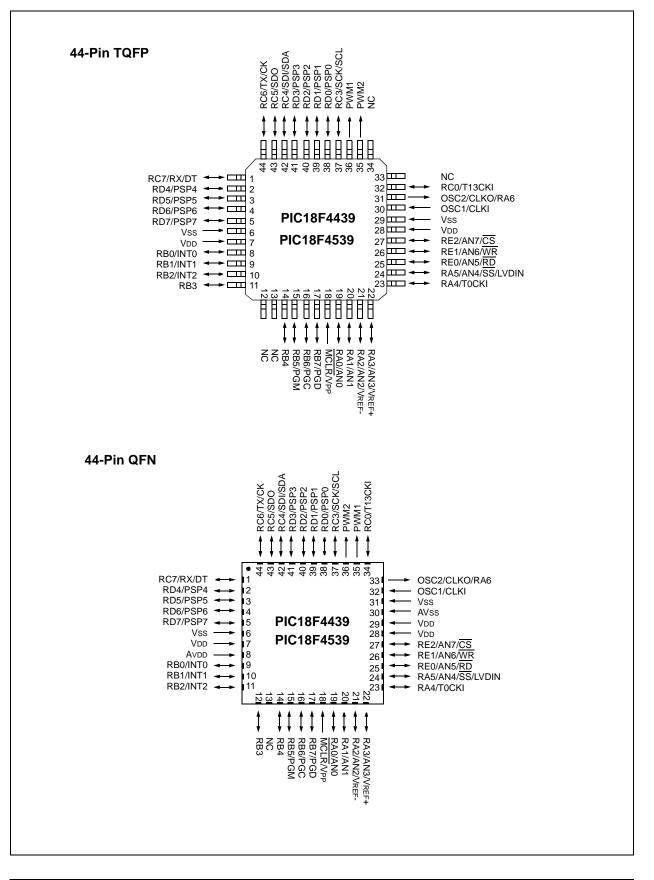


Welcome to E-XFL.COM

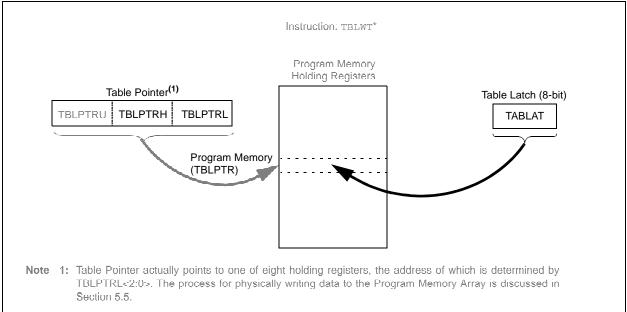
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2539-i-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

FIGURE 5-2: TABLE WRITE OPERATION

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

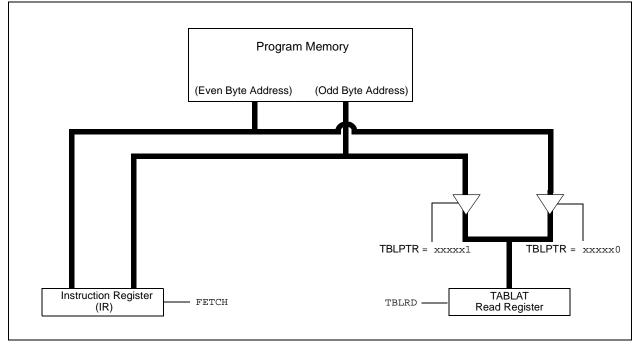
Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see Section 20.0, "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.


Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

5.3 Reading the FLASH Program Memory

The TBLRD instruction is used to retrieve data from program memory and place into data RAM. Table Reads from program memory are performed one byte at a time. TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next Table Read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 5-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 5-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 5-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW CODE_ADDR_UPPER MOVWF TBLPTRU MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL	; Load TBLPTR with the base ; address of the word
READ_WORD		
	TBLRD*+	; read into TABLAT and increment
	MOVF TABLAT, W	; get data
	MOVWF WORD_EVEN	
	TBLRD*+	; read into TABLAT and increment
	MOVF TABLAT, W	; get data
	MOVWF WORD_ODD	

