

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2439-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Ар	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
FSR1H	2439	4439	2539	4539	xxxx	uuuu	uuuu	
FSR1L	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
BSR	2439	4439	2539	4539	0000	0000	uuuu	
INDF2	2439	4439	2539	4539	N/A	N/A	N/A	
POSTINC2	2439	4439	2539	4539	N/A	N/A	N/A	
POSTDEC2	2439	4439	2539	4539	N/A	N/A	N/A	
PREINC2	2439	4439	2539	4539	N/A	N/A	N/A	
PLUSW2	2439	4439	2539	4539	N/A	N/A	N/A	
FSR2H	2439	4439	2539	4539	xxxx	uuuu	uuuu	
FSR2L	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս	
STATUS	2439	4439	2539	4539	x xxxx	u uuuu	u uuuu	
TMR0H	2439	4439	2539	4539	0000 0000	uuuu uuuu	սսսս սսսս	
TMR0L	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս	
T0CON	2439	4439	2539	4539	1111 1111	1111 1111	սսսս սսսս	
OSCCON*	2439	4439	2539	4539	0	0	u	
LVDCON	2439	4439	2539	4539	00 0101	00 0101	uu uuuu	
WDTCON	2439	4439	2539	4539	0	0	u	
RCON ⁽⁴⁾	2439	4439	2539	4539	0q 11qq	0q qquu	uu qquu	
TMR1H	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1L	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CON	2439	4439	2539	4539	0-00 0000	u-uu uuuu	u-uu uuuu	
TMR2 [*]	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
PR2 [*]	2439	4439	2539	4539	1111 1111	1111 1111	1111 1111	
T2CON [*]	2439	4439	2539	4539	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	นนนน นนนน	
SSPADD	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPCON1	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPCON2	2439	4439	2539	4539	0000 0000	0000 0000	นนนน นนนน	

TARI E 3-3.	INITIAL IZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)
IADLL J-J.	INTIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved. Users should not modify the value of these bits. See Section 4.9.2 for details.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 3-2 for RESET value for specific condition.
- **5:** Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	CCPR1L [*]	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON*	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L [*]	F9Bh	—
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON [*]	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h		F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h		F97h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	—	F96h	TRISE ⁽²⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	—	F95h	TRISD ⁽²⁾
FF4h	PRODH	FD4h	_	FB4h	—	F94h	TRISC ⁽⁴⁾
FF3h	PRODL	FD3h	OSCCON [*]	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	—	F90h	—
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2 [*]	FACh	TXSTA	F8Ch	LATD ⁽²⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2 [*]	FABh	RCSTA	F8Bh	LATC ⁽⁴⁾
FEAh	FSR0H	FCAh	T2CON [*]	FAAh	_	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	—
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	_	F85h	_
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	—	F84h	PORTE ⁽²⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h		F83h	PORTD ⁽²⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC ⁽⁴⁾
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	—	FA0h	PIE2	F80h	PORTA

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved in PIC18FXX39 devices. Users should not alter the values of these bits.

Note 1: Unimplemented registers are read as '0'.

2: This register is not available on PIC18F2X39 devices.

3: This is not a physical register.

4: Bits 1 and 2 are reserved; users should not alter their values.

5.0 FLASH PROGRAM MEMORY

The FLASH Program Memory is readable, writable, and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16-bits wide, while the data RAM space is 8-bits wide. Table Reads and Table Writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table Read operations retrieve data from program memory and places it into the data RAM space. Figure 5-1 shows the operation of a Table Read with program memory and data RAM.

Table Write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in Section 5.5, "Writing to FLASH Program Memory". Figure 5-2 shows the operation of a Table Write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a Table Write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 5-1: TABLE READ OPERATION

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values in power-of-2 increments, from 1:2 through 1:256, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) will clear the prescaler count.

Note: Writing to TMR0L when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control; it can be changed "on-the-fly" during program execution.

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (see Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Module Low Byte Register								xxxx xxxx	uuuu uuuu
TMR0H	Timer0 Module High Byte Register								0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	_	PORTA Data Direction Register							-111 1111	-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

^{© 2002-2013} Microchip Technology Inc.

