

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2439t-e-so

Email: info@E-XFL.COM

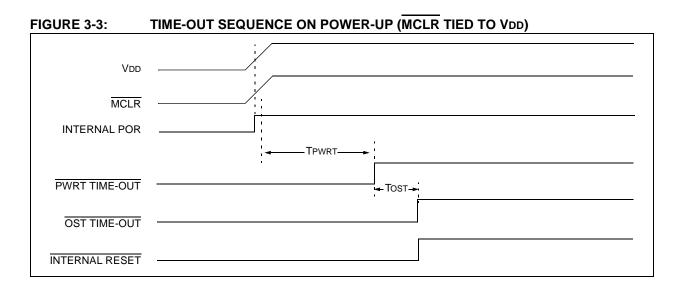
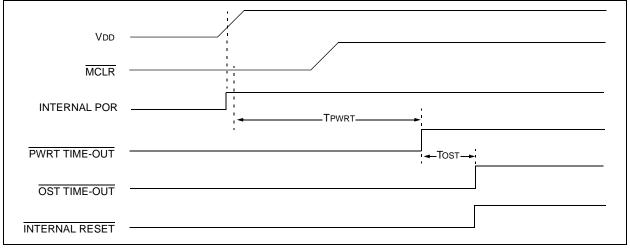

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC18FXX39 DEVICE FEATURES


Features	PIC18F2439	PIC18F2539	PIC18F4439	PIC18F4539
Operating Frequency	DC - 40 MHz			
Program Memory (Bytes)	12K	24K	12K	24K
Program Memory (Instructions)	6144	12288	6144	12288
Data Memory (Bytes)	640	1408	640	1408
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	15	15	16	16
I/O Ports	Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	3	3	3	3
PWM Modules ⁽¹⁾	2	2	2	2
Single Phase Induction Motor Control	Yes	Yes	Yes	Yes
Serial Communications	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART	MSSP, Addressable USART
Parallel Communications	—	—	PSP	PSP
10-bit Analog-to-Digital Module	5 input channels	5 input channels	8 input channels	8 input channels
RESETS (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST)			
Programmable Low Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions	75 Instructions	75 Instructions	75 Instructions
Packages	28-pin DIP 28-pin SOIC	28-pin DIP 28-pin SOIC	40-pin DIP 44-pin TQFP 44-pin QFN	40-pin DIP 44-pin TQFP 44-pin QFN

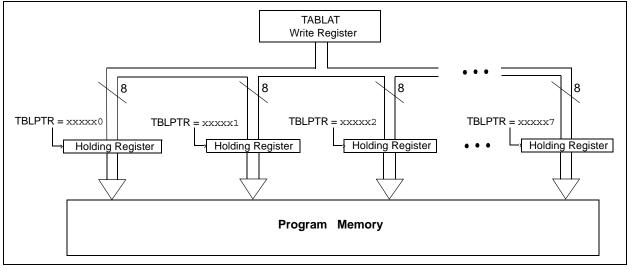
Note 1: PWM modules are used exclusively in conjunction with the motor control kernel, and are not available for other applications.

NOTES:

FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

5.5 Writing to FLASH Program Memory

The minimum programming block is 4 words or 8 bytes. Word or byte programming is not supported.


Table Writes are used internally to load the holding registers needed to program the FLASH memory. There are 8 holding registers used by the Table Writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction has to be executed 8 times for each programming operation. All of the Table Write operations will essentially be short writes, because only the holding registers are written. At the end of updating 8 registers, the EECON1 register must be written to, to start the programming operation with a long write.

The long write is necessary for programming the internal FLASH. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

FIGURE 5-5: TABLE WRITES TO FLASH PROGRAM MEMORY

5.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure.
- 5. Load Table Pointer with address of first byte being written.
- 6. Write the first 8 bytes into the holding registers with auto-increment (TBLWT*+ or TBLWT+*).
- Set EEPGD bit to point to program memory, clear the CFGS bit to access program memory, and set WREN to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.

