

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4439-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 4-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 4-4 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4). The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-4 shows how the instruction, 'GOTO 00006h', is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single word instructions that the PC will be offset by. Section 21.0 provides further details of the instruction set.

FIGURE 4-4: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address ↓
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
		-			000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
		-	F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
		-	F4h	56h	000010h
		-			000012h
		-			000014h

4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV, or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV, or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 21-2.

Note:	The C and DC bits operate as a borrow and
	digit borrow bit respectively, in subtraction.

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	N	OV	Z	DC	С
bit 7							bit 0

bit 7-5	Unimple	mented: Rea	id as '0'							
bit 4	N: Negati This bit is negative 1 = Resu 0 = Resu	 Is Negative bit This bit is used for signed arithmetic (2's complement). It indicates whether the result was negative (ALU MSB = 1). Result was negative Result was positive 								
bit 3	OV: Over This bit is 7-bit mag 1 = Overf 0 = No ov	flow bit used for sign nitude, which low occurred verflow occur	ned arithmetic (2's compl a causes the sign bit (bit 7 for signed arithmetic (in red	ement). It indicates an overflow of the 7) to change state. this arithmetic operation)						
bit 2	Z: Zero b	it	t							
	1 = The r 0 = The r	esult of an ar esult of an ar	ithmetic or logic operatio ithmetic or logic operatio	n is zero n is not zero						
bit 1	DC: Digit For ADDW 1 = A car 0 = No ca	carry/borrow F, ADDLW, ry-out from th arry-out from	bit SUBLW, and SUBWF instr he 4th low order bit of the the 4th low order bit of th	uctions result occurred e result						
	Note:	For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.								
bit 0	C: Carry/borrow bit For ADDWF, ADDLW, SUBLW, and SUBWF instructions									
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 									
	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.									
	Legend:									
	R = Read	lable bit	W = Writable bit	U = Unimplemented bit, read as '0'						

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

Example 7-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 7-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES3:RES0.

EQUATION 7-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 7-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH:PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH:PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,	F	;	Add cross
	MOVE	PRODH,	W	;	products
	ADDWFC	RES2,	F.	;	
	CLRF	WREG	-	;	
	ADDWFC	RES3,	F.	;	
;	MOME	100111	1.7		
	MUTWE	ARGIH,	W	;	ADCIU + ADCOL .
	MOLWF	ARGZL		;	ARGIH * ARGZL ->
	MOVE	זססממ	T-T	;	PRODE
		PRODL, DEC1	W F	;	Add gross
	MOVE	RESI,	г W	,	Auu CIOSS
		DEGO	r r	΄.	produces
	CLRE	WREG	Ľ	΄.	
	ADDWFC	RESS	F	΄.	
	ADD MLC	кцор,	1	'	

Example 7-4 shows the sequence to do a 16 x 16 signed multiply. Equation 7-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 7-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0

- = ARG1H:ARG1L ARG2H:ARG2L
- = $(ARG1H \bullet ARG2H \bullet 2^{16}) +$ $(ARG1H \bullet ARG2L \bullet 2^{8}) +$ $(ARG1L \bullet ARG2H \bullet 2^{8}) +$ $(ARG1L \bullet ARG2L) +$ $(-1 \bullet ARG2H < 7 > \bullet ARG1H: ARG1L \bullet 2^{16}) +$ $(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 7-4: 16 x 16 SIGNED

