

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2439t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

x = Bit is unknown

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	_	_	—	EEIF	BCLIF	LVDIF	TMR3IF	_
	bit 7							bit 0
bit 7-5	Unimplem	ented: Rea	d as '0'					
bit 4	EEIF: Data	EEPROM/	FLASH Write	e Operation	Interrupt Fla	ag bit		
	1 = The wr 0 = The wr	ite operation ite operation	n is complete n is not com	e (must be c plete, or has	leared in so not been st	ftware) arted		
bit 3	BCLIF: Bu	s Collision I	nterrupt Flag	g bit				
	1 = A bus o 0 = No bus	collision occ collision oc	urred (must curred	be cleared i	n software)			
bit 2	LVDIF : Lov 1 = A low v 0 = The de	w Voltage De voltage conce vice voltage	etect Interru lition occurre e is above th	pt Flag bit ed (must be e Low Voltag	cleared in so ge Detect tri	oftware) p point		
bit 1	TMR3IF : T 1 = TMR3 0 = TMR3	MR3 Overfl register ove	ow Interrupt rflowed (mu	Flag bit st be cleared	d in software	e)		
bit 0	Unimplem	ented: Rea	d as '0'					
	pioin							
	Legend:							
	R = Reada	ble bit	W = Wr	itable bit	U = Unir	nplemented	bit, read as '	0'

'1' = Bit is set

'0' = Bit is cleared

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

- n = Value at POR

9.0 I/O PORTS

Depending on the device selected, there are either three or five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bi-directional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register reads and writes the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA

CLRF PORTA	; Initialize PORTA by ; clearing output
	; data latches
CLRF LATA	; Alternate method
	; to clear output
	; data latches
MOVLW 0x07	; Configure A/D
MOVWF ADCON1	; for digital inputs
MOVLW 0xCF	; Value used to
	; initialize data
	; direction
MOVWF TRISA	; Set RA<3:0> as inputs
	; RA<5:4> as outputs

FIGURE 9-1:

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

Note 1: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-u0u 0000
LATA		LATA Dat	a Output F	Register					-xxx xxxx	-uuu uuuu
TRISA		PORTA D	ORTA Data Direction Register						-111 1111	-111 1111
ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 9-7:PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Dat	a Output R	egister						xxxx xxxx	uuuu uuuu
TRISD	PORTD Data Direction Register								1111 1111	1111 1111
TRISE	IBF	OBF	IBOV	PSPMODE		PORTE D	ata Directi	on bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

14.4 Developing Applications Using the Motor Control Kernel

The Motor Control kernel allows users to develop their applications without having knowledge of motor control. The key parameters of the motor control kernel can be set and read through the Application Program Interface (API) methods discussed in the previous section.

The overall application can be thought of as a protocol stack, as shown in Figure 14-3. In this case, the API methods reside between the user's application and the ProMPT kernel, and are used to exchange parameter values. The motor control kernel sets the PWM duty cycles based on the inputs from the application software.

A typical motor control routine is shown in Example 14-1. In this case, the motor will run at 20 Hz for 10 seconds, accelerate to 60 Hz at the rate of 10 Hz/s, remain at 60 Hz for 20 seconds, and finally stop.

FIGURE 14-3:

LAYERS OF THE MOTOR CONTROL ARCHITECTURE STACK

EXAMPLE 14-1: MOTOR CONTROL ROUTINE USING THE ProMPT APIS

```
Void main()
   unsigned char i;
   unsigned char j;
   ProMPT_Init(0);
                                         // Initialize the ProMPT block
   i = ProMPT_SetFrequency(10);
                                         // Set motor frequency to 10Hz
   for (i=0;i<161;i++)</pre>
                                         // Set counter for 10 sec @ 1/16 sec per tick
       {
       j = ProMPT_Tick(void);
                                         // Tick of 1/16 sec
       ProMPT_ClearTick(void);
                                         // Clearing the Tick flag
       }
                                         // Set acceleration rate to 10 Hz/sec
   ProMPT_SetAccelRate(10);
   i = ProMPT_SetFrequency(60);
                                         // Set motor frequency to 60 Hz
   for (i=0;i<161;i++)</pre>
                                         // Set counter for 20 Sec @ 1/16 sec per tick
                                         // (2 loops of 10 Sec each)
       {
                                        // Tick of 1/16 Sec
       j = ProMPT_Tick(void);
                                         // Clearing the Tick flag
       ProMPT_ClearTick(void);
       j = ProMPT_Tick(void);
                                         // Tick of 1/16 Sec
       ProMPT_ClearTick(void);
                                         // Clearing the Tick flag
   i = ProMPT SetFrequency(0);
                                         // Set motor frequency to 0 Hz (stop)
   while(1);
                                          // End of the task
```