16.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers, and then set the SSPEN bit. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISC<4> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

16.3.4 TYPICAL CONNECTION

Figure 16-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 16-2: SPI MASTER/SLAVE CONNECTION

16.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

16.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 16-20: REPEAT START CONDITION WAVEFORM

[label] B -128 \leq n \leq if carry bit (PC) + 2 + None 1110 If the Carr program w The 2's co added to t have increa instruction PC+2+2n. a two-cycl 1	NC n 127 is '0' $2n \rightarrow PC$ 0011 nm y bit is '0', th <i>i</i> ll branch. mplement no he PC. Since mented to fer , the new ad This instruction.	nn nnnn en the umber '2n' is e the PC will etch the next dress will be ction is then	Syntax Operat Operat Status Encod Descri	<: nds: tion: Affected: ing: ption:	[label] B -128 \leq n \leq if negative (PC) + 2 + None 1110 If the Nega program w The 2's co added to th have increase instruction PC+2+2n.	NN n 127 bit is '0' $2n \rightarrow PC$ 0111 nm ative bit is '0' <i>v</i> ill branch. mplement no he PC. Since mented to fea the new ad This instruct	nn nnnn ', then the umber '2n' is e the PC will etch the next dress will be ction is then
$-128 \le n \le$ if carry bit (PC) + 2 + None 1110 If the Carr program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl	127 is '0' $2n \rightarrow PC$ 0011 nm y bit is '0', th <i>i</i> ll branch. mplement nu he PC. Sinc mented to fe , the new ad This instruction.	nn nnnn en the umber '2n' is e the PC will etch the next dress will be ction is then	Operat Operat Status Encod Descri	nds: tion: Affected: ing: ption:	$-128 \le n \le$ if negative (PC) + 2 + None 1110 If the Nega program w The 2's co added to th have increased instruction PC+2+2n.	127 bit is '0' 2n → PC 0111 nm ative bit is '0' vill branch. mplement no he PC. Since mented to fea t, the new ad This instruct	nn nnnn ', then the umber '2n' is e the PC will etch the next dress will be ction is then
if carry bit (PC) + 2 + None 1110 If the Carr program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl	is '0' $2n \rightarrow PC$ 0011 nm y bit is '0', th vill branch. mplement nu- he PC. Since mented to fer , the new ad This instruction.	nn nnnn en the umber '2n' is e the PC will etch the next dress will be ction is then	Operat Status Encod Descri	tion: Affected: ing: ption:	if negative (PC) + 2 + None 1110 If the Nega program w The 2's co added to th have increa instruction PC+2+2n.	bit is '0' $2n \rightarrow PC$ 0111 nm ative bit is '0' vill branch. mplement no he PC. Since mented to fea i, the new ad This instruct	nn nnnn ', then the umber '2n' is e the PC will etch the next dress will be ction is then
None 1110 If the Carr program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl 1	0011 nm y bit is '0', th <i>i</i> ll branch. mplement nu he PC. Sinc smented to fe , the new ad This instruction.	nn nnnn en the umber '2n' is e the PC will etch the next dress will be ction is then	Status Encod Descri	Affected: ing: ption:	None 1110 If the Nega program w The 2's co added to t have increa instruction PC+2+2n.	0111 nm ative bit is '0' vill branch. mplement no he PC. Sinc emented to fe to the new ad This instruc	nn nnnn ', then the umber '2n' is e the PC will etch the next dress will be ction is then
I1110 If the Carr program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl	0011 nm y bit is '0', th <i>i</i> ll branch. mplement nu he PC. Sinc mented to fe , the new ad This instruction.	nn nnnn en the umber '2n' is e the PC will etch the next dress will be ction is then	Encod Descri	ing: ption:	1110 If the Nega program w The 2's co added to th have increase instruction PC+2+2n.	0111 nnn ative bit is '0' vill branch. mplement nu he PC. Sinc emented to fe i, the new ad This instruc	nn nnnn , then the umber '2n' is e the PC will etch the next dress will be tion is then
If the Carr program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl	y bit is '0', th /ill branch. mplement nu he PC. Sinc mented to fe , the new ad This instruction.	en the umber '2n' is e the PC will etch the next dress will be ction is then	Descri	ption:	If the Nega program w The 2's co added to the have increase instruction PC+2+2n.	ative bit is '0' vill branch. mplement nu he PC. Sinc mented to fe to the new ad This instruct	, then the umber '2n' is e the PC will etch the next dress will be ction is then
1		If the Carry bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.			If the Negative bit is '0', the program will branch. The 2's complement number added to the PC. Since the have incremented to fetch instruction, the new addres PC+2+2n. This instruction a two-cycle instruction.		
			Words	:	1		
1(2)			Cycles	s:	1(2)		
/:			Q Cyc If Jum	cle Activity	:		
Q2	Q3	Q4		Q1	Q2	Q3	Q4
Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
No operation	No operation	No operation		No operation	No operation	No operation	No operation
I '			If No 、	Jump:			
Q2	Q3	Q4		Q1	Q2	Q3	Q4
Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
HERE	BNC Jump		Examp	<u>ole</u> :	HERE	BNN Jump	
ruction = ad ction = 0; c = ad	dress (HERE) dress (Jump))	Be Af	efore Instru PC fter Instruc If Negati PC If Negati	uction = ad tion ve = 0; = ad ve = 1;	dress (HERE) dress (Jump))
	Q2 Read literal 'n' No operation Q2 Read literal 'n' HERE uction = ad = 0; = ad = 1:	Q2 Q3 Read literal 'n' Process Data No No operation operation Q2 Q3 Read literal 'n' Process Data HERE BNC HERE BNC Jump uction = address (HERE tion = 1 = 2 1	Q2Q3Q4Read literalProcessWrite to PC'n'DataWrite to PCNoNoNooperationoperationQ2Q3Q4Read literalProcessNo'n'DataoperationHEREBNCJumpuction=address (HERE)=address (Jump)=1;	Q2 Q3 Q4 Read literal Process Write to PC 'n' Data Image: Constraint of the second se	Q2Q3Q4Q1Read literal 'n'Process DataWrite to PCDecode'n'DataNoNooperationoperationoperationQ2Q3Q4Q1Read literal 'n'Process DataNo operationQ2Q3Q4Q1Read literal 'n'Process DataNo operationHERE =BNC address (HERE)Example: PCuction =0; =If Negati PC If Negati PC=0; =If Negati PC If Negati PC=0; =If Negati PC PC	Q2Q3Q4Read literal 'n'Process DataWrite to PCNoNoNooperationoperationQ2Q3Q4Read literal 'n'Process DataQ2Q3Q4Read literal 'n'Process DataNoNoQ2Q3Q4Read literal 'n'Process DataNoDataoperationIf No Jump:Q2Q3Q4Read literal 'n'Pocess DataNoNoHEREBNC JumpHEREBNC Jumpuction =address (HERE)=0; = 1; ==0; = 1; ==0; = 1; = address (HERE+2)HERENo operationIf Negative = PC = addressIf Negative = PC = adIf Negative = PC PC = adIf Negative = PC PC = adPC PC PC = adPC PC PC = adPC PC PC = adPC PC PC = adPC PC PC = adPC PC PC = adPC PC PC = adPC PC = adPC PC PC = adPC PC PC = adPC PC PC = ad	Q2Q3Q4Read literal 'n'Process DataWrite to PC DataNoNoNooperationoperationQ2Q3Q4Read literal 'n'Process DataQ2Q3Q4Read literal 'n'Process DataQ2Q3Q4Read literal 'n'Process DataMERE =address (HERE)EBNC =Ction =0; =