MULTIPLY ROUTINE

	MOVF	ARG1L,	W		
	MULWF	ARG2L		;	ARG1L * ARG2L ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES1	;	
	MOVFF	PRODL,	RES0	;	
;					
	MOVF	ARG1H,	W		
	MULWF	ARG2H		;	ARG1H * ARG2H ->
				;	PRODH: PRODL
	MOVFF	PRODH,	RES3	;	
	MOVFF	PRODL,	RES2	;	
;					
	MOVF	ARG1L,	W		
	MULWF	ARG2H		;	ARG1L * ARG2H ->
				;	PRODH:PRODL
	MOVF	PRODL,	W	;	
	ADDWF	RES1,	F	;	Add cross
	MOV F'	PRODH,	W	;	products
	ADDWFC	RES2,	F	;	
	CLRF	WREG	_	;	
	ADDWF'C	RES3,	F	;	
;					
	MOV F'	ARG1H,	W	;	
	MOLWF.	ARG2L		;	ARGIH * ARG2L ->
	MOUTE	DRODI		;	PRODH: PRODL
	MOVE	PRODL,	W	;	Delel among
	ADDWF	RESI,	F	;	Add Cross
	NDDWDG	PRODH,	W	;	products
	CIPE	RESZ,	F	;	
		DECO	F	<i>.</i>	
	ADDWFC	REDJ,	Г	i	
'	BTESS	ARG2H	7		ARG2H·ARG2L neg?
	BRA	STGN AR	, G1	΄.	no check ARG1
	MOVE	ARG1L	W	΄.	no, encen meer
	SUBWE	RES2		;	
	MOVE	ARG1H.	W	;	
	SUBWFB	RES3		'	
;					
, SIG	N ARG1				
	_ BTFSS	ARG1H,	7	;	ARG1H:ARG1L neg?
	BRA	CONT CO	DE	;	no, done
	MOVF	ARG2L,	W	;	
	SUBWF	RES2		;	
	MOVF	ARG2H,	W	;	
	SUBWFB	RES3			
;					
CON	T_CODE				
	:				

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
	—	_	—	EEIE	BCLIE	LVDIE	TMR3IE			
	bit 7							bit 0		
bit 7-5	Unimplem	ented: Read	d as '0'							
bit 4	EEIE: Data	EEPROM/F	LASH Write	e Operation	Interrupt En	able bit				
	1 = Enable 0 = Disable	1 = Enabled 0 = Disabled								
bit 3	BCLIE: Bus	s Collision Ir	nterrupt Ena	ble bit						
	1 = Enable	d								
L 'H O										
DIT 2		v voltage De	etect Interru	ot Enable bit						
	1 = Enable 0 = Disable	u ed								
bit 1	TMR3IE: T	MR3 Overflo	ow Interrupt	Enable bit						
	 1 = Enables the TMR3 overflow interrupt 0 = Disables the TMR3 overflow interrupt 									
bit 0	Unimplem	ented: Read	d as '0'							
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'		
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown		

REGISTER 8-7: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

9.3 PORTC, TRISC and LATC Registers

PORTC is a 6-bit wide, bi-directional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with the serial communication functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF PORTC	; Initialize PORTC by ; clearing output
CLRF LATC	; data latches ; Alternate method ; to clear output ; data latches
MOVLW 0xC9	; Value used to ; initialize data ; direction
MOVWF TRISC	; Set RC<3>,RC<0> as inputs, ; RC<5:4> as outputs, and ; RC<7:6> as inputs

PIC18FXX39 devices differ from other PIC18 microcontrollers in allocation of PORTC pins. For most PIC18 devices, PORTC is an 8-bit-wide port. For the PIC18FXX39 family, two of the PORTC pins (RC1 and RC2) are re-allocated as PWM output only pins for use with the Motor Control kernel. To maintain pinout compatibility with other PIC[®] devices, the remaining PORTC pins are assigned in a manner consistent with other PIC18 devices. For this reason, PORTC has pins RC0 and RC3 through RC7, but not RC1 and RC2.

To maintain compatibility with PIC18FXX2 devices, the individual port and corresponding latch and direction bits for RC1 and RC2 are present in the appropriate registers, but are not available to the user. To avoid erratic device operation, the values of these bits should not be modified.

FIGURE 9-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

Note: On a Power-on Reset, these pins are configured as digital inputs.

unsigned char ProMPT_GetBoostTime() Resources used: 1 stack level Range of values: 0 to 255 Description: Returns the time in seconds for Boost mode.

unsigned char ProMPT_GetDecelRate() Resources used: 1 stack level Range of values: 0 to 255 Description: Returns the current deceleration rate in Hz/second.

unsigned char ProMPT_GetFrequency(void)

Resources used: 1 stack level

Range of values: 0 to 127

Description: Returns the current output frequency in Hz. This may not be the frequency commanded due to Boost or Accel/Decel logic.

unsigned char ProMPT_GetModulation(void) Resources used: Hardware Multiplier; 1 stack level Range of values: 0 to 200 Description: Returns the current output modulation in %.

unsigned char ProMPT_GetParameter(unsigned char parameter)

