

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2539-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.10 Access Bank

The Access Bank is an architectural enhancement which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- · Intermediate computational values
- · Local variables of subroutines
- · Faster context saving/switching of variables
- Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 128 bytes in Bank 15 (SFRs) and the lower 128 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-5 and Figure 4-6 indicate the Access RAM areas.

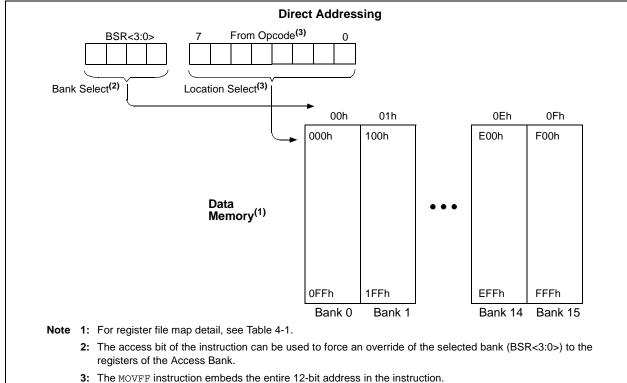
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register, or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = 0), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's, and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The STATUS register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-7: DIRECT ADDRESSING

REGISTER 5-1: EECON1 REGISTER (ADDRESS FA6h)

-			•							
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0		
	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD		
	bit 7					·		bit 0		
bit 7	FEPGD: F	ASH Progr	am or Data		Memory Select	hit				
bit i		FLASH pro				bit				
	0 = Access data EEPROM memory									
bit 6	CFGS: FLASH Program/Data EE or Configuration Select bit									
		configuratio	•							
	0 = Access	FLASH pro	ogram or da	ta EEPRON	l memory					
bit 5	Unimplem	ented: Rea	d as '0'							
bit 4	FREE: FLA	SH Row Er	ase Enable	e bit						
				ow addresse se operation)	d by TBLPTR c)	on the next	WR comma	and		
		n write only								
bit 3	WRERR: F	LASH Prog	ram/Data E	E Error Flag	g bit					
	1 = A write	operation is	s premature	ely terminate	d					
	· •				ng in normal op	eration)				
		ite operation								
		ten a WREF			and CFGS bits	s are not cle	eared. This	allows		
bit 2	WREN: FL	ASH Progra	am/Data EE	Write Enab	le bit					
		write cycles								
		write to the	EEPROM							
bit 1	WR: Write									
					or a program m					
	(The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)									
		ycle to the E								
bit 0	RD: Read	Control bit								
	1 = Initiates an EEPROM read									
					rdware. The R	D bit can or	nly be set (n	ot cleared)		
		ot initiate ar		set when EE	:PGD = 1.)					
	0 - 0003 H			1000						
	Legend:									
	R = Reada	ble bit	W = V	Writable bit	U = Unimp	lemented b	it, read as '	0'		
	1									

© 2002-2013 Microchip Technology Inc.

