

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4439-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit stack pointer, with the stack pointer initialized to 00000b after all RESETS. There is no RAM associated with stack pointer 00000b. This is only a RESET value. During a CALL type instruction, causing a push onto the stack, the stack pointer is first incremented and the RAM location pointed to by the stack pointer is written with the contents of the PC. During a RETURN type instruction, causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR are transferred to the PC and then the stack pointer is decremented.

The stack space is not part of either program or data space. The stack pointer is readable and writable, and the address on the top of the stack is readable and writable through SFR registers. Data can also be pushed to, or popped from the stack using the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL hold the contents of the stack location pointed to by the STKPTR register. This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the stack pointer value, the STKFUL (stack full) status bit, and the STKUNF (stack underflow) status bits. Register 4-1 shows the STKPTR register. The value of the stack pointer can be 0 through 31. The stack pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At RESET, the stack pointer value will be '0'. The user may read and write the stack pointer value. This feature can be used by a Real-Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to Section 21.0 for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit, and reset the device. The STKFUL bit will remain set and the stack pointer will be set to '0'.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the stack pointer will increment to 31. Any additional pushes will not overwrite the 31st push, and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at '0'. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the RESET vector, where the stack conditions can be verified and appropriate actions can be taken.

FIGURE 5-2: TABLE WRITE OPERATION

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see Section 20.0, "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

NOTES:

REGISTER 8-3: INTCON3 REGISTER

- n = Value at POR

	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
	INT2IP ⁽¹⁾	INT1IP ⁽¹⁾	_	INT2IE	INT1IE	—	INT2IF	INT1IF	
	bit 7							bit 0	
bit 7	INT2IP ⁽¹⁾ :	INT2 Externa	al Interrupt	Priority bit					
	1 = High p	1 = High priority							
	0 = Low pr	iority							
bit 6	INT1IP ⁽¹⁾ :	INT1 Externa	al Interrupt	Priority bit					
	1 = High p	riority							
	0 = Low pr	iority							
bit 5	Unimplem	nented: Read	l as '0'						
bit 4	INT2IE: IN	IT2 External I	Interrupt En	able bit					
	1 = Enable	es the INT2 e	xternal inte	rrupt					
	0 = Disable	es the INT2 e	external inte	errupt					
bit 3	INT1IE: IN	IT1 External I	Interrupt En	able bit					
	1 = Enable	es the INT1 e	xternal inte	rrupt					
	0 = Disable	es the INT1 e	external inte	errupt					
bit 2	Unimplem	nented: Read	l as '0'						
bit 1	INT2IF: INT2 External Interrupt Flag bit								
	1 = The INT2 external interrupt occurred (must be cleared in software)								
	0 = The IN	T2 external i	nterrupt did	not occur					
bit 0	INT1IF: IN	T1 External I	nterrupt Fla	ag bit					
	1 = The IN	T1 external i	nterrupt occ	curred (must	be cleared	in software)			
	0 = The IN	T1 external i	nterrupt did	not occur					
	Note 1:	Maintain thi	s bit cleare	d (= 0).					
	Legend:								
	R = Reada	able bit	VV = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'	

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

9.3 PORTC, TRISC and LATC Registers

PORTC is a 6-bit wide, bi-directional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register reads and writes the latched output value for PORTC.

PORTC is multiplexed with the serial communication functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF PORTC	; Initialize PORTC by ; clearing output
CLRF LATC	; data latches ; Alternate method ; to clear output ; data latches
MOVLW 0xC9	; Value used to ; initialize data ; direction
MOVWF TRISC	; Set RC<3>,RC<0> as inputs, ; RC<5:4> as outputs, and ; RC<7:6> as inputs

PIC18FXX39 devices differ from other PIC18 microcontrollers in allocation of PORTC pins. For most PIC18 devices, PORTC is an 8-bit-wide port. For the PIC18FXX39 family, two of the PORTC pins (RC1 and RC2) are re-allocated as PWM output only pins for use with the Motor Control kernel. To maintain pinout compatibility with other PIC[®] devices, the remaining PORTC pins are assigned in a manner consistent with other PIC18 devices. For this reason, PORTC has pins RC0 and RC3 through RC7, but not RC1 and RC2.

To maintain compatibility with PIC18FXX2 devices, the individual port and corresponding latch and direction bits for RC1 and RC2 are present in the appropriate registers, but are not available to the user. To avoid erratic device operation, the values of these bits should not be modified.

FIGURE 9-7: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

Note: On a Power-on Reset, these pins are configured as digital inputs.