Resources used: 1 stack level

Description: In addition to its pre-defined API methods, the ProMPT kernel allows the user to custom define up to 16 functions for control or communication purposes not covered by the ProMPT APIs. These parameters are used to communicate with motor control GUI evaluation tools, such as Microchip's DashDriveMPTM. This method returns the current value of any one of the parameters.

unsigned char ProMPT_GetVFCurve(unsigned char point)

Resources used: Hardware Multiplier; 1 stack level

Description: This function returns one of the 17 modulation values (in %) of the V/F curve. Each point represents a frequency increment of 8 Hz, ranging from point 0 (0 Hz) to point 16 (128 Hz).

void ProMPT_Init(unsigned char PWMfrequency)

Resources used: 64 Bytes RAM; Timer2; PWM1 and PWM2; High Priority Interrupt Vector; Hardware Multiplier; fast call/return; FSR 0; TBLPTR; 2 stack levels

PWMfrequency values: 0 or 1

Description: This function must be called before all other ProMPT methods, and it must be called only once. This routine configures Timer2 and the PWM outputs.

When PWMfrequency is '0', the module's operating frequency is 9.75 kHz. When PWMfrequency is '1', the module's operating frequency is 19.53 kHz.

Note: Since the high priority interrupt is used, the fast call/return cannot be used by other routines.

16.4.4 CLOCK STRETCHING

Both 7- and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

16.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to '0' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 16-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software, regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence, in order to prevent an overflow condition.

16.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address, and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence, as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

16.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs, regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 16-9).

Note 1: If the user loads the contents of SSPBUF,								
setting the BF bit before the falling edge of								
the ninth clock, the CKP bit will not be								
cleared and clock stretching will not occur.								
2: The CKP bit can be set in software,								
regardless of the state of the BF bit.								

16.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode, and clock stretching is controlled by the BF flag, as in 7-bit Slave Transmit mode (see Figure 16-11).

16.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

16.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 16-20: REPEAT START CONDITION WAVEFORM

16.4.17.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to '0'. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 16-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, see Figure 16-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 16-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

17.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register, and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete. An interrupt will be generated if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		ue on R, BOR RESETS	
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF		TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	_	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP		TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
RCREG	USART Receive Register								0000	0000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000	-010	0000	-010
SPBRG	Baud Rate	Generat	or Registe	r					0000	0000	0000	0000

TABLE 17-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

BNO	v	Branch if	Branch if Not Overflow					
Synta	ax:	[<i>label</i>] B	[<i>label</i>] BNOV n					
Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$					
Operation:		if overflow (PC) + 2 +	if overflow bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1110	0101 nn	nn nnnn				
Desc	ription:	If the Over program w The 2's co added to th have incre- instruction PC+2+2n. a two-cvcl	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC+2+2n$. This instruction is then a two cycle instruction					
Words:		1	1					
Cycles:		1(2)						
Q C If Ju	ycle Activity: mp: Q1	Q2	Q3	Q4				
[Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
If No	o Jump:							
_	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
Exan	nple:	HERE	BNOV Jump					
I	Before Instru PC	iction = ad	dress (HERE))				
After Instruction If Overflow = 0; PC = address (Jump) If Overflow = 1; PC = address (HERE+2)								

BNZ		Branch if	Not Zer	o			
Syntax	(:	[<i>label</i>] B	[<i>label</i>] BNZ n				
Opera	nds:	-128 ≤ n ≤	127				
Opera	tion:	if zero bit i (PC) + 2 +	s '0' · 2n → P	C			
Status	Affected:	None					
Encod	ing:	1110	0001	nnn	n	nnnn	
program will branch. The 2's complement num added to the PC. Since t have incremented to fetc instruction, the new addr PC+2+2n. This instruction.				imbe the tch t dress tion	er '2n' is PC will he next s will be is then		
Words	:	1					
Cycles	s:	1(2)	1(2)				
Q Cyo If Jurr	cle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'n'	Proces Data	SS	Writ	e to PC	
,	No operation	No operation	No operati	on	оре	No eration	
If No .	Jump:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'n'	Proces Data	SS	оре	No eration	
Example: HERE BNZ Jump							
Before Instruction							

After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE+2)