16.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended, leaving the SDA line held low and the START condition is complete.

Note: If at the beginning of the START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

FIGURE 16-19: FIRST START BIT TIMING

16.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

16.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag bit, BF, and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 16-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

16.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

16.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

16.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

16.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: In the MSSP module, the RCEN bit must be set after the ACK sequence or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the baud rate generator is suspended from counting, holding SCL low. The MSSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit. ACKEN (SSPCON2<4>).

16.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

16.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

16.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

16.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the sequence enable Acknowledge bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off and the MSSP module then goes into IDLE mode (Figure 16-23).

16.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

16.4.13 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the STOP sequence enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 16-24).

16.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 16-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 16-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

17.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits and one STOP bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

17.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 17-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and

flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1: The TSR register is not mapped in data
memory, so it is not available to the user.
2: Flag bit TXIE is set when enable bit TXEN

2: Flag bit TXIF is set when enable bit TXEN is set.

To set up an asynchronous transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 17.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXIE.
- If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

FIGURE 17-1: USART TRANSMIT BLOCK DIAGRAM

17.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

17.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE		TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	—	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Transmit Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera	ator Regist	er					0000 0000	0000 0000

TABLE 17-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

Mnemo	onic,	Description	Qualas	16-	Bit Instr	uction W	Status	Natas	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device RESET	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 21-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

© 2002-2013 Microchip Technology Inc.

PIC18FXX39

ADDWFC	bit to f			
Syntax:	[label] Al	DWFC	f [,d [,a	a]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(W) + (f) +	$(C) \rightarrow d$	est	
Status Affected:	N,OV, C, [DC, Z		
Encoding:	0010	00da	ffff	ffff
Description:	Add W, the memory lo result is pl result is pl tion 'f'. If 'a will be sele will not be	e Carry F ocation 'f' aced in V aced in c a' is 0, the ected. If ' overridd	Flag and (. If 'd' is (V. If 'd' is lata mem e Access a' is 1, th en.	data), the 1, the ory loca- Bank be BSR
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data	s Wr dest	ite to ination
Example:	ADDWFC	REG,	0, 1	
Before Instru	iction			
Carry bit REG	= 1 = 0x02			
W	= 0x4D			
After Instruct	tion			
Carry bit REG	= 0 = 0x02			

ANDLW	AND liter	al with	w	
Syntax:	[label] A	NDLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) .AND	$k \rightarrow W$		
Status Affected:	N,Z			
Encoding:	0000	1011	kkkk	kkkk
Description:	The conte the 8-bit li placed in	ents of W iteral 'k'. W.	/ are ANI The resu	Ded with ult is
Words:	1			
Cycles:	1			
Q Cycle Activity	:			
Q1	Q2	Q3	3	Q4
Decode	Read literal 'k'	Proce Data	ss Wi a	rite to W
Example:	ANDLW	0x5F		