11.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input.

FIGURE 11-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

void ProMPT_SetAccelRate(unsigned char rate)

Resources used: 0 stack level

rate range: 0 to 255

Description: Sets the acceleration to the value of rate in Hz/second. The default setting is 10 Hz/s.

void ProMPT_SetBoostEndModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to 200

Description: Sets the End Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while Boost is enabled.

unsigned char ProMPT_SetBoostFrequency(unsigned char frequency)

Resources used: 0 stack levels

frequency range: 0 to 127

Description: Sets the frequency the drive goes to in Boost mode. Frequency must be < 128. On exit, w = 0 if the command is successful, or w = FFh if the frequency is out of range. This function should not be called while Boost is enabled.

void ProMPT_SetBoostStartModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to BoostEndModulation

Description: Sets the Start Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while Boost is enabled.

void ProMPT_SetBoostTime(unsigned char time)

Resources used: Hardware Multiplier; 0 stack levels

time range: 0 to 255

Description: Sets the amount of time in seconds for the Boost mode. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation over BoostTime. This function should not be called while Boost is enabled.

void ProMPT_SetDecelRate(unsigned char rate)

Resources used: 0 stack levels

rate range: 0 to 255

Description: Sets the deceleration to the value of rate in Hz per second. The default setting is 5 Hz/s.

unsigned char ProMPT_SetFrequency(unsigned char frequency)

Resources used: 2 stack levels

frequency range: 0 to 127

Description: Sets the output frequency of the drive if the drive is running. Frequency is limited to 0 to 127, but should be controlled within the valid operational range of the motor. Modulation is determined from the V/F curve, which is set up with the ProMPT_SetVFCurve method. If frequency = 0, the drive will stop. If the drive is stopped and frequency > 0, the drive will start.

© 2002-2013 Microchip Technology Inc.

16.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is IDLE, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on START and STOP bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a START condition on SDA and SCL.
- 2. Assert a Repeated START condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a STOP condition on SDA and SCL.

Note: The MSSP Module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a START condition and immediately write the SSPBUF register to initiate transmission before the START condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP interrupt flag bit, SSPIF, to be set (SSP interrupt if enabled):

- START condition
- STOP condition
- · Data transfer byte transmitted/received
- Acknowledge Transmit
- Repeated START

FIGURE 16-16: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

© 2002-2013 Microchip Technology Inc.

	•••••		•••••••					
	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
	DEBUG	_	_	_	_	LVP	_	STVREN
	bit 7							bit 0
bit 7	DEBUG: B 1 = Backgr 0 = Backgr	ackground ound Debug	Debugger E gger disable gger enable	nable bit d. RB6 and d. RB6 and I	RB7 configu RB7 are ded	ired as gene licated to In-	eral purpose Circuit Deb	I/O pins. ug.
bit 6-3	Unimplem	ented: Rea	d as '0'					0
bit 2	LVP: Low Voltage ICSP Enable bit 1 = Low Voltage ICSP enabled 0 = Low Voltage ICSP disabled							
bit 1	Unimplemented: Read as '0'							
bit 0	STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack Full/Underflow will cause RESET 0 = Stack Full/Underflow will not cause RESET							
	Legend:							
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'

REGISTER 20-4:	CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)
----------------	---

- n = Value when device is unprogrammed

u = Unchanged from programmed state

	U-0	U-0	U-0	U-0	U-1	R/C-1	R/C-1	R/C-1
	_	—	_	—	—	WRT2 ⁽¹⁾	WRT1	WRT0
	bit 7							bit 0
bit 7-4	Unimplem	nented: Rea	d as '0'					
bit 3	Unimplem	nented and	reserved: N	laintain as '1	,			
bit 2	WRT2: Wr	ite Protectio	n bit ⁽¹⁾					
	1 = Block 2	2 (004000-0	05FFFh) not	t write protect	cted			
	0 = Block 2	2 (004000-0	05FFFh) wri	te protected				
bit 1	WRT1: Wr	ite Protectio	n bit					
	1 = Block	1 (002000-0	03FFFh) not	write protect	cted			
	0 = Block 1 (002000-003FFFh) write protected							
bit 0	WRT0: Write Protection bit							
	1 = Block 0 (000200h-001FFFh) not write protected							
	0 = Block(0 (000200h-	001FFFh) w	rite protecte	d			

REGISTER 20-7:	CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)
----------------	---

Note 1: Unimplemented in PIC18FX439 devices; maintain this bit set.