DS30485B-page 222

BTG	Bit Toggl	e f		BOV	,	Branch if	Overflow			
Syntax:	[<i>label</i>] B	STG f,b[,a]		Synt	ax:	[<i>label</i>] B	OV n			
Operands:	0 ≤ f ≤ 25	$0 \le f \le 255$			Operands: $-128 \le n \le 127$					
	0 ≤ b ≤ 7 a ∈ [0,1]			Ope	ration:	if overflow (PC) + 2 +	if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operation: $(\overline{f}) \rightarrow f$			Statu	us Affected:	None					
Status Affected: None		Enco	odina:	1110	0100 nn:	nn nnnn				
Encoding:	0111 bbba ffff ffff			Desi	crintion.	If the Ove	rflow hit is '1	' then the		
Description:	Bit 'b' in data memory location 'f' is inverted. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			2		program w The 2's co added to t have incre instruction PC+2+2n.	vill branch. omplement no he PC. Since emented to fe the new ad This instruct	umber '2n' is e the PC will etch the next dress will be ction is then		
Words:	1					a two-cycl	e instruction			
Cycles:	1			Wor	ds:	1				
Q Cycle Activity:				Cycl	es:	1(2)				
Q1	Q2	Q3	Q4	QC	Sycle Activity	/:				
Decode	Read register 'f'	Process Data	Write register 'f'	lf Ju	ump: Q1	Q2	Q3	Q4		
Example:	BTG I	PORTC, 4,	0		Decode	Read literal 'n'	Process Data	Write to PC		
Before Instruction:				No operation	No operation	No operation	No operation			
PORTC = 0111 0101 [0X75]			lf N	If No Jump:						
PORTC	= 0110 (0101 [0x65]			Q1	Q2	Q3	Q4		
					Decode	Read literal 'n'	Process Data	No operation		

Example:	HERE	BOV	Jump
Before Instruc PC	tion =	address	(HERE)
After Instruction If Overflow PC If Overflow PC	on = = = =	1; address 0; address	(Jump) (HERE+2)

INCFSZ Increment f, skip if 0								
Synt	ax:	[label]	INCFSZ	f [,d [,	a]			
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5					
Ope	ration:	(f) + 1 \rightarrow (skip if res	dest, ult = 0					
Statu	us Affected:	None						
Enco	oding:	0011	11da	ffff	ffff			
Desc	cription:	The conter increment placed in placed ba If the resu tion, which discarded instead, m instruction Bank will the BSR value	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed back in register 'f'. (default) If the result is 0, the next instruc- tion, which is already fetched, is discarded, and a NOP is executed instead, making it a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the					
Word	ds:	1	1					
Cycles:		1(2) Note: 3 c by	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
u u	Q1	Q2	Q3		Q4			
	Decode	Read	Proces	ss V	Vrite to			
		register 'f'	Data	de	stination			
It sk	(ip:	00	00		0 4			
l	Q1	Q2	Q3		Q4			
	operation	operation	operati	on op	peration			
lf sk	kip and follow	ed by 2-wor	d instruc	tion:				
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation	operati	on op	peration			
	No operation	No operation	No operati	on op	No peration			
<u>Example</u> :		HERE NZERO ZERO	INCFSZ : :	CNT,	1, 0			
	Before Instru	iction						
	PC	= Addres	s (HERE))				
	After Instruct	tion						
	CNT If CNT	= CNT + = 0 [.]	1					
	PC	= Addres	s (ZERO))				
	PC	≠ 0; = Addres	s (NZERG))				

INFS	SNZ	Incremen	Increment f, skip if not 0						
Synt	ax:	[label]	[label] INFSNZ f[,d[,a]						
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:		(f) + 1 \rightarrow c skip if resu	(f) + 1 \rightarrow dest, skip if result \neq 0						
Status Affected:		None	None						
Enco	oding:	0100	10da	ffff	ffff				
Desc	cription:	The conte increment placed in V placed baa If the resu instruction fetched, is executed i cycle instr Access Ba riding the I the bank v BSR value	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed back in register 'f' (default). If the result is not 0, the next instruction, which is already fetched, is discarded, and a NOP is executed instead, making it a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)						
Wor	ds:	1	1						
Cycles:		1(2) Note: 3 c by	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce	ss '	Write to				
lf sk	kip:	regiotor r	Duto		Journation				
	Q1	Q2	Q3		Q4				
	No	No	No		No				
	operation	operation	operati	on o	peration				
lf sk	kip and follow	red by 2-wor	d instruc	ction:	.				
	Q1	Q2	Q3		Q4				
	NO operation	NO operation	operati	ion o	NO operation				
	No operation	No operation	No operati	ion o	No peration				
<u>Example</u> :		HERE I ZERO NZERO	INFSNZ	REG,	1, 0				
	Before Instru PC	iction = Address	s (HERE)					
	After Instruct REG If REG PC If REG PC	tion = REG + ≠ 0; = Address = 0; = Address	1 5 (NZER 5 (ZERO	0)					