BTF	BTFSC Bit Test File, Skip if Clear							
Synt	ax:	[<i>label</i>] B1	FSC f,b[,	a]				
Opei	rands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$						
Opei	ration:	skip if (f <b< td=""><td>>) = 0</td><td></td><td></td></b<>	>) = 0					
Statu	us Affected:	None						
Enco	oding:	1011	bbba	ffff	ffff			
Desc	cription:	If bit 'b' in r next instruct If bit 'b' is 0 fetched dur execution i executed in cycle instru Access Bar riding the E the bank w BSR value	If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the					
More	de ·		(uerault).					
Cycl	es:	1(2) Note: 3 c by	ycles if skij a 2-word ir	p and for a struction	ollowed on.			
QC	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Da	ita op	No eration			
lf sk	kip:							
	Q1	Q2	Q3		Q4			
	No	No	No	00	No			
lf ol		od by 2 word		op	eration			
11 56				1.	04			
	No	No	No		No			
	operation	operation	operation	ор	eration			
	No	No	No		No			
	operation	operation	operation	ор	eration			
Exar	nple:	HERE B FALSE : TRUE :	IFSC FL	AG, 1,	. 0			
	Before Instru PC	ction = add	ress (HERE)				
	After Instructi If FLAG< PC If FLAG< PC	ion 1> = 0; = add 1> = 1; = add	ress (TRUE	E) SE)				

