

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4439t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bin Nama	Pi	n Numl	ber	Pin Buffer		Description				
	DIP	QFN	TQFP	Туре	Туре	Description				
						PORTD is a bi-directional I/O port, or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled.				
RD0/PSP0 RD0 PSP0	19	38	38	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD1/PSP1 RD1 PSP1	20	39	39	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD2/PSP2 RD2 PSP2	21	40	40	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD3/PSP3 RD3 PSP3	22	41	41	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD4/PSP4 RD4 PSP4	27	2	2	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD5/PSP5 RD5 PSP5	28	3	3	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD6/PSP6 RD6 PSP6	29	4	4	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
RD7/PSP7 RD7 PSP7	30	5	5	I/O	ST TTL	Digital I/O. Parallel Slave Port Data.				
Legend: TTL = TTL ST = Schr O = Outp	Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels Q = Quitput Parallel Slave Port Data. CMOS = CMOS compatible input or output I = Input Parallel Slave Port Data. CMOS = CMOS compatible input or output P = Power									

TABLE 1-3: PIC18F4X39 PINOUT I/O DESCRIPTIONS (CONTINUE

O = Output OD = Open Drain (no P diode to VDD)

 $\ensuremath{\textcircled{}^{\odot}}$ 2002-2013 Microchip Technology Inc.

REGISTER 4-1: STKPTR REGISTER

	R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0				
	bit 7											
bit 7 ⁽¹⁾	STKFUL: S	Stack Full Fla	ag bit									
	1 = Stack b	1 = Stack became full or overflowed										
	0 = Stack h	0 = Stack has not become full or overflowed										
bit 6 ⁽¹⁾	STKUNF:	STKUNF: Stack Underflow Flag bit										
	1 = Stack underflow occurred											
	0 = Stack ι	0 = Stack underflow did not occur										
bit 5	Unimplem	ented: Read	d as '0'									
bit 4-0	SP4:SP0:	Stack Pointe	r Location b	oits								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 4-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the stack pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The ability to pull the TOS value off of the stack and replace it with the value that was previously pushed onto the stack, without disturbing normal execution, is achieved by using the POP instruction. The POP instruction discards the current TOS by decrementing the stack pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These RESETS are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device RESET. When the STVREN bit is enabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device RESET. The STKFUL or STKUNF bits are only cleared by the user software or a POR Reset.

© 2002-2