TABLE 6-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMOR
--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on All Other RESETS
FF2h	INTCON	GIE/ GIEH	PEIE/ GIEL	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
FA9h	EEADR	EEPRON	1 Address		0000 0000	0000 0000					
FA8h	EEDATA	EEPRON	EEPROM Data Register								0000 0000
FA7h	EECON2	EEPRON	1 Control R	Register2	(not a phy	/sical regis	ter)			—	—
FA6h	EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
FA2h	IPR2	—	_	_	EEIP	BCLIP	LVDIP	TMR3IP	_	1 1111	1 1111
FA1h	PIR2	—	—	—	EEIF	BCLIF	LVDIF	TMR3IF	—	0 0000	0 0000
FA0h	PIE2	_	_	_	EEIE	BCLIE	LVDIE	TMR3IE	_	0 0000	0 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

8.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1 and RB2/INT2 pins are edge triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxE. Flag bit INTxF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from SLEEP, if bit INTxE was set prior to going into SLEEP. If the global interrupt enable bit GIE is set, the processor will branch to the interrupt vector following wake-up.

The INT0 interrupt is always configured as a high priority interrupt, and cannot be reconfigured. Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>).

Because it is always configured as a high priority interrupt, INTO cannot be used in conjunction with the ProMPT kernel; it must always be disabled (INTCON<4> = 0). Failure to do this may result in erratic operation of the motor control.

8.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFh \rightarrow 0000h) will set flag bit TMR0IF. The interrupt can be enabled or disabled by setting or clearing enable bit TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2<2>). See Section 10.0 for further details on the Timer0 module.

8.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled or disabled by setting or clearing the enable bit RBIE (INTCON<3>). Interrupt priority for PORTB interrupton-change is determined by the value contained in the interrupt priority bit RBIP (INTCON2<0>).

8.9 Context Saving During Interrupts

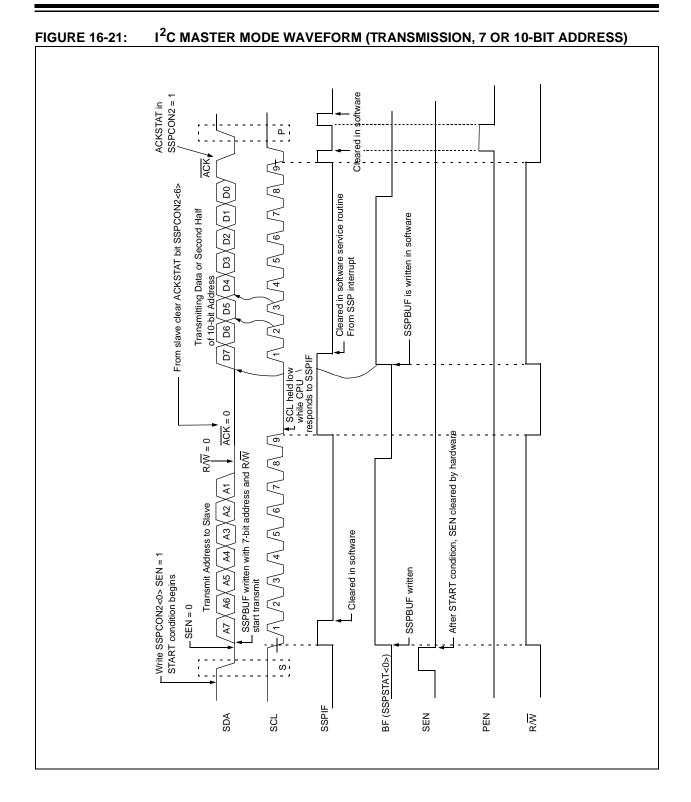
During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3), the user may need to save the WREG, STATUS and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 8-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

	EXAMPLE 8-1:	SAVING STATUS,	WREG AND BSR	REGISTERS IN RAM
--	--------------	----------------	--------------	-------------------------

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR located anywhere
; ; USER ;	_ ISR CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

NOTES:

16.4.6.1 I²C Master Mode Operation


The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition, or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the I^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. See Section 16.4.7 ("Baud Rate Generator"), for more detail. A typical transmit sequence would go as follows:

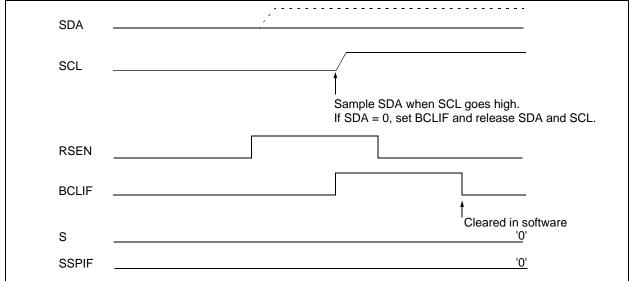
- 1. The user generates a START condition by setting the START enable bit, SEN (SSPCON2<0>).
- SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a STOP condition by setting the STOP enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the STOP condition is complete.