- 10. Write AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6-14 seven times, to write 64 bytes.
- 15. Verify the memory (Table Read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 5-3.

Note: Before setting the WR bit, the table pointer address needs to be within the intended address range of the 8 bytes in the holding registers.

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

	-J. V	INTING TO LEAST		
	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW		;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		Load TRIDTR with the bage
	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU		Load TBLPTR with the base address of the memory block
	MOVLW	CODE ADDR HIGH	,	address of the memory brock
	MOVWF	TBLPTRH		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL –		
READ_BLOCK				
	TBLRD*+		;	read into TABLAT, and inc
	MOVF	TABLAT, W		get data
	MOVWF	POSTINC0		store data
		COUNTER	-	done?
MODIEV MODI	BRA	READ_BLOCK	;	repeat
MODIFY_WORI		DAWA ADDR UTCU		point to buffer
	MOVIW MOVWF	DATA_ADDR_HIGH FSR0H	,	point to builter
	MOVLW	DATA ADDR LOW		
	MOVWF	FSROL		
	MOVLW	NEW DATA LOW	;	update buffer word
	MOVWF	POSTINCO		-
	MOVLW	NEW_DATA_HIGH		
	MOVWF	INDF0		
ERASE_BLOCH	C			
	MOVLW	CODE_ADDR_UPPER		load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW MOVWF	CODE_ADDR_LOW TBLPTRL		
	BSF	EECON1, EEPGD		point to FLASH program memory
	BCF	EECON1, CFGS		access FLASH program memory
	BSF	EECON1, WREN		enable write to memory
	BSF	EECON1, FREE	;	enable Row Erase operation
	BCF	INTCON, GIE	;	disable interrupts
	MOVLW	55h		
	MOVWF	EECON2	;	write 55h
	MOVLW	AAh		
	MOVWF	EECON2		write AAh
	BSF	EECON1,WR		start erase (CPU stall)
	BSF TRIBD*	INTCON,GIE		re-enable interrupts
אפדיים מיזפייי	TBLRD*-		;	dummy read decrement
WRITE_BUFFE	MOVLW	8		number of write buffer groups of 8 bytes
	MOVUW MOVWF	COUNTER HI	,	name of write sarrer groups of a syles
	MOVLW	BUFFER ADDR HIGH		point to buffer
	MOVWF	FSR0H	,	
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOC)P			
	MOVLW	8	;	number of bytes in holding register
	MOVWF	COUNTER		
WRITE_WORD_				
	MOVF	POSTINCO, W		get low byte of buffer data
	MOVWF	TABLAT		present data to table latch
	TBLWT+*			write data, perform a short write to internal TBLWT holding register.
	DECEST	COUNTER		loop until buffers are full
	BRA	WRITE WORD TO HREGS	i	Toop much parters are tall

6.0 DATA EEPROM MEMORY

The Data EEPROM is readable and writable during normal operation over the entire VDD range. The data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR).

There are four SFRs used to read and write the program and data EEPROM memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEADR

The EEPROM data memory allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to FFh.

The EEPROM data memory is rated for high erase/ write cycles. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip to chip. Please refer to parameter D122 (Electrical Characteristics, Section 23.0) for exact limits.

6.1 EEADR

The address register can address up to a maximum of 256 bytes of data EEPROM.

6.2 EECON1 and EECON2 Registers

EECON1 is the control register for EEPROM memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

Control bits RD and WR initiate read and write operations, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at the completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ Reset, or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to the RESET condition forcing the contents of the registers to zero.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when write is complete. It must be cleared in software.

6.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>), clear the CFGS control bit

EXAMPLE 6-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access program FLASH or Data EEPROM memory
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

6.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. Then, the sequence in Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code exe-

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

(EECON1<6>), and then set control bit RD

(EECON1<0>). The data is available for the very next

instruction cycle; therefore, the EEDATA register can

be read by the next instruction. EEDATA will hold this

value until another read operation, or until it is written to

by the user (during a write operation).