BTFSS	3TFSS Bit Test File, Skip if Set					
Syntax:	[<i>label</i>] BT	FSS f,b[,a]				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Operation:	skip if (f 	>) = 1				
Status Affected:	None					
Encoding:	1010	bbba ff	ff ffff			
Description:	If bit 'b' in register 'f' is 1, then the next instruction is skipped. If bit 'b' is 1, then the next instruction fetched during the current instruc- tion execution, is discarded and a NOP is executed instead, making the a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, ove riding the BSR value. If 'a' = 1, the the bank will be selected as per the BSR value (default)					
Words:	1	(deladit).				
Cycles:	1(2)					
Note: 3 cycles if skip and followed by a 2-word instruction.						
Q Cycle Activity. Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	No operation			
If skip:	·					
Q1	Q2	Q3	Q4			
No	No	No	No			
operation	operation	operation	operation			
It skip and follow	red by 2-word	instruction:	04			
		Q3	Q4			
operation	operation	operation	operation			
No	No	No	No			
operation	operation	operation	operation			
Example:	Example: HERE BTFSS FLAG, 1, 0 FALSE : TRUE .					
Before Instru PC	iction = add	ress (HERE)				
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)						

BTG	Bit Toggl	e f		BOV	,	Branch if	Overflow		
Syntax:	[<i>label</i>] B	STG f,b[,a]		Synt	ax:	[<i>label</i>] B	[<i>label</i>] BOV n		
Operands:	0 ≤ f ≤ 25	5		Ope	rands:	-128 ≤ n ≤	127		
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			ration:	if overflow (PC) + 2 +	if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC		
Operation:	$(\overline{f} < b >) \rightarrow 1$	$(\overline{f}) \to f$			us Affected:	None	None		
Status Affected:	None			Enco	odina:	1110	0100 nn:	nn nnnn	
Encoding:	0111	bbba f	fff ffff	Desi	crintion.	If the Ove	rflow hit is '1	' then the	
Description:	Bit 'b' in data memory location 'f' is inverted. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			2		program w The 2's co added to t have incre instruction PC+2+2n.	vill branch. omplement no he PC. Since emented to fe the new ad This instruct	umber '2n' is e the PC will etch the next dress will be ction is then	
Words:	1					a two-cycl	e instruction		
Cycles:	1			Wor	ds:	1			
Q Cycle Activity:				Cycl	es:	1(2)			
Q1	Q2	Q3	Q4	QC	cycle Activity	/:			
Decode	Read register 'f'	Process Data	Write register 'f'	lf Ju	ump: Q1	Q2	Q3	Q4	
Example:	BTG I	PORTC, 4,	0		Decode	Read literal 'n'	Process Data	Write to PC	
Before Instru	iction:	0101 [0v75]			No operation	No operation	No operation	No operation	
After Instruct	= 0111 (0101 [0 875]		lf N	o Jump:				
PORTC	= 0110 (0101 [0x65]			Q1	Q2	Q3	Q4	
					Decode	Read literal 'n'	Process Data	No operation	

Example:	HERE	BOV	Jump
Before Instruc PC	tion =	address	(HERE)
After Instruction If Overflow PC If Overflow PC	on = = = =	1; address 0; address	(Jump) (HERE+2)

RET	URN	Return from Subroutine					
Synt	ax:	[label]	RETUR	۱ (s]		
Ope	rands:	$s \in [0,1]$					
Ope	ration:	$\begin{array}{l} (\text{TOS}) \rightarrow \text{PC},\\ \text{if } s=1\\ (\text{WS}) \rightarrow \text{W},\\ (\text{STATUSS}) \rightarrow \text{STATUS},\\ (\text{BSRS}) \rightarrow \text{BSR},\\ \text{PCLATU, PCLATH are unchanged} \end{array}$					
Statu	us Affected:	None					
Enco	oding:	0000	0000	000	01	001s	
Description: Return from subroutine. The s is popped and the top of the s (TOS) is loaded into the progr counter. If 's'= 1, the contents of shadow registers WS, STATU and BSRS are loaded into the responding registers, W, STAT and BSR. If 's' = 0, no update these registers occurs (default				e stack e stack ogram ts of the TUSS heir cor- TATUS te of hult).			
Wor	ds:	1					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	No operation	Proces Data	SS	pop F s	PC from tack	
	No operation	No operation	No operati	on	оре	No eration	