16.4.17.2 Bus Collision During a Repeated START Condition

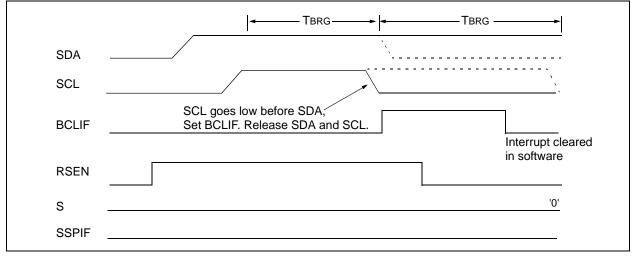
During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to '0'. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 16-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

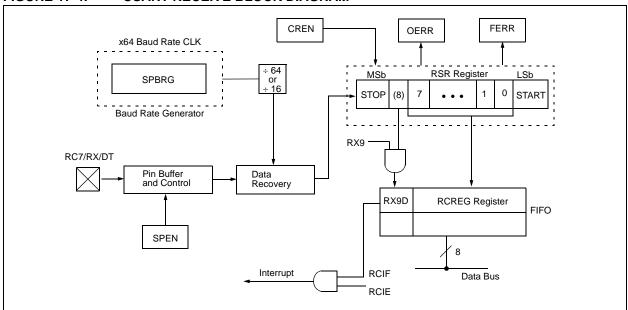

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, see Figure 16-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 16-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

17.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 17-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 17.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

17.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

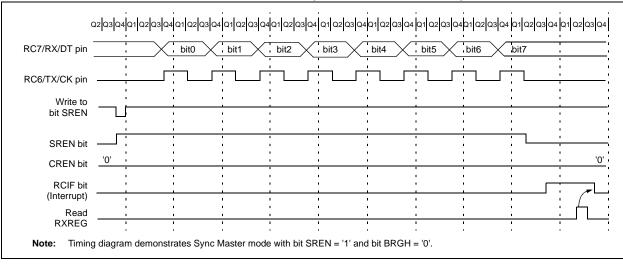
FIGURE 17-4: USART RECEIVE BLOCK DIAGRAM

17.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 17.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.


- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	-	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	-	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	_	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
RCREG	G USART Receive Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	SPBRG Baud Rate Generator Register									0000 0000

TABLE 17-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

FIGURE 17-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 21-2: PIC18FXXX INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Natas
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	0da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f. d. a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	·s, ·u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	.,_
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	., -
RRNCF	, ,	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with borrow	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	100a 011a	ffff	ffff	None	4 1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1 (2 01 3)	0001	011a 10da	ffff	ffff	Z, N	1, 2
			1	0001	IUUU	TTTT	LTTT	2, 11	
		E REGISTER OPERATIONS						1	1
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

	Move f to	f							
Syntax:	[label]	MOVFF	f _s ,f _d						
Operands:	•	$\begin{array}{l} 0 \leq f_{s} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$							
Operation:	$(f_s) \to f_d$	$(f_s) \rightarrow f_d$							
Status Affected:	None								
Encoding: 1st word (source) 2nd word (destin.)		ffff ffff	ffff ffff	ffff _s ffff _d					
Description:	are moved 'f _d '. Locat anywhere space (00 of destina where from Either sou W (a useff MOVFF is transferrin to a periph transmit b The MOVF the PCL, 7 the destin Note: TH sh	The contents of source register ${}^{f}s'$ are moved to destination register ${}^{f}d'$. Location of source ${}^{f}s'$ can be anywhere in the 4096 byte data space (000h to FFFh), and location of destination ${}^{f}d'$ can also be any- where from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.							
Words:	2								
Cycles:	2 (3)								
Q Cycle Activity:									
Q1	Q2	Q	3	Q4					
Decode	Read register 'f' (src)	Proce Data		No operation					
	No	No		Write					

Before Instructio	n	
REG1	=	0x33
REG2	=	0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

MOV	MOVLB Move literal to low nibble in BSR								
Synt	ax:	[label]	MOVLB	k					
Oper	rands:	$0 \le k \le 25$	5						
Oper	ration:	$k \to BSR$	$k \rightarrow BSR$						
Statu	is Affected:	fected: None							
Enco	oding:	0000	0001	kkkk	kkkk				
Desc	cription:		The 8-bit literal 'k' is loaded into the Bank Select Register (BSR).						
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce: Data		Write eral 'k' to BSR				
_									

Example: MOVLB 5

Before Instruction	
BSR register =	0x02
After Instruction	
BSR register =	0x05

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

22.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

22.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

22.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

23.2 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	tic Min Max		Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C	
	Vон	Output High Voltage ⁽²⁾					
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D150	Vod	Open Drain High Voltage	—	8.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D100 ⁽³⁾	Cosc2	OSC2 pin	_	15	pF	In HS mode when external clock is used to drive OSC1	
D101	Сю	All I/O pins	—	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	—	400	pF	In I ² C mode	

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Parameter is characterized but not tested.