After a write sequence has been initiated, EECON1, EEADR and EDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Write Complete Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

	MOVLW MOVWF MOVLW MOVWF BCF BCF BSF	EEADR DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, CFGS EECON1, WREN	; Data Memory Value to write ; Point to DATA memory ; Access program FLASH or Data EEPROM memory ; Enable writes
Required Sequence		INTCON, GIE 55h EECON2 AAh	; Disable interrupts ; ; Write 55h ;
	MOVWF BSF BSF		; Write AAh ; Set WR bit to begin write ; Enable interrupts
	• •		; user code execution
	• BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

EXAMPLE 6-2: DATA EEPROM WRITE

8.3 PIE Registers

bit

bit

bit

bit

bit

bit bit

bit

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 8-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
PSPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt O = Disables the PSP read/write interrupt ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE ⁽²⁾ : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 1 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR1 overflow interrupt 1 = Enables the TMR1 overflow interrupt	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	_	TMR2IE ⁽²⁾	TMR1IE
 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt 0 = Disables the USART receive interrupt TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt 0 = Disables the USART transmit interrupt SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE⁽²⁾: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 	bit 7							bit (
 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt 0 = Disables the USART transmit interrupt SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE⁽²⁾: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 	1 = Enable 0 = Disable	s the PSP re as the PSP r	ead/write int ead/write in	errupt terrupt	upt Enable I	bit		
<pre>1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE⁽²⁾: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 2 = Disables the TMR1 overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt</pre>	1 = Enable	s the A/D in	terrupt					
 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE⁽²⁾: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Enables the TMR2 to PR2 match interrupt 1 = Enables the TMR1 overflow Interrupt Enable bit 	1 = Enable	s the USAR	T receive in	terrupt				
 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt Unimplemented: Read as '0' TMR2IE⁽²⁾: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 	1 = Enable	s the USAR	T transmit ir	nterrupt				
TMR2IE ⁽²⁾ : TMR2 to PR2 Match Interrupt Enable bit Enables the TMR2 to PR2 match interrupt Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit Enables the TMR1 overflow interrupt 	1 = Enable	s the MSSP	interrupt	l Port Interru	ıpt Enable b	it		
 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 	Unimplem	ented: Read	d as '0'					
1 = Enables the TMR1 overflow interrupt	1 = Enable	s the TMR2	to PR2 mat	ch interrupt				
	1 = Enable	s the TMR1	overflow int	errupt				

Note 1: This bit is reserved on PIC18F2X39 devices; always maintain this bit clear.2: This bit is reserved for use by the ProMPT kernel; do not alter its value.

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

10.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

10.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values in power-of-2 increments, from 1:2 through 1:256, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0L register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) will clear the prescaler count.

Note: Writing to TMR0L when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

10.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control; it can be changed "on-the-fly" during program execution.

10.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IE bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

10.4 16-bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode, but is actually a buffered version of the high byte of Timer0 (see Figure 10-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TMR0L	Timer0 Modu	ule Low Byte F	Register						xxxx xxxx	uuuu uuuu
TMR0H	Timer0 Modu	ule High Byte I	Register						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	MROON TO8BIT TOCS TOSE PSA TOPS2 TOPS1 TOPS0							1111 1111	1111 1111
TRISA	PORTA Data Direction Register								-111 1111	-111 1111

TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

^{© 2002-2013} Microchip Technology Inc.