- n = Value at POR

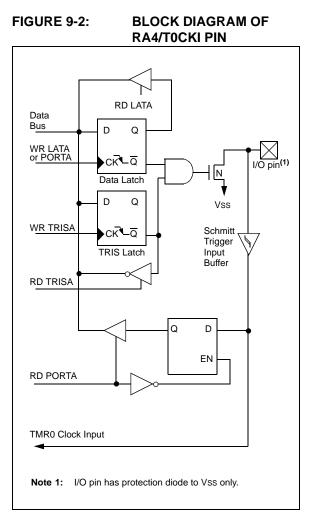
'1' = Bit is set

'0' = Bit is cleared

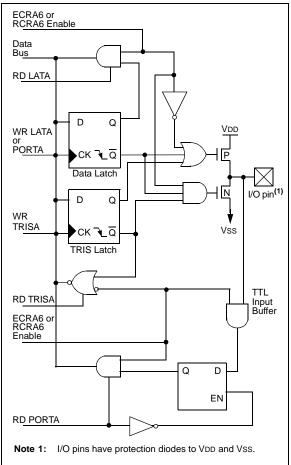
x = Bit is unknown

REGISTER 8-3: INTCON3 REGISTER

- n = Value at POR


	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	INT2IP ⁽¹⁾	INT1IP ⁽¹⁾	_	INT2IE	INT1IE	_	INT2IF	INT1IF
	bit 7							bit 0
bit 7	INT2IP ⁽¹⁾ :	INT2 Externa	al Interrupt	Priority bit				
	1 = High p							
1.11.0	0 = Low pr	•		D · · · · · ·				
bit 6		INT1 Externa	al Interrupt	Priority bit				
	1 = High p 0 = Low pr	•						
bit 5	•	nented: Read	d as '0'					
bit 4		IT2 External		able bit				
		es the INT2 e						
	0 = Disable	es the INT2 e	external inte	errupt				
bit 3		IT1 External	-					
		es the INT1 e						
1.11.0		es the INT1 e		errupt				
bit 2		nented: Read						
bit 1		T2 External	•	•		· • • •		
		IT2 external i IT2 external i	•		be cleared	in software)		
bit 0		T1 External	•					
bit o		T1 external i	•	•	be cleared	in software)		
		T1 external i						
	Note 1: Maintain this bit cleared (= 0).							
	Legend:							
	R = Reada	able bit	VV = V	Vritable bit	U = Unir	nplemented	bit, read as '	0'
	1							

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.


'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

FIGURE 9-3: BLOCK DIAGRAM OF RA6 PIN

11.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers, TMR1H and TMR1L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h

Figure 11-1 is a simplified block diagram of the Timer1 module.

Register 11-1 details the Timer1 control register, which sets the Operating mode of the Timer1 module. Timer1 can be enabled or disabled by setting or clearing control bit TMR1ON (T1CON<0>).

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	RD16	_	T1CKPS1	T1CKPS0	_	T1SYNC	TMR1CS	TMR10N
	bit 7					I		bit 0
bit 7	RD16: 16-	bit Read/W	/rite Mode Er	nable bit				
		•		Timer1 in on				
	0 = Enable	es register	read/write of	Timer1 in two	o 8-bit opera	tions		
bit 6	Unimplen	nented: Re	ad as '0'					
bit 5-4	T1CKPS1	:T1CKPS0	: Timer1 Inpu	ut Clock Pres	cale Select I	bits		
	-	rescale va						
		Prescale val Prescale val						
		rescale val Prescale val						
bit 3			intain as '0'					
bit 2				nput Synchro	nization Sal	oct hit		
DILZ	When TMI			nput Synchic		ect bit		
			ze external c	lock input				
			rnal clock inp					
	When TMI	R1CS = 0:						
	This bit is	ignored. Tii	mer1 uses th	e internal clo	ck when TM	R1CS = 0.		
bit 1	TMR1CS:	Timer1 Clo	ock Source S	elect bit				
	1 = Extern	al clock fro	m pin RC0/T	13CKI (on th	e rising edge	e)		
	0 = Interna	al clock (Fo	sc/4)					
bit 0	TMR10N:	Timer1 Or	ı bit					
	1 = Enable							
	0 = Stops	Timer1						
	r							
	Legend:							

R = Readable bit

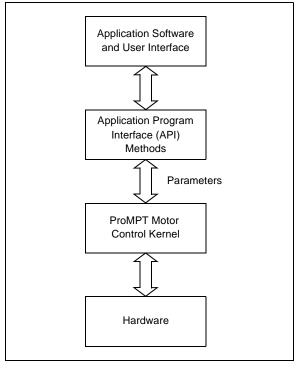
- n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

14.4 Developing Applications Using the Motor Control Kernel


The Motor Control kernel allows users to develop their applications without having knowledge of motor control. The key parameters of the motor control kernel can be set and read through the Application Program Interface (API) methods discussed in the previous section.

The overall application can be thought of as a protocol stack, as shown in Figure 14-3. In this case, the API methods reside between the user's application and the ProMPT kernel, and are used to exchange parameter values. The motor control kernel sets the PWM duty cycles based on the inputs from the application software.

A typical motor control routine is shown in Example 14-1. In this case, the motor will run at 20 Hz for 10 seconds, accelerate to 60 Hz at the rate of 10 Hz/s, remain at 60 Hz for 20 seconds, and finally stop.