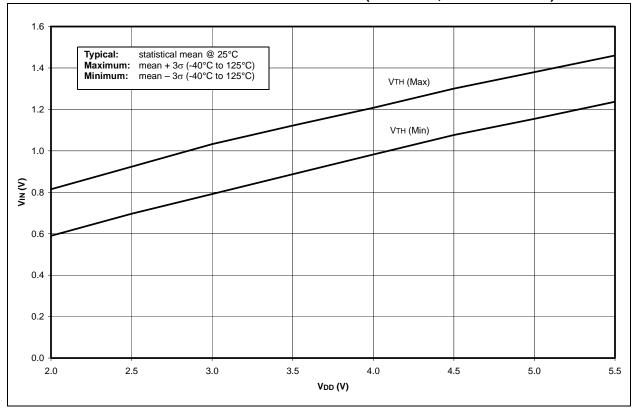
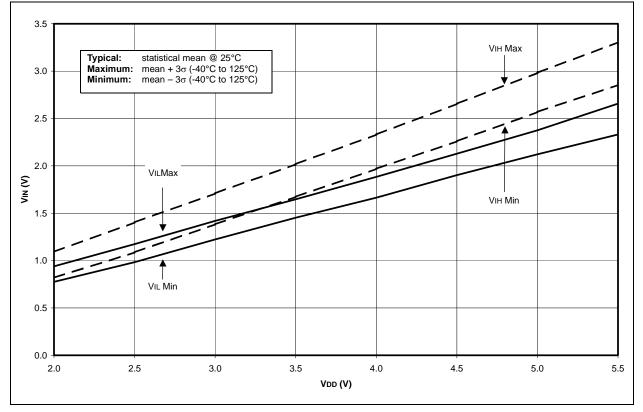
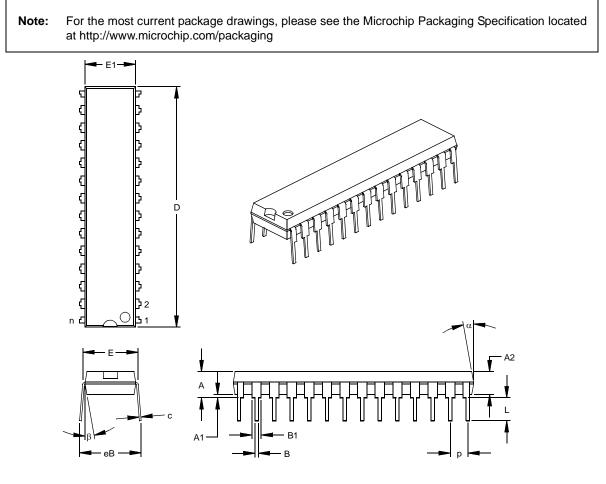



FIGURE 24-17: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)



© 2002-2013 Microchip Technology Inc.

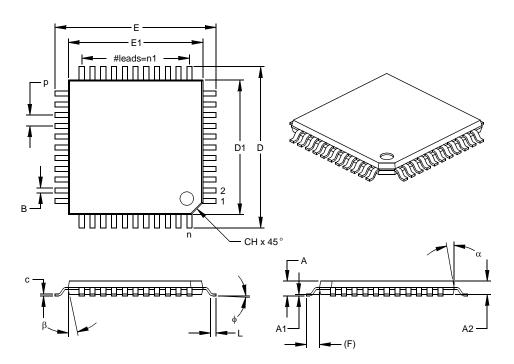
25.2 **Package Details**

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

	Units	INCHES*			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness		.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom β		5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic


Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units	INCHES			MILLIMETERS*		
on Limits	MIN	NOM	MAX	MIN	NOM	MAX
n		44			44	
р		.031			0.80	
n1		11			11	
Α	.039	.043	.047	1.00	1.10	1.20
A2	.037	.039	.041	0.95	1.00	1.05
A1	.002	.004	.006	0.05	0.10	0.15
L	.018	.024	.030	0.45	0.60	0.75
(F)		.039		1.00		
ø	0	3.5	7	0	3.5	7
Е	.463	.472	.482	11.75	12.00	12.25
D	.463	.472	.482	11.75	12.00	12.25
E1	.390	.394	.398	9.90	10.00	10.10
D1	.390	.394	.398	9.90	10.00	10.10
С	.004	.006	.008	0.09	0.15	0.20
В	.012	.015	.017	0.30	0.38	0.44
CH	.025	.035	.045	0.64	0.89	1.14
α	5	10	15	5	10	15
β	5	10	15	5	10	15
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