REGISTER 16-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM3 SSPM2		SSPM0
bit 7							bit 0

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

 $0 = No \ collision$

bit 6 SSPOV: Receive Overflow Indicator bit

- SPI Slave mode:
 - 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
 - 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
- bit 5 SSPEN: Synchronous Serial Port Enable bit
 - 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
 - 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

bit 4 **CKP:** Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

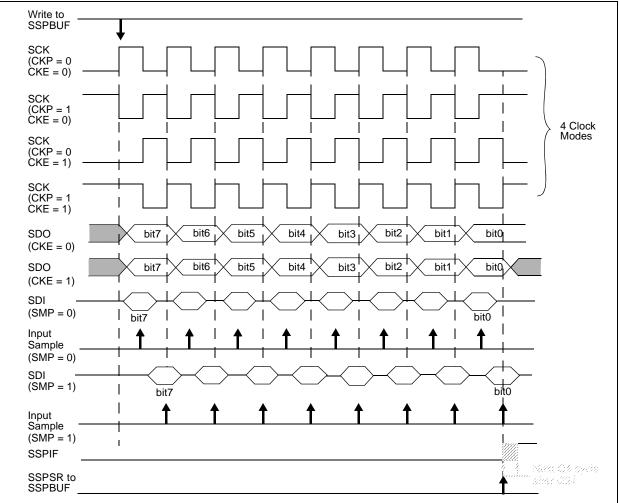
- 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
- $0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled$
- 0011 = Reserved
- 0010 = SPI Master mode, clock = FOSC/64
- 0001 = SPI Master mode, clock = FOSC/16
- 0000 = SPI Master mode, clock = Fosc/4
- **Note:** Bit combinations not specifically listed here are either reserved, or implemented in I²C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

^{1 =} The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

16.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 16-2) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode.

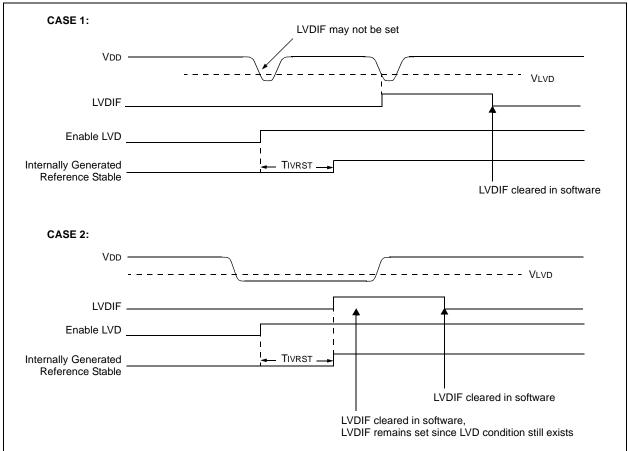
The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 16-3, Figure 16-5, and Figure 16-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 16-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

19.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD Trip Point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 19-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 19-4: LOW VOLTAGE DETECT WAVEFORMS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	_	_	(1)		—	FOSC2	FOSC1	FOSC0	1010
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BOREN	PWRTEN	1111
300003h	CONFIG2H	_	_	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN	1111
300005h	CONFIG3H	_	—	_	_	—	—	_	_(1)	1
300006h	CONFIG4L	DEBUG	_			—	LVP		STVREN	11-1
300008h	CONFIG5L	_	_	—	-	_(1)	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	—	-	—	—	-	—	11
30000Ah	CONFIG6L	_	_	_		_(1)	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	-	—	—	-	—	111
30000Ch	CONFIG7L	_	_	—	-	_(1)	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	—	_	_	—	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	(2)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0100

TABLE 20-1: CONFIGURATION BITS AND DEVICE IDS

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Unimplemented, but reserved; maintain this bit set.

2: See Register 20-11 for DEVID1 values.