Before Instruction W = 0xA3After Instruction W = 0x03

W

0x50

=

PIC18FXX39

MULLW	Multiply L	iteral with V	N	Μ	ULWF	Multiply \	N with f			
Syntax:	[label]	MULLW k		Sy	ntax:	[label]	MULWF f	[,a]		
Operands:	nds: $0 \le k \le 255$		O	perands:	$0 \le f \le 25$	$0 \leq f \leq 255$				
Operation:	(W) x k \rightarrow	PRODH:PR	ODL			a ∈ [0,1]	a ∈ [0,1]			
Status Affected: None		O	peration:	(W) x (f) \rightarrow PRODH:PRODL						
Encoding:	0000	1101 kk	kk kkkk	Status Affected:		None	None			
Description:	An unsign	ed multiplica	tion is car-	Er	ncoding:	0000	001a fff	f ffff		
	ried out be W and the 16-bit resu	etween the c 8-bit literal ' ult is placed i	ontents of k'. The n	De	Description:	An unsign ried out be W and the	An unsigned multiplication is car- ried out between the contents of W and the register file location 'f'			
	PRODH:P	RODL regist	ter pair.			The 16-bi	t result is sto	red in the		
	PRODH c W is unch	ontains the h anged	igh byte.				PRODL regist	ter pair. Jigh hyte		
	None of th	ne status flag	s are			Both W ar	Both W and 'f' are unchanged.			
	affected.					None of the status flags are				
	Note that neither overflow nor carry is possible in this opera-					attected. Note that neither overflow nor				
	tion. A zer	o result is po	ssible but			carry is possible in this opera- tion. A zero result is possible but				
	not detect	ed.								
Words:	1				Access Bank will be selected.					
Cycles:	1					overriding the BSR value. If				
Q Cycle Activity:		<u> </u>				a' = 1, the	en the bank v	vill be		
Q1	Q2	Q3	Q4			(default).	r value			
Decode	Read literal 'k'	Data	registers PRODH:	W	ords:	1				
				C	/cles:	1				
				G	Cycle Activity	:				
Example:	MULLW	0xC4			Q1	Q2	Q3	Q4		
Before Instru	ction				Decode	Read	Process	Write		
W PRODH PRODL	= 0xl = ? = ?	E2				register t	Data	PRODH: PRODL		
After Instructi	on			_						
W	= 0x	E2		<u>E></u>	ample:	MULWF	REG, 1			
PRODH	= 0xAD = 0x08	AD 08			Before Instru	uction	~			
					vv REG PRODH PRODL	= 0x = 0x = ? = ?	64 B5			
					After Instruc	tion				

W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

PIC18FXX39

SUE	BWFB	Subtract	Subtract W from f with Borrow						
Synt	tax:	[label]	[label] SUBWFB f [,d [,a]						
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(f) – (W)	$-(\overline{C}) \rightarrow dest$						
Stat	us Affected:	N, OV, C	, DC, Z						
Enc	oding:	0101	10da fff	f ffff					
Des	cription:	Subtract W and the carry flag (bor- row) from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).							
Wor	ds:	1							
Cycl	es:	1							
QC	Cycle Activity:	:							
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	destination					
Exa	<u>mple 1</u> :	SUBWFB	REG, 1, 0						
	Before Instru REG W	uction = 0x19 = 0x0D - 1	(0001 100 (0000 110	01) 01)					
	After Instruct	tion							
	REG	= 0x0C	(0000 101	.1)					
	Č	= 1	(0000 110	(1)					
	Z N	= 0 = 0	; result is po	sitive					
Exa	<u>mple 2</u> :	SUBWFB	REG, 0, 0						
	Before Instru	uction							
	REG	= 0x1B	(0001 101	.1)					
	C After Instruct	= 0.1A = 0 tion	(0001 101	.0)					
	REG W C Z	= 0x1B = 0x00 = 1 = 1	(0001 101 ; result is ze	.1) Pro					
	Ν	= 0							
Exa	mple 3:	SUBWFB	REG, 1, 0						
	Before Instru REG	uction $= 0x03$	(0000 001	.1)					
	W C	= 0x0E = 1	(0000 110	1)					
	After Instruct REG	tion = 0xF5	(1111 010	0)					
	W C	= 0x0E = 0	;[2's comp] (0000 110)1)					
	Z N	= 0 = 1	; result is ne	egative					