PIC18F4X39 Pin Functions
MCLR/VPP
OSC1/CLKI
OSC2/CLKO/RA614
PWM116
PWM216
RA0/AN014
RA1/AN114
RA2/AN2/VREF14
RA3/AN3/VREF+14
RA4/T0CKI
RA5/AN4/SS/LVDIN14
RB0/INT15
RB1/INT115
RB2/INT215
RB315
RB415
RB5/PGM15
RB6/PGC15
RB7/PGD15
RC0/T13CKI
RC3/SCK/SCL16
RC4/SDI/SDA16
RC5/SDO16
RC6/TX/CK
RC7/RX/DT16
RD0/PSP017
RD1/PSP117
RD2/PSP217
RD3/PSP317
RD4/PSP417
RD5/PSP517
RD6/PSP617
RD7/PSP717
RE0/AN5/ <u>RD</u>
RE1/AN6/WR18
RE2/AN7/CS18
VDD
Vss
PIC18FXX39 Voltage-Frequency Graph
(Industrial)
PIC18LFXX39 Voltage-Frequency Graph
(Industrial)
PICDEM 1 Low Cost PIC MCU
Demonstration Board
PICDEM 17 Demonstration Board
PICDEM 2 Low Cost PIC16CXX
Demonstration Board
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board
PICSTART Plus Entry Level Development
Programmer
PIE Registers
Pinout I/O Descriptions
PIC18F2X39
PIC18F4X39
PIR Registers
PLL Lock Time-out24
Pointer, FSR

PORTA	
Associated Registers	. 85
LATA Register	. 83
PORTA Register	
TRISA Register	. 83
PORTB	
Associated Registers	. 88
LATB Register	. 86
PORTB Register	. 86
RB0/INT Pin, External	
RB7:RB4 Interrupt-on-Change Flag	
(RBIF Bit)	. 86
TRISB Register	
PORTC	
Associated Registers	. 90
LATC Register	. 89
PORTC Register	. 89
RC3/SCK/SCL Pin	139
RC7/RX/DT Pin	168
TRISC Register	165
PORTD	
Associated Registers	. 92
LATD Register	. 91
Parallel Slave Port (PSP) Function	. 91
PORTD Register	. 91
TRISD Register	. 91
PORTE	
Analog Port Pins95	5, 96
Associated Registers	
LATE Register	. 93
PORTE Register	
PSP Mode Select (PSPMODE Bit)91	, 96
RE0/AN5/ <u>RD</u> Pin95	
RE1/AN6/ <u>WR</u> Pin95	
RE2/AN7/CS Pin95	
TRISE Register	. 93
Postscaler, WDT	
Assignment (PSA Bit)	101
Rate Select (T0PS2:T0PS0 Bits)	101
Switching Between Timer0 and WDT	101
Power-down Mode. See SLEEP	
Power-on Reset (POR)	
Oscillator Start-up Timer (OST)	
Power-up Timer (PWRT)	
Prescaler, Timer0	101
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	
Switching Between Timer0 and WDT	
Prescaler, Timer2	
PRO MATE II Universal Device Programmer	
Product Identification System	319
Program Counter	20
PCL Register	
PCLATH Register	
PCLATU Register	
Program Memory	. 36
Program Memory Interrupt Vector	. 36 . 33
Program Memory Interrupt Vector Map and Stack for PIC18FXX39	. 36 . 33 . 33
Program Memory Interrupt Vector Map and Stack for PIC18FXX39 RESET Vector	. 36 . 33 . 33 . 33
Program Memory Interrupt Vector Map and Stack for PIC18FXX39 RESET Vector Program Verification and Code Protection	. 36 . 33 . 33 . 33 206
Program Memory Interrupt Vector Map and Stack for PIC18FXX39 RESET Vector Program Verification and Code Protection Associated Registers	. 36 . 33 . 33 . 33 206 207
Program Memory Interrupt Vector Map and Stack for PIC18FXX39 RESET Vector Program Verification and Code Protection Associated Registers Configuration Register	. 36 . 33 . 33 206 207 210
Program Memory Interrupt Vector Map and Stack for PIC18FXX39 RESET Vector Program Verification and Code Protection Associated Registers	. 36 . 33 . 33 206 207 210 210