Example:	RETURN

After Interrupt PC = TOS

RLCF	Rotate L	eft f througl	h Carry				
Syntax:	[label]	RLCF f[,	d [,a]				
Operands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	$(f < n >) \rightarrow dest < n+1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$						
Status Affected:	C, N, Z						
Encoding:	0011	01da f:	fff ffff				
	the Carry Flag. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
	is stored (default). Bank will the BSR bank will BSR valu	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default).	f				
Words:	is stored (default). Bank will the BSR bank will BSR valu	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default). register	ster 'f' e Access , overriding = 1, then the as per the				
Words: Cycles:	is stored (default). Bank will the BSR bank will BSR valu C 1 1	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default).	f				
Words: Cycles: Q Cycle Activity:	is stored (default). Bank will the BSR bank will BSR valu C 1	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default).	ster 'f' e Access , overriding = 1, then the as per the <u>f</u>				
Words: Cycles: Q Cycle Activity: Q1	is stored (default). Bank will the BSR bank will BSR valu C 1 1 2	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default). register	ster 'f' e Access , overriding = 1, then the as per the <u>f</u>				
Words: Cycles: Q Cycle Activity: Q1 Decode	is stored (default). Bank will bank will BSR valu C 1 1 1 2 Read register 'f'	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default). register Q3 Process Data	e Access , overriding = 1, then the as per the f Q4 Write to destination				
Words: Cycles: Q Cycle Activity: Q1 Decode Example:	is stored (default). Bank will bank will BSR valu C 1 1 1 2 Read register 'f'	back in regis If 'a' is 0, the be selected value. If 'a' = be selected ie (default). register Q3 Process Data REG, 0,	e Access , overriding = 1, then the as per the <u>f</u> Q4 Write to destination				

REG C	=	1110 0	0110
After Instru	ction		
REG	=	1110	0110
W	=	1100	1100
С	=	1	

 $\ensuremath{\textcircled{}^{\odot}}$ 2002-2013 Microchip Technology Inc.

SUE	BWFB	Subtract W from f with Borrow						
Synt	tax:	[label]	SUBWFB f[d [,a]				
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(f) – (W)	$-(\overline{C}) \rightarrow dest$					
Stat	us Affected:	N, OV, C, DC, Z						
Enc	oding:	0101 10da ffff ffff						
Des	cription:	Subtract row) from method). in W. If 'd back in re the Acces overriding then the l the BSR	Subtract W and the carry flag (bor- row) from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).					
Wor	ds:	1						
Cycl	es:	1						
QC	Cycle Activity:	:						
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
Exa	<u>mple 1</u> :	SUBWFB	REG, 1, 0					
	Before Instru REG W	uction = 0x19 = 0x0D - 1	(0001 100 (0000 110	01) 01)				
	After Instruct	tion						
	REG	= 0x0C	(0000 101	.1)				
	Ĕ	= 1	(0000 110	(1)				
	Z N	= 0 = 0	; result is po	sitive				
Exa	<u>mple 2</u> :	SUBWFB	REG, 0, 0					
	Before Instru	uction						
	REG	= 0x1B	(0001 101	.1)				
	C After Instruct	= 0.1A = 0 tion	(0001 101	.0)				
	REG W C	= 0x1B = 0x00 = 1	(0001 101	.1)				
	Ň	= 0	, 10301113 20	10				
Exa	<u>mple 3:</u>	SUBWFB	REG, 1, 0					
	Before Instru REG	uction = $0x03$	(0000 001	1)				
	W	= 0x0E	(0000 110)1)				
	C After Instruct	= 1 tion						
	REG	= 0xF5	(1111 010 ; [2's comp]	00)				
	W C	= 0x0E = 0	(0000 110)1)				
	Z N	= 0 = 1	; result is ne	gative				

	Swap f							
Syntax:	[label] S	SWAPF f[,d	l [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$							
Status Affected:	None							
Encoding:	0011	10da ffi	ff ffff					
Description:	The upper and lower nibbles of reg- ister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Write to						
	register 'f'	Data	destination					
Example: Before Instru REG After Instructi REG	register T SWAPF F ction = 0x53 ion = 0x35	Data	destination					

22.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

22.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

22.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

22.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial)

PIC18L (Ind	PIC18LFXX39 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
PIC18FXX39 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Conditions					
	Vdd	Supply Voltage							
D001		PIC18LFXX39	2.0	_	5.5	V	HS Osc mode		
D001		PIC18FXX39	4.2	_	5.5	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.7	V	See Section 3.1 (Power-on Reset) for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 3.1 (Power-on Reset) for details		
	VBOR	Brown-out Reset Voltag	je	•	•	•			
D005		PIC18LFXX39							
		BORV1:BORV0 = 11	1.98	_	2.14	V	$85^{\circ}C \ge T \ge 25^{\circ}C$		
		BORV1:BORV0 = 10	2.67	_	2.89	V			
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45	—	4.83	V			
D005		PIC18FXX39							
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45	—	4.83	V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial) (Continued)