MULLW	Multiply L	iteral with V	N	Μ	ULWF	Multiply \	N with f			
Syntax:	[label]	MULLW k		Sy	ntax:	[label]	MULWF f	[,a]		
Operands:	$0 \le k \le 25$	5		O	perands:	$0 \le f \le 25$	$0 \le f \le 255$			
Operation:	(W) x k \rightarrow PRODH:PRODL					a ∈ [0,1]	a ∈ [0,1]			
Status Affected:	None			O	peration:	(W) x (f) –	→ PRODH:PI	RODL		
Encoding:	0000	1101 kk	kk kkkk	St	atus Affected:	None	T			
Description:	An unsign	ed multiplica	tion is car-	Er	ncoding:	0000	001a fff	f ffff		
	ried out be W and the 16-bit resu	etween the c 8-bit literal ' ult is placed i	ontents of k'. The n	De	escription:	An unsign ried out be W and the	ed multiplica etween the c register file l	tion is car- ontents of ocation 'f'.		
	PRODH:P	RODL regist	ter pair.			The 16-bi	t result is sto	red in the		
	PRODH c W is unch	ontains the h anged	igh byte.				PRODL regist	ter pair. Jigh hyte		
	None of th	ne status flag	s are			Both W ar	nd 'f' are uncl	nanged.		
	affected. Note that neither overflow nor carry is possible in this opera- tion. A zero result is possible but					None of the status flags are affected.				
						carry is possible in this opera-				
	not detect	ed.				tion. A zer	ro result is po	ssible but		
Words:	1					Access Ba	ank will be se	the elected.		
Cycles:	1					overriding	the BSR val	ue. If		
Q Cycle Activity:						a' = 1, the	en the bank v	vill be		
Q1	Q2	Q3	Q4			(default).	as per the Do	r value		
Decode	literal 'k'	Data	registers	W	ords:	1				
			PRODH:	C	/cles:	1				
			PRODL	G	Cycle Activity	:				
Example:	MULLW	0xC4			Q1	Q2	Q3	Q4		
Before Instru	ction				Decode	Read	Process	Write		
W PRODH PRODL	= 0xl = ? = ?	E2				register t	Data	PRODH: PRODL		
After Instructi	on			_						
W	= 0x	E2		<u>E></u>	ample:	MULWF	REG, 1			
PRODH	= 0xAD = 0x08	AD 08			Before Instru	uction	~			
					vv REG PRODH PRODL	= 0x = 0x = ? = ?	64 B5			
					After Instruction					

W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

FIGURE 23-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 23-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	edge	100	_	ns	
73A	Тв2в	Last clock edge of Byte 1 to the 1st clo	ck edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	100		ns		
75	TdoR	SDO data output rise time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXXX	_	50	ns	
	TscL2doV	edge	PIC18LFXXXX	—	150	ns	VDD = 2V
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	;	Тсү	_	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 24-11: \triangle ILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5 - 4.78V)

FIGURE 24-17: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

© 2002-2013 Microchip Technology Inc.

INDEX

A

۵/D 181
A/D Converter Eleg (ADIE Bit)
A/D Converter Interrupt Configuring
And Converter Interrupt, Configuring
ACQUISILION Requirements
ADCONU Register
ADCONT Register
ADRESH Register
ADRESH/ADRESL Registers
ADRESL Register
Analog Port Pins
Analog Port Pins, Configuring
Associated Registers
Configuring the Module
Conversion Clock (TAD)
Conversion Status (GO/DONE Bit)
Conversions187
Converter Characteristics
Equations
Acquisition Time185
Minimum Charging Time 185
Examples
Calculating the Minimum Required
Acquisition Time185
Result Registers187
TAD vs. Device Operating Frequencies
Absolute Maximum Ratings259
AC (Timing) Characteristics
Conditions
Load Conditions for Device
Timing Specifications
Parameter Symbology
Temperature and Voltage Specifications
ACKSTAT Status Flag
ADCON0 Register
GO/ <u>DONE</u> Bit
ADCON1 Register
ADDLW
Addressable Universal Synchronous Asynchronous
Receiver Transmitter. See USART
ADDWF
ADDWFC
ADRESH Register
ADRESH/ADRESL Registers
ADRESI Register 181
Analog-to-Digital Converter, See A/D
ANDI W 218
ANDWE 219
Assembler
MPASM Assembler 253
В
Baud Rate Generator
BC
BCF
BF Status Flag