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when dev	ice is unprogrammed	u = Unchanged from programmed state

REGISTER 20-8: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

	R/C-1	R/C-1	C-1	U-0	U-0	U-0	U-0	U-0
	WRTD	WRTB	WRTC	—	_			—
	bit 7							bit 0
bit 7	WRTD: Da	ata EEPRON	1 Write Prote	ection bit				
	 1 = Data EEPROM not write protected 0 = Data EEPROM write protected 							
bit 6	WRTB: Bo	ot Block Wr	ite Protectio	n bit				
	 1 = Boot block (000000-0001FFh) not write protected 0 = Boot block (000000-0001FFh) write protected 							
bit 5	WRTC: Configuration Register Write Protection bit 1 = Configuration registers (300000-3000FFh) not write protected 0 = Configuration registers (300000-3000FFh) write protected							
	Note: This bit is read only, and cannot be changed in User mode.							
bit 4-0	Unimplem	ented: Rea	d as '0'					

Leger	nd:		
R = R	eadable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = `	Value when device	e is unprogrammed	u = Unchanged from programmed state

20.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT.

The WDT time-out period values may be found in the Electrical Specifications (Section 23.0) under parameter D031. Values for the WDT postscaler may be assigned using the configuration bits.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed.

20.2.1 CONTROL REGISTER

Register 20-13 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 20-13: WDTCON REGISTER

bit 7-1 Unimplemented: Read as '0'

bit 0

SWDTEN: Software Controlled Watchdog Timer Enable bit

- 1 = Watchdog Timer is on
- Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = 0

Legend:	
R = Readable bit	W = Writable bit
U = Unimplemented bit, read as '0'	- n = Value at POR

FIGURE 21-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	<u>15 10 9 8 7 0</u>	
	OPCODE d a f (FILE #)	ADDWF MYREG, W, B
	d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f)	
	a = 0 to force Access Bank	
	a = 1 for BSR to select bank f = 8-bit file register address	
	Byte to Byte move operations (2-word)	
	<u>15 12 11 0</u>	
	OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
	<u>15 12 11 0</u>	
	1111 f (Destination FILE #)	
	f = 12-bit file register address	
	Bit-oriented file register operations	
	<u>15 1211 987 0</u>	
	OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
	b = 3-bit position of bit in file register (f)	
	a = 0 to force Access Bank a = 1 for BSR to select bank	
	f = 8-bit file register address	
	Literal operations	
	15 8 7 0	
	OPCODE k (literal)	MOVLW 0x7F
	k = 8-bit immediate value	
	Control operations	
	CALL. GOTO and Branch operations	
	15 8 7 0	
	OPCODE n<7:0> (literal)	GOTO Label
	15 12 11 0	
	1111 n<19:8> (literal)	
	n = 20-bit immediate value	
	15 8 7 0	
	OPCODE S n<7:0> (literal)	CALL MYFUNC
	<u>15 12 11 0</u>	
	n<19:8> (literal)	
	S = Fast bit	
	15 11 10 0	
	OPCODE n<10:0> (literal)	BRA MYFUNC
	15 9.7 0	
		BC MYFUNC

IORLW	Inclusive	OR literal w	/ith W
Syntax:	[label]	IORLW k	
Operands:	$0 \le k \le 25$	5	
Operation:	(W) .OR. k	$K \to W$	
Status Affected:	N, Z		
Encoding:	0000	1001 kk	kk kkkk
Description:	The content the eight-b placed in \	nts of W are bit literal 'k'. ⁻ W.	OR'ed with The result is
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Write to W
Example:	IORLW	0x35	
Before Instru	ction		
W	= 0x9A		
After Instruct	ion		
W	= 0xBF		

IOR	WF	Inclusive	OR W v	vith f	
Synt	ax:	[label]	IORWF	f [,d	l [,a]
Ope	rands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Ope	ration:	(W) .OR. ((f) \rightarrow des	st	
Statu	us Affected:	N, Z			
Enco	oding:	0001	00da	ffff	f ffff
		is 1, the re register 'f' Access Ba riding the the bank v BSR value	esult is p (default ank will t BSR val vill be se e (defaul	laced). If 'a' be sele ue. If ' elected t).	back in is 0, the ected, over- a' = 1, then I as per the
Wor	ds:	1			
Cycl	es:	1			
QC	Cycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Proce: Data	ss I	Write to destination
<u>Exar</u>	<u>mple</u> : Refere Instru		ESULT,	0, 1	
	Delore instru				