FIGURE 14-3:

LAYERS OF THE MOTOR CONTROL ARCHITECTURE STACK

EXAMPLE 14-1: MOTOR CONTROL ROUTINE USING THE ProMPT APIS

```
Void main()
unsigned char i;
unsigned char j;
ProMPT_Init(0);
                                      // Initialize the ProMPT block
i = ProMPT_SetFrequency(10);
                                      // Set motor frequency to 10Hz
for (i=0;i<161;i++)</pre>
                                      // Set counter for 10 sec @ 1/16 sec per tick
    {
    j = ProMPT_Tick(void);
                                      // Tick of 1/16 sec
    ProMPT_ClearTick(void);
                                      // Clearing the Tick flag
    }
                                      // Set acceleration rate to 10 Hz/sec
ProMPT_SetAccelRate(10);
i = ProMPT_SetFrequency(60);
                                      // Set motor frequency to 60 Hz
for (i=0;i<161;i++)</pre>
                                      // Set counter for 20 Sec @ 1/16 sec per tick
                                      // (2 loops of 10 Sec each)
    {
                                     // Tick of 1/16 Sec
    j = ProMPT_Tick(void);
                                      // Clearing the Tick flag
    ProMPT_ClearTick(void);
    j = ProMPT_Tick(void);
                                      // Tick of 1/16 Sec
    ProMPT_ClearTick(void);
                                      // Clearing the Tick flag
i = ProMPT SetFrequency(0);
                                      // Set motor frequency to 0 Hz (stop)
while(1);
                                       // End of the task
```

REGISTER 16-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit
t 7	In Master of	v Rate Contr or Slave mod	<u>de:</u>	Standard Sn	aad mode (1	00 kHz and	1 M山⁊)	
		rate control e					1 IVII I <i>Z</i>)	
t 6	CKE: SME In Master of	Bus Select bi	t <u>le:</u>	5	,	,		
		e SMBus spe e SMBus spe						
t 5	—	Address bit						
		<u>ode:</u> es that the la es that the la						
t 4		es that a ST bit was not o	letected last					
	Note:		leared on RI	ESET and w	hen SSPEN	is cleared.		
3		bit es that a ST ī bit was not			ed last			
	Note:	This bit is c	leared on RI	ESET and w	hen SSPEN	is cleared.		
t 2	R/W : Read In <u>Slave m</u> 1 = Read 0 = Write	d/Write bit Ini ode:	formation (I ²	C mode only	y)			
	Note:					e last addre: bit, STOP b		
		<u>mode:</u> nit is in progi nit is not in p						
	Note:	ORing this in IDLE mo		, RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	he MSSP i
: 1	1 = Indicat	e Address (es that the u ss does not r	ser needs to	o update the	address in t	he SSPADD	register	
0		Full Status k		puatoa				
U	<u>In Transmi</u> 1 = Receiv		SSPBUF is					
	<u>In Receive</u> 1 = Data tr	<u>mode:</u> ansmit in pro	ogress (does	s not include		d STOP bits STOP bits),		
			-					
	Legend:							
	R = Reada	ble bit	W = Writab	ole bit	U = Unimp	lemented bit	, read as '0'	
	- n = Value	at POR	'1' = Bit is :	set	'0' = Bit is	cleared	x = Bit is ur	known

REGISTER 16-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C MODE)

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1	SSPM0		005140	000140		000511			
R/VV-U R/VV-U R/VV-U R/VV-U R/VV-U R/VV-U R/VV-U	R/W-0	R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

- bit 7 WCOL: Write Collision Detect bit
 - In Master Transmit mode:
 - 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started (must be cleared in software)
 - 0 = No collision
 - In Slave Transmit mode:
 - 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
 - $0 = No \ collision$
 - In Receive mode (Master or Slave modes):

This is a "don't care" bit

bit 6 SSPOV: Receive Overflow Indicator bit

In Receive mode:

- 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software)
- 0 = No overflow

In Transmit mode:

This is a "don't care" bit in Transmit mode

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, the SDA and SCL pins must be properly configured as input or output.