Block Diagrams
A/D Converter
Analog Input Model 184
Baud Rate Generator 151
Low Voltage Detect
External Reference Source 190
Internal Reference Source 190
MSSP (I ² C Mode) 134
MSSP (SPI Mode) 125
On-Chip Reset Circuit 23
PIC18F2X399
PIC18F4X39 10
PLL
PORTC (Peripheral Output Override) 89
PORTD (I/O Mode)
PORTD and PORTE (Parallel Slave Port)
PORTE (I/O Port Mode)
PWM Operation (Simplified)123
RA3:RA0 and RA5 Pins 83
RA4/T0CKI Pin84
RA6 Pin
RB2:RB0 Pins
RB3 Pin
RB7:RB4 Pins
Reads from FLASH Program Memory 55
Table Read Operation
Table Write Operation
Table Writes to FLASH Program Memory
Timer0 in 16-bit Mode
104
Timer1 (16-bit R/VV Mode)
Timer2
Timer3
Timer3 (16-bit R/W Mode)
I ypical Motor Control System
USART Receive
USART Transmit
DN
DNC
DININ
DNUV
DIVZ
BOV
BRA
Brown out Report (POR)
BCF 222
BUI
BTESS 224
BTG 225
B7 220
D2

L

LFSR	
Lookup Tables	
Computed GOTO	
Table Reads, Table Writes	
Low Voltage Detect	
Characteristics	
Effects of a RESET	
Operation	
Current Consumption	
During SLEEP	
Reference Voltage Set Point	
Typical Application	
LVD. See Low Voltage Detect.	

Μ

Master SSP (MSSP) Module
Overview
Master Synchronous Serial Port (MSSP). See MSSP.
Master Synchronous Serial Port. See MSSP
Memory Organization
Data Memory39
Program Memory
Memory Programming Requirements
Migration from High-End to Enhanced Devices
Motor Control
ProMPT API Methods 117–120
Defined Parameters121
Software Interface114
Theory of Operation113
V/F Curve
MOVF
MOVFF
MOVLB
MOVLW
MOVWF
MPLAB C17 and MPLAB C18 C Compilers
MPLAB ICD In-Circuit Debugger
MPLAB ICE High Performance Universal In-Circuit
Emulator with MPLAB IDE254
MPLAB Integrated Development
Environment Software
MPLINK Object Linker/MPLIB Object Librarian
MSSP
Control Registers (general)125
Enabling SPI I/O
I ² C Mode. See I ² C125
Operation
SPI Master Mode130
SPI Master/Slave Connection
SPI Mode
SPI Slave Mode
SSPBUF Register
SSPSR Register
Typical Connection
MULLW
MULWF
N
NEGF
NOP

0

Opcode Field Descriptions OPTION_REG Register	
PSA Bit	101
T0CS Bit	101
T0PS2:T0PS0 Bits	101
T0SE Bit	101
Oscillator Configuration	
EC	
ECIO	
HS	
HS + PLL	
Oscillator Selection	
Oscillator, Timer1	103
Oscillator, Timer3	109
Oscillator, WDT	203
Р	
Packaging	
Details	
Marking Information	
Parallel Slave Port (PSP)	
Associated Registers	
PORTD	
RE0/AN5/RD Pin	
RE1/AN6/WR Pin	
RE2/AN7/CS Pin	
Select (PSPMODE Bit)	
PIC18F2X39 Pin Functions	

OSC1/CLKI 11 OSC2/CLKO/RA6 11 RA0/AN0 11 RA1/AN1 11 RA4/T0CKI 11 RA5/AN4/SS/LVDIN11 RB3 12 RB4 12 RB5/PGM 12 RB7/PGD12 RC3/SCK/SCL 13 RC4/SDI/SDA 13