REGISTER 20-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-0	U-0	U-1	U-0	U-0	R/P-0	R/P-1	R/P-0
—	—	—	—	—	FOSC2	FOSC1	FOSC0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5 Unimplemented and reserved: Maintain as '1'
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 FOSC2:FOSC0: Oscillator Selection bits
 - 111 = Reserved
 - 110 = HS oscillator with PLL enabled; clock frequency = (4 x Fosc)
 - 101 = EC oscillator w/ OSC2 configured as RA6
 - 100 = EC oscillator w/ OSC2 configured as divide-by-4 clock output
 - 011 = Reserved
 - 010 = HS oscillator
 - 001 = Reserved
 - 000 = Reserved

Legend:

R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

	U-0	U-0	U-0	U-0	U-1	R/C-1	R/C-1	R/C-1
	_	—			_	CP2 ⁽¹⁾	CP1	CP0
	bit 7							bit 0
bit 7-4	Unimplem	ented: Read	d as '0'					
bit 3	Unimplem	ented and r	eserved: M	laintain as '1	,			
bit 2	CP2: Code	Protection I	oit ⁽¹⁾					
		2 (004000-00 2 (004000-00	,	•				
bit 1	CP1: Code	Protection I	oit					
		I (002000-00 I (002000-00	,	•				
bit 0	CP0: Code	Protection I	oit					
) (000200-00) (000200-00	,	•				

REGISTER 20-5: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

Note 1: Unimplemented in PIC18FX439 devices; maintain this bit set.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when dev	ice is unprogrammed	u = Unchanged from programmed state

REGISTER 20-6: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
	CPD	CPB		—			—	—	
	bit 7							bit 0	
bit 7	CPD: Data	EEPROM (Code Protec	tion bit					
		EPROM not							
	0 = Data E	EPROM cod	de protectec	1					
bit 6		Block Code							
		1 = Boot block (00000-0001FFh) not code protected							
		0 = Boot block (000000-0001FFh) code protected							
bit 5-0	Unimplem	ented: Rea	d as '0'						
	Legend:								
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'	

- n = Value when device is unprogrammed

u = Unchanged from programmed state

	R	R	R	R	R	R	R	R
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
	bit 7							bit 0
bit 7-5 bit 4-0	DEV2:DEV 000 = PIC1 001 = PIC1 100 = PIC1 101 = PIC1 REV4:REV These bits :	8F2539 8F4539 8F2439 8F2439 8F4439 0: Revision	ID bits	device revisi	on.			
	Legend: R = Readat		•	ammable bit		nplemented		
	- n = Value when device is unprogrammed			u = Unchanged from programmed state				

RE

REGISTER 20-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX39 (BYTE ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7			•				bit 0

bit 7-0 DEV10:DEV3: Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

TABLE 21-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit
a	d = 0: store result in WREG,
	d = 1: store result in file register f.
dest	Destination, either the WREG register or the specified register file location.
f	8-bit Register file address (0x00 to 0xFF).
fs	12-bit Register file address (0x000 to 0xFFF). This is the source address.
fd	12-bit Register file address (0x000 to 0xFFF). This is the destination address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the Table Read and Table Write instructions. Only used with Table Read and Table Write instructions:
*	No Change to register (such as TBLPTR with Table Reads and Writes).
*+	Post-Increment register (such as TBLPTR with Table Reads and Writes).
*_	Post-Decrement register (such as TBLPTR with Table Reads and Writes).
+*	Pre-Increment register (such as TBLPTR with Table Reads and Writes).
n	The relative address (2's complement number) for relative branch instructions, or the direct address for Call/Branch and Return instructions.
PRODH	Product of Multiply high byte.
PRODL	Product of Multiply low byte.
s	Fast Call/Return mode select bit
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
u	Unused or Unchanged.
WREG	Working register (accumulator).
x	Don't care (0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a Program Memory location).
TABLAT	8-bit Table Latch.
TOS	Top-of-Stack.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
GIE	Global Interrupt Enable bit.
WDT	Watchdog Timer.
TO	Time-out bit.
PD	Power-down bit.
C, DC, Z, OV, N	ALU status bits Carry, Digit Carry, Zero, Overflow, Negative.
[]	Optional.
()	Contents.
\rightarrow	Assigned to.
< >	Register bit field.
e	In the set of.
italics	User defined term (font is courier).