- bit 4 **CKP:** SCK Release Control bit
 - In Slave mode:
 - 1 = Release clock
 - 0 = Holds clock low (clock stretch), used to ensure data setup time
 - In Master mode:

Unused in this mode

- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 1111 = I^2C Slave mode, 10-bit address with START and STOP bit interrupts enabled
 - $1110 = I^2C$ Slave mode, 7-bit address with START and STOP bit interrupts enabled
 - $1011 = I^2C$ Firmware Controlled Master mode (Slave IDLE)
 - $1000 = I^2C$ Master mode, clock = FOSC / (4 * (SSPADD+1))
 - 0111 = I^2C Slave mode, 10-bit address
 - $0110 = I^2C$ Slave mode, 7-bit address
 - **Note:** Bit combinations not specifically listed here are either reserved, or implemented in SPI mode only.

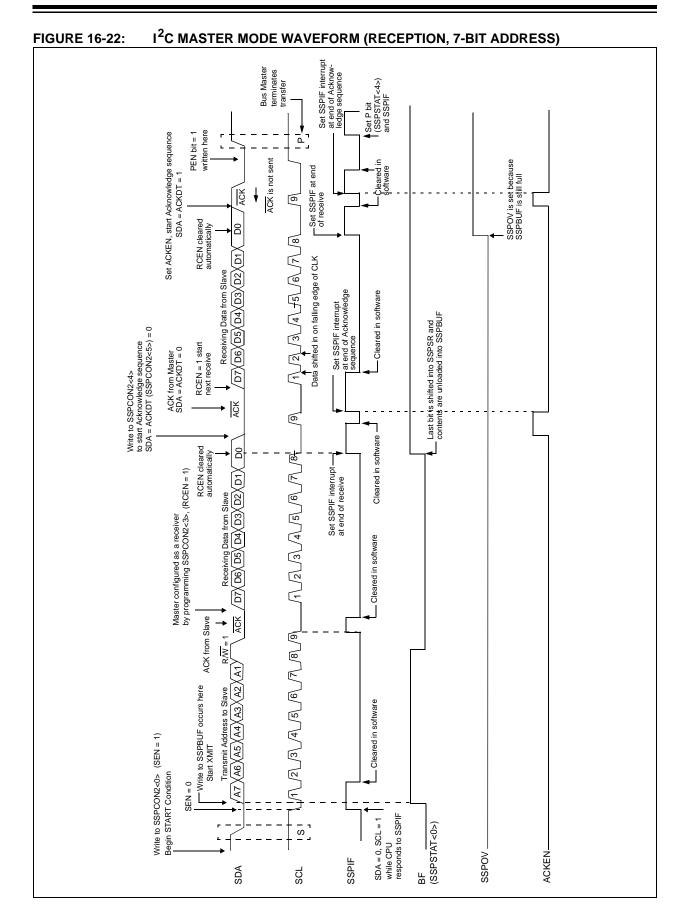
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
- n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown	

16.4.3.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.


If SEN is enabled (SSPCON1<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See Section 16.4.4 ("Clock Stretching"), for more detail.

16.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low, regardless of SEN (see "Clock Stretching", Section 16.4.4, for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 16-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the START bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

NOTES:

FIGURE 21-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	<u>15 10 9 8 7 0</u>	
	OPCODE d a f (FILE #)	ADDWF MYREG, W, B
	d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f)	
	a = 0 to force Access Bank	
	a = 1 for BSR to select bank f = 8-bit file register address	
	Byte to Byte move operations (2-word)	
	<u>15 12 11 0</u>	
	OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
	15 12 11 0	
	1111 f (Destination FILE #)	
	f = 12-bit file register address	
	Bit-oriented file register operations	
	<u>15 12 11 9 8 7 0</u>	
	OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
	b = 3-bit position of bit in file register (f) a = 0 to force Access Bank	
	a = 0 to force Access Bank a = 1 for BSR to select bank	
	f = 8-bit file register address	
	Literal operations	
	<u>15 8 7 0</u>	
	OPCODE k (literal)	MOVLW 0x7F
	k = 8-bit immediate value	
	Control operations	
	CALL, GOTO and Branch operations	
	15 8 7 0	
	OPCODE n<7:0> (literal)	GOTO Label
	15 12 11 0	
	1111 n<19:8> (literal)	
	n = 20-bit immediate value	
	15 8 7 0	
	OPCODE S n<7:0> (literal)	CALL MYFUNC
	15 12 11 0	
	n<19:8> (literal)	
	S = Fast bit	
	15 11 10 0	
	OPCODE n<10:0> (literal)	BRA MYFUNC
	15 8 7 0	
	OPCODE n<7:0> (literal)	BC MYFUNC