Boloro modra	00	
RESULT	=	0x13
W	=	0x91
After Instruct	ion	

	••••	
RESULT	=	0x13
W	=	0x93

ffff
fff
fff
ffff
ffff
ffff
d regis-
the ad over-
1, then
per the
~
Q4 Vrito
ister 'f'

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

22.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

22.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

22.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

FIGURE 23-2: PIC18LFXX39 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

FIGURE 23-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 23-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input		Тсү	—	ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 TCY + 30		ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK ec	lge	100	—	ns	
73A	Тв2в	Last clock edge of Byte 1 to the first clock	k edge of Byte 2	1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edg	le	100	_	ns	
75	TdoR	SDO data output rise time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK edge	PIC18FXXXX		50	ns	
	TscL2doV		PIC18LFXXXX		150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

APPENDIX A: REVISION HISTORY

Revision A (November 2002)

Original data sheet for the PIC18FXX39 family.

Revision B (January 2013)

Added a note to each package outline drawing.

TABLE B-1: DEVICE DIFFERENCES

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Feature	PIC18F2439	PIC18F2539	PIC18F4439	PIC18F4539
Program Memory (Kbytes)	12	24	12	24
Data Memory (Bytes)	640	1408	640	1408
A/D Channels	5	5	8	8
Parallel Slave Port (PSP)	No	No	Yes	Yes
Package Types	28-pin DIP 28-pin SOIC	28-pin DIP 28-pin SOIC	40-pin DIP 44-pin TQFP 44-pin QFN	40-pin DIP 44-pin TQFP 44-pin QFN

Multi-Master Mode	159
	100
DecidMrite Dit Information (D/M/ Dit)	100
Read/White Bit Information (R/W Bit)	139
	134
	139
Slave Mode	138
Addressing	138
Reception	139
Transmission	.139
SLEEP Operation	159
STOP Condition Timing	158
ICEPIC In-Circuit Emulator	254
ID Locations 195,	210
INCF	232
INCFSZ	.233
In-Circuit Debugger	210
In-Circuit Serial Programming (ICSP) 195,	210
Indirect Addressing	48
INDF and FSR Registers	47
Operation	47
Indirect Addressing Operation	48
Indirect File Operand	39
INFSNZ	233
Instruction Cycle	36
Instruction Flow/Pipelining	37
Instruction Format	213
Instruction Sot	210
	211
	217
	217
	218
ANDLW	218
ANDWF	219
BC	219
BCF	220
BN	. 220
BNC	.221
BNN	.221
BNOV	222
BNZ	222
BOV	225
BRA	223
BSF	223
BTFSC	224
BTFSS	224
BTG	225
BZ	226
CALL	226
CLRF	227
CLRWDT	227
COMF	228
CPFSEQ	228
CPFSGT	229
CPFSLT	229
DAW	230
DCESNZ	231
DECE	230
DECESZ	231
GOTO	222
	222
	202
	200
	233
	234
	234
LF3R	235
	230

MOVLB
MOVLW
MOVWF
MULLW
MULWF
NEGF
NOP
POP
PUSH
RCALL
RESET
RETFIE
REILW
RETURN
RLCF
RLNCF
RRCF
RRNCF
SEIF
SLEEP
SUBFWB
SUBLW
SUBWF
SUBWFB
5WAPF
TBLKD
1 BLVV1
151F52
XORLVV
202 Summary Table 214
Instructions in Program Momony 27
Instructions in Program Memory
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 81
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 101 TMR1 Overflow 103, 105
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 18 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 101 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits 70
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 18 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit)
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 18 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 86
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 18 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 RB0/INT Pin, External 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 86 IORLW 234
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 101 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 11 Interrupt Sources 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 86 IORLW 234
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 101 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 86 IORLW 234 INTR2 to Registers 78–79
Instructions in Program Memory 37 Two-Word Instructions 38 INT Interrupt (RB0/INT). See Interrupt Sources 38 INTCON Register 86 RBIF Bit 86 INTCON Registers 71–73 Inter-Integrated Circuit. See I ² C 195 A/D Conversion Complete 184 INTO 81 Interrupt-on-Change (RB7:RB4) 86 PORTB, Interrupt-on-Change 81 TMR0 81 TMR0 81 TMR0 Overflow 101 TMR1 Overflow 103, 105 TMR2 to PR2 Match (PWM) 123 TMR3 Overflow 109, 111 USART Receive/Transmit Complete 165 Interrupts 69 Logic 70 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) 183 Interrupt-on-Change (RB7:RB4) Flag 86 IORLW 234 10RWF 234 INTR2 Registers 78–79 K