

# • TRGSEL: Trigger Selection

| TRGSEL |   |   | Selected TRGSEL                                   |  |
|--------|---|---|---------------------------------------------------|--|
| 0      | 0 | 0 | Internal Trigger 0, depending of chip integration |  |
| 0      | 0 | 1 | Internal Trigger 1, depending of chip integration |  |
| 0      | 1 | 0 | Internal Trigger 2, depending of chip integration |  |
| 0      | 1 | 1 | Internal Trigger 3, depending of chip integration |  |
| 1      | 0 | 0 | Internal Trigger 4, depending of chip integration |  |



# 34.7.3 Audio Bitstream DAC Interrupt Mask Register

| Name:        | IMR     |          |          |    |    |    |    |
|--------------|---------|----------|----------|----|----|----|----|
| Access Type: | Read-or | nly      |          |    |    |    |    |
| 31           | 30      | 29       | 28       | 27 | 26 | 25 | 24 |
| -            | -       | TX_READY | UNDERRUN | -  | -  | -  | -  |
| 23           | 22      | 21       | 20       | 19 | 18 | 17 | 16 |
| -            | -       | -        | -        | -  | -  | -  | -  |
| 15           | 14      | 13       | 12       | 11 | 10 | 9  | 8  |
| -            | -       | -        | -        | -  | -  | -  | -  |
| 7            | 6       | 5        | 4        | 3  | 2  | 1  | 0  |
| -            | -       | -        | -        | -  | -  | -  | -  |

# • UNDERRUN: Underrun Interrupt Mask

0: The Audio Bitstream DAC Underrun interrupt is disabled.

1: The Audio Bitstream DAC Underrun interrupt is enabled.

• TX\_READY: TX Ready Interrupt Mask

0: The Audio Bitstream DAC TX Ready interrupt is disabled.

1: The Audio Bitstream DAC TX Ready interrupt is enabled.



Debug tools utilizing the AUX port should connect to the device through a Nexus-compliant Mictor-38 connector, as described in the AVR32UC Technical Reference manual. This connector includes the JTAG signals and the RESET\_N pin, giving full access to the programming and debug features in the device.

| Table 35-1. | Auxiliary p | ort signals |
|-------------|-------------|-------------|
|             |             |             |

| Signal    | Direction | Description             |
|-----------|-----------|-------------------------|
| МСКО      | Output    | Trace data output clock |
| MDO[5:0]  | Output    | Trace data output       |
| MSEO[1:0] | Output    | Trace frame control     |
| EVTI_N    | Input     | Event In                |
| EVTO_N    | Output    | Event Out               |





#### 35.4.3.1 Trace operation

Trace features are enabled by writing OCD registers by JTAG. The OCD extracts the trace information from the CPU, compresses this information and formats it into variable-length messages according to the Nexus standard. The messages are buffered in a 16-frame transmit queue, and are output on the AUX port one frame at a time.



| Symbol            | Parameter                        | Min                                               | Units |
|-------------------|----------------------------------|---------------------------------------------------|-------|
| SMC <sub>37</sub> | NWE Rising to A2-A25 Valid       | 5.4                                               |       |
| SMC <sub>38</sub> | NWE Rising to NBS0/A0 Valid      | 5                                                 |       |
| SMC <sub>39</sub> | NWE Rising to NBS1 Change        | 5                                                 |       |
| SMC <sub>40</sub> | NWE Rising to A1/NBS2 Change     | 5                                                 |       |
| SMC <sub>41</sub> | NWE Rising to NBS3 Change        | 5                                                 | ns    |
| SMC <sub>42</sub> | NWE Rising to NCS Rising         | 5.1                                               |       |
| SMC <sub>43</sub> | Data Out Valid before NWE Rising | (nwe pulse length - 1) * t <sub>CPSMC</sub> - 1.2 |       |
| SMC <sub>44</sub> | Data Out Valid after NWE Rising  | 5                                                 |       |
| SMC <sub>45</sub> | NWE Pulse Width                  | nwe pulse length * t <sub>CPSMC</sub> - 0.9       |       |

Table 38-26. SMC Write Signals with No Hold Settings (NWE Controlled only).

Figure 38-2. SMC Signals for NCS Controlled Accesses.





If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

## Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

#### 41.5.11 ABDAC

 Audio Bitstream DAC is not functional. Fix/Workaround
 Do not use the ABDAC on revE.

### 41.5.12 FLASHC

- The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C on revE instead of 0xFFFE1410. Fix/Workaround None.
- The command Quick Page Read User Page(QPRUP) is not functional. Fix/Workaround None.
- PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision E instead of WriteData[7:0], ByteAddress[2:0]. Fix/Workaround None.
- 4. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP commands may happen

- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the other half of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.
After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading (data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

### Fix/Workaround

Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or through the EBI. After these commands, read twice one flash page initialized to 00h in each half part of the flash.

41.5.13 RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock.

### Fix/Workaround

Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of four or more relative to the HSB clock.