TABLE 21-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Mnem	onic,	Description Outlos 16-Bit Instruction		Word	Status	Notes			
Opera	Description		Cycles	MSb			LSb	Affected	Notes
LITERAL OPERATIONS									
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	NORY ↔	PROGRAM MEMORY OPERATION	S					•	
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

DAW	Decimal A	Adjust W Re	gister	DECF		Decreme	nt f	
Syntax:	[label] [DAW		Syntax	x:	[label] [DECF f[,d[,a]
Operands:	None			Opera	nds:	$0 \le f \le 255$	5	
Operation:	lf [W<3:0>	>9] or [DC =	= 1] then			$d \in [0,1]$		
		+ 6 \rightarrow W<3:0)>;	0	4	a ∈ [0,1]	14	
	else (W<3:0>)	\rightarrow W<3:0>;		Opera		$(f) - 1 \rightarrow c$		
	(,,			Affected:	C, DC, N,		
		>9] or [C =		Encod	-	0000	01da ff	
	(VV<7:4>) else	$+ 6 \rightarrow W < 7$:	4>;	Descr	iption:		t register 'f'. ored in W. If	If 'd' is 0, the
		→ W<7:4>;					ored back in	
Status Affected:	С						f 'a' is 0, the	
Encoding:	0000	0000 000	00 0111				be selected, ralue. If 'a' =	-
Description:	DAW adjus	ts the eight-b	oit value in				be selected a	
		ng from the e				BSR value	e (default).	
		variables (e CD format) ai		Words	s:	1		
		backed BCD		Cycles	S:	1		
Words:	1.			Q Cy	cle Activity	:		
Cycles:	1			F	Q1	Q2	Q3	Q4
Q Cycle Activity:					Decode	Read register 'f'	Process Data	Write to destination
Q1	Q2	Q3	Q4			register i	Dulu	destination
Decode	Read	Process	Write	Exam	<u>ole</u> :	DECF	CNT, 1, 0	
	register W	Data	W	В	efore Instru	uction		
Example1:	DAW				CNT Z	= 0x01 = 0		
Before Instru				А	fter Instruc	-		
W C	= 0xA5 = 0				CNT Z	= 0x00		
DC	= 0				Z	= 1		
After Instruct								
W C	= 0x05 = 1							
DC Example 2:	= 0							
Before Instru	ction							
W	= 0xCE							
C DC	= 0 = 0							
After Instruct	-							
W	= 0x34							
C DC	= 1 = 0							
	2							

TE	BLWT	Table Wri	te					
Sy	ntax:	[label]	TBLWT ((*;*+;*-;·	+*)			
Op	perands:	None						
	peration:	TBLPTR - if TBLWT* (TABLAT) (TBLPTR) if TBLWT* (TABLAT) (TBLPTR) if TBLWT+ (TBLPTR)	T) → Holding Register; R - No Change; T*+, T) → Holding Register; R) +1 → TBLPTR; T*-, T) → Holding Register; R) -1 → TBLPTR;					
Sta	atus Affecte	d: None						
Er	ncoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*			
	escription:	TBLPTR t holding re written to. used to pr gram Men for informa memory. The TBLP to each by TBLPTR f range. The which byte location to TBLP	gisters the The 8 hol ogram the nory (P.M.) ation on w TR (a 21-l rte in the p nas a 2 ME e LSb of th e of the pro	TABLAT ding regis contents . See Sec riting to Fl bit pointer orogram m Btye addre ne TBLPT ogram me	data is ters are of Pro- ction 5.0 LASH) points nemory. ess R selects mory unificant rogram			
		TBLP	2TR[0] = 1:		nificant rogram			
		The TBLW value of T • no char • post-inc • post-de • pre-incr	BLPTR as ige crement crement	ion can m				
W	ords:	1						
	/cles:	2						
-	Cycle Activ							
3	Q1	Q2	Q3	G	4			
	Decode	No operation	No operation	N opera	0			
	No	No	No	N				
	operation	operation (Read	operation	opera (Write to				

TBLWT Table Write (Continued)