PIC18LFXX39 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial					
PIC18FXX39 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions						
		Module Differential Cur	rent						
D022	ΔIWDT	Watchdog Timer PIC18LFXX39		0.75 2 10	1.5 8 25	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C		
D022		Watchdog Timer PIC18FXX39		7 10 25	15 25 40	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C		
D022A	∆IBOR	Brown-out Reset ⁽⁴⁾ PIC18LFXX39		29 29 33	35 45 50	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C		
D022A		Brown-out Reset ⁽⁴⁾ PIC18FXX39		36 36 36	40 50 65	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C		
D022B	ΔILVD	Low Voltage Detect ⁽⁴⁾ PIC18LFXX39		29 29 33	35 45 50	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C		
D022B		Low Voltage Detect ⁽⁴⁾ PIC18FXX39		33 33 33	40 50 65	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active Operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

٦

DC Cha	aracteris	stics	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications					
D110	Vpp	Voltage on MCLR/VPP pin	9.00	—	13.25	V	
D113	IDDP	Supply Current during Programming	—	_	10	mA	
		Data EEPROM Memory					
D120	ED	Cell Endurance	100K	1M	—	E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated
D123A	Tretd	Characteristic Retention	100	—	—	Year	25°C (Note 1)
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program FLASH Memory					
D130	ЕΡ	Cell Endurance	10K	100K	-	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-timed Write	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP Block Erase Cycle Time	—	4	—	ms	$V \text{DD} \geq 4.5 \text{V}$
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	-	ms	$VDD \ge 4.5V$
D133A	Tiw	Self-timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	—	-	Year	Provided no other specifications are violated
D134A	TRETD	Characteristic Retention	100	—	—	Year	25°C (Note 1)

TABLE 23-2:	MEMORY PROGRAMMING REQUIREMENTS
-------------	---------------------------------

.

Г

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Retention time is valid, provided no other specifications are violated.

2: Refer to Section 6.8 for a more detailed discussion on data EEPROM endurance.

23.3 AC (Timing) Characteristics

23.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	bS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase	letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 23-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions
40	Tt0H	T0CKI High Pu	llse Width	No Prescaler	0.5Tcy + 20	_	ns	
				With Prescaler	10	—	ns	
41	Tt0L	T0CKI Low Pu	lse Width	No Prescaler	0.5TCY + 20	—	ns	
				With Prescaler	10	—	ns	
42	Tt0P	T0CKI Period		No Prescaler	Tcy + 10	—	ns	
					Greater of: 20 ns or <u>TcY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T13CKI High	Synchronous, no	prescaler	0.5Tcy + 20	—	ns	
		Time	Synchronous, with prescaler	PIC18FXXXX	10	_	ns	
				PIC18LFXXXX	25	_	ns	
			Asynchronous	PIC18FXXXX	30	—	ns	
				PIC18LFXXXX	50	—	ns	
46	Tt1L	T13CKI Low	Synchronous, no	prescaler	0.5TCY + 5	—	ns	
		Time	Synchronous, with prescaler Asynchronous	PIC18FXXXX	10	—	ns	
				PIC18LFXXXX	25	—	ns	
				PIC18FXXXX	30	—	ns	
				PIC18LFXXXX	50	—	ns	
47	Tt1P	T13CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	ns	
	Ft1	T13CKI oscilla	tor input frequency	range	DC	50	kHz	
48	Tcke2tmrl	Delay from ext increment	ernal T13CKI clock	edge to timer	2 Tosc	7 Tosc	_	

TABLE 23-22: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
130	TAD	A/D clock period	PIC18FXXXX	1.6	20 ⁽⁴⁾	μS	Tosc based
			PIC18 LF XXXX	2.0	6.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisition	11	12	Tad		
132	TACQ	Acquisition time (Note 2)		5 10	_	μS μS	Vref = Vdd = 5.0V Vref = Vdd = 2.5V
135	Tswc	Switching Time from co	onvert \rightarrow sample		(Note 3)		

Note 1: ADRES register may be read on the following TCY cycle.

2: The time for the holding capacitor to acquire the "New" input voltage, when the new input value has not changed by more than 1 LSB from the last sampled voltage. The source impedance (*Rs*) on the input channels is 50Ω. See Section 18.0 for more information on acquisition time consideration.

3: On the next Q4 cycle of the device clock.

4: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

FIGURE 24-17: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

© 2002-2013 Microchip Technology Inc.