CLRF	Clear f	CLRWDT	Clear Watchdog Timer			
Syntax:	[<i>label</i>]CLRF f[,a]	Syntax:	[label] CLRWDT			
Operands:	$0 \leq f \leq 255$	Operands:	None			
	a ∈ [0,1]	Operation:	000h \rightarrow WDT,			
Operation:	$000h \rightarrow f$		$000h \rightarrow WDT$ postscaler,			
	$1 \rightarrow Z$		$1 \rightarrow \underline{TO}, \\ 1 \rightarrow \overline{PD}$			
Status Affected:	Ζ	Status Affected:	TO, PD			
Encoding:	0110 101a ffff ffff	Encoding:				
Description:	Clears the contents of the specified	C C				
	register. If 'a' is 0, the Access Bank will be selected, overriding the BSR	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the			
	value. If 'a' = 1, then the bank will		postscaler of the WDT. Status bits			
	be selected as per the BSR value		TO and PD are set.			
	(default).	Words:	1			
Words:	1	Cycles:	1			
Cycles:	1	Q Cycle Activity:				
Q Cycle Activity	:	Q1	Q2 Q3 Q4			
Q1	Q2 Q3 Q4	Decode	No Process No			
Decode	Read Process Write register 'f' Data register 'f'		operation Data operation			
		Example:	CLRWDT			
Example:	CLRF FLAG_REG,1	Before Instru				
Before Instru	uction	WDT Co				
FLAG_R	EG = 0x5A	After Instruct	tion			
After Instruc	tion	WDT Co				
FLAG_R	EG = 0x00	<u>WD</u> T Pos TO	stscaler = 0 = 1			
		PD	= 1			

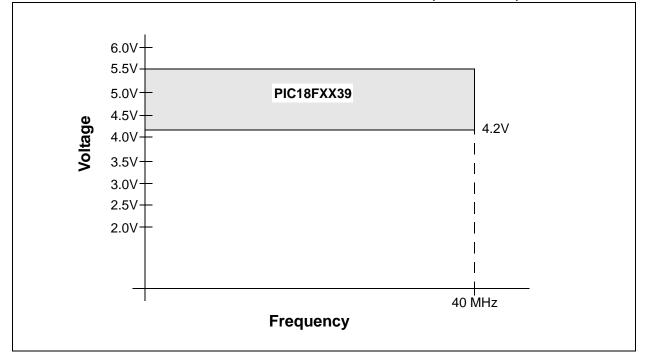
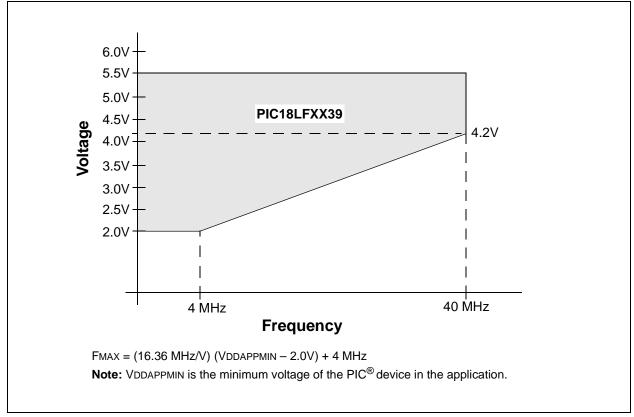
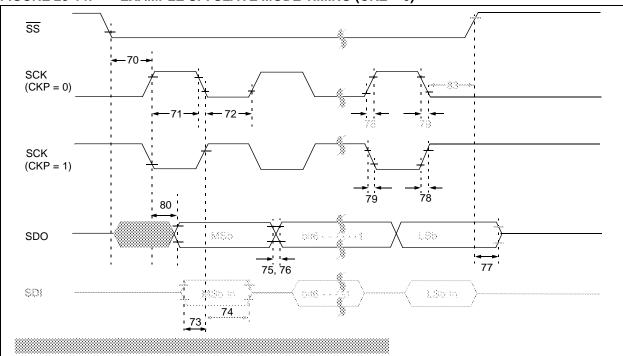