	10.010		(••••••)
Example1:	TBLWT	*+;	
Before Instruc	tion		
TABLAT TBLPTR HOLDING	REGISTER	=	0x55 0x00A356
(0x00A356	6)	=	0xFF
After Instruction	ons (table v	vrite o	completion)
TABLAT TBLPTR HOLDING	REGISTER	=	0x55 0x00A357
(0x00A356		=	0x55
Example 2:	TBLWT	+*;	
Before Instruc	tion		
TABLAT TBLPTR HOLDING	REGISTER	= =	0x34 0x01389A
(0x01389A	N) REGISTER	=	0xFF
(0x01389E		=	0xFF
After Instruction	on (table wi	rite co	ompletion)
TABLAT TBLPTR HOLDING	REGISTER	= =	0x34 0x01389B
(0x01389A		=	0xFF
(0x01389E		=	0x34

(Read TABLAT)

(Write to Holding Register or Memory)

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

22.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

22.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

22.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial)

(Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended					
	Vdd	Supply Voltage							
D001		PIC18LFXX39	2.0		5.5	V	HS Osc mode		
D001		PIC18FXX39	4.2	—	5.5	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	-	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal		—	0.7	V	See Section 3.1 (Power-on Reset) for details		
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_		V/ms	See Section 3.1 (Power-on Reset) for details		
	VBOR	Brown-out Reset Voltag	ge						
D005		PIC18LFXX39							
		BORV1:BORV0 = 11	1.98	—	2.14	V	$85^{\circ}C \ge T \ge 25^{\circ}C$		
		BORV1:BORV0 = 10	2.67	—	2.89	V			
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45	—	4.83	V			
D005		PIC18FXX39							
		BORV1:BORV0 = 1x	N.A.	_	N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45		4.83	V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

23.2 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions		
	Vol	Output Low Voltage						
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
	Vон	Output High Voltage ⁽²⁾						
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D150	Vod	Open Drain High Voltage	—	8.5	V	RA4 pin		
		Capacitive Loading Specs on Output Pins						
D100 ⁽³⁾	Cosc2	OSC2 pin	_	15	pF	In HS mode when external clock is used to drive OSC1		
D101	Сю	All I/O pins	—	50	pF	To meet the AC Timing Specifications		
D102	Св	SCL, SDA	—	400	pF	In I ² C mode		

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Parameter is characterized but not tested.

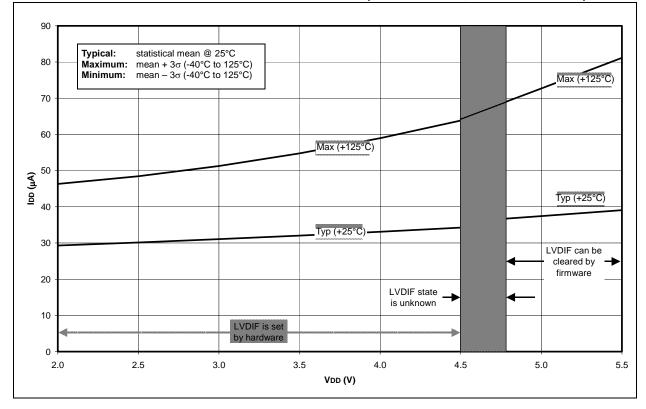
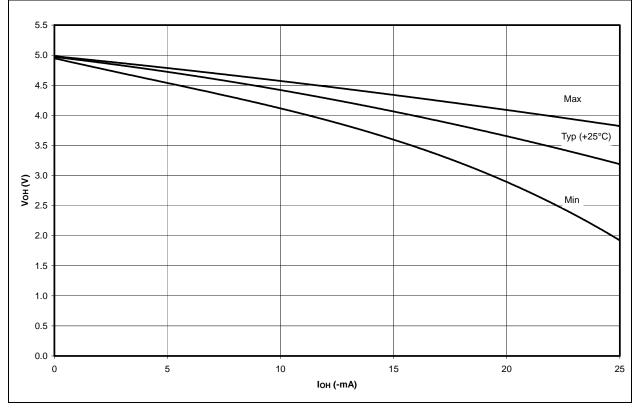
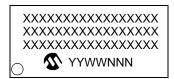



FIGURE 24-11: \triangle ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5 - 4.78V)

25.0 PACKAGING INFORMATION


25.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

28-Lead SOIC

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

© 2002-2013 Microchip Technology Inc.