	Swap f							
Syntax:	[label]	SWAPF f[,d	l [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	(f<3:0>) — (f<7:4>) —	→ dest<7:4>, → dest<3:0>						
Status Affected:	None							
Encoding:	0011	10da ffi	ff ffff					
Description: The upper and lower nibbles of re ister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default)								
Words:	1	· · ·						
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Write to destination						
		Dala	destination					
Example: Before Instru REG After Instructi REG	SWAPF F ction = 0x53 ion = 0x35	EG, 1, 0	destination					

TBLRD	Table Rea	d					
Syntax:	[label]	TBLRD (*; *+; *-; +	-*)			
Operands:	None	None					
Operation:	if TBLRD * (Prog Men TBLPTR - if TBLRD * (Prog Men (TBLPTR) if TBLRD * (Prog Men (TBLPTR) if TBLRD - (TBLPTR) (Prog Men	f_{1} (TBLPT No Chan +, + (TBLPT +1 → TB -, -1 → TB +*, +1 → TB n (TBLPT	(R)) → TAI ge; (R)) → TAI (LPTR; (R)) → TAI (LPTR; (R)) → TAI	BLAT; BLAT; BLAT; BLAT;			
Status Affecte	d:None						
Encoding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*			
Description:	This instruction is used to read the con- tents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word						
	Byte of Program Memory Word						
	The TBLRI value of TE • no chan • post-incl • post-dec • pre-incre	o instruct BLPTR as ge rement crement ement	ion can me s follows:	odify the			
Words:	1						
Cycles:	2						
Q Cycle Activ	/ity:						
01	02	C	13	O4			

Q1	Q2	Q3	Q4
Decode	No	No	No
	operation	operation	operation
No operation	No operation (Read Program Memory)	No operation	No operation (Write TABLAT)

TBLRD Table Read (cont'd)

Example1:	TBLRD	*+	;	
Before Instruc	tion			
TABLAT TBLPTR MEMORY((0x00A356	6)	= = =	0x55 0x00A356 0x34
After Instruction	on			
TABLAT TBLPTR			= =	0x34 0x00A357
Example2:	TBLRD	+*	;	
Before Instruc	tion			
TABLAT TBLPTR MEMORY(MEMORY(0x01A35 0x01A35	7) 8)	= = =	0xAA 0x01A357 0x12 0x34
After Instruction	on			
TABLAT TBLPTR			= =	0x34 0x01A358

FIGURE 23-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions	
40	Tt0H	H T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	_	ns		
				With Prescaler	10	—	ns		
41	Tt0L	t0L T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	—	ns		
				With Prescaler	10	—	ns		
42	Tt0P	T0CKI Period		No Prescaler	Tcy + 10	—	ns		
				With Prescaler	Greater of: 20 ns or <u>TcY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)	
45	Tt1H	T13CKI High Time	Synchronous, no prescaler		0.5Tcy + 20	—	ns		
			Synchronous, with prescaler	PIC18FXXXX	10	_	ns		
				PIC18LFXXXX	25	_	ns		
			Asynchronous	PIC18FXXXX	30	—	ns		
				PIC18LFXXXX	50	—	ns		
46	Tt1L	T13CKI Low Time	Synchronous, no	prescaler	0.5TCY + 5	—	ns		
			Synchronous,	PIC18FXXXX	10	—	ns		
			with prescaler	PIC18LFXXXX	25	—	ns		
				Asynchronous	PIC18FXXXX	30	—	ns	
				PIC18LFXXXX	50	—	ns		
47	Tt1P	T13CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	—	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	—	ns		
	Ft1	T13CKI oscilla	tor input frequency	range	DC	50	kHz		
48	Tcke2tmrl	Delay from ext increment	ernal T13CKI clock	edge to timer	2 Tosc	7 Tosc	_		

FIGURE 23-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 23-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	ns		
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCI	100	—	ns		
73A	Тв2в	Last clock edge of Byte 1 to the 1st cl	1.5 Tcy + 40		ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK	100	—	ns		
75	TdoR	SDO data output rise time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
78	TscR	SCK output rise time	PIC18FXXXX	—	25	ns	
		(Master mode)	PIC18LFXXXX	_	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXXX		50	ns	
	TscL2doV	edge	PIC18LFXXXX		150	ns	VDD = 2V

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769362

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12