FIGURE 23-2: PIC18LFXX39 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

FIGURE 23-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 23-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input			—	ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	ns	
73A	Тв2в	Last clock edge of Byte 1 to the first clock	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	ns	
75	TdoR	SDO data output rise time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	Vdd = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	Vdd = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance	•	10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX		25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX		25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK edge	PIC18FXXXX		50	ns	
	TscL2doV		PIC18LFXXXX		150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1	1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Multi-Master Mode	150
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (RC3/SCK/SCL)	
Slave Mode	
Addressing	
Reception	
Transmission	
SLEEP Operation	
STOP Condition Timing	
ICEPIC In-Circuit Emulator	
ID Locations 195,	
INCF	232
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP) 195,	210
Indirect Addressing	48
INDF and FSR Registers	47
Operation	47
Indirect Addressing Operation	48
Indirect File Operand	39
INFSNZ	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ADDWFC	
ADDWPC	-
ANDULY	
BC	-
BCF	
BN	-
BNC	
BNN	
BNOV	
BNZ	
BOV	
BRA BSF	
-	
BTFSC	
BTFSS	
BTG	
BZ	
CALL CLRF	-
CLRWDT	
COMF	-
CPFSEQ	-
CPFSGT	
CPFSLT	
DAW	
DCFSNZ	
DECF	
DECFSZ	
GOTO	
IORLW	
IORWF	234
IORWF LFSR MOVF	234 235

MOVLB
MOVLW
MOVWF
MULLW
MULWF
NEGF
NOP
POP
PUSH
RCALL
RESET
RETFIE
RETLW
RETURN
RLCF
RLNCF
RRCF
RRNCF
SETF
SLEEP
SUBFWB
SUBLW
SUBWF
SUBWFB
SWAPF
TBLRD
TBLWT
XORLW
Summary Table
Instructions in Program Momony 27
Instructions in Program Memory
Two-Word Instructions
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 81
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I ² CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81RB0/INT Pin, External81TMR081TMR0 Overflow101TMR1 Overflow103, 105TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete69
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81TMR081TMR0 Overflow101TMR1 Overflow103, 105TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete69Logic70
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81RB0/INT Pin, External81TMR081TMR0 Overflow101TMR1 Overflow103, 105TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete165Interrupts69Logic70Interrupts, Flag Bits
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit)
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 184
Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit)
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81TMR081TMR0 Overflow101TMR1 Overflow103TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete69Logic70Interrupts, Flag BitsA/D Converter Flag (ADIF Bit)A/D Converter Flag (ADIF Bit)183Interrupt-on-Change (RB7:RB4) Flag86
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81RB0/INT Pin, External81TMR0101TMR1 Overflow103, 105TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete165Interrupts, Flag BitsA/D Converter Flag (ADIF Bit)183A/D Converter Flag (ADIF Bit)183Interrupton-Change (RB7:RB4) Flag86IORLW234IORWF234
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81TMR081TMR0 Overflow101TMR1 Overflow103TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete69Logic70Interrupts, Flag BitsA/D Converter Flag (ADIF Bit)A/D Converter Flag (ADIF Bit)183Interrupt-on-Change (RB7:RB4) Flag86
Two-Word Instructions38INT Interrupt (RB0/INT). See Interrupt SourcesINTCON RegisterRBIF Bit86INTCON Registers71–73Inter-Integrated Circuit. See I²CInterrupt Sources195A/D Conversion Complete184INTO81Interrupt-on-Change (RB7:RB4)86PORTB, Interrupt-on-Change81RB0/INT Pin, External81TMR0101TMR1 Overflow103, 105TMR2 to PR2 Match (PWM)123TMR3 Overflow109, 111USART Receive/Transmit Complete165Interrupts, Flag BitsA/D Converter Flag (ADIF Bit)183A/D Converter Flag (ADIF Bit)183Interrupton-Change (RB7:RB4) Flag86IORLW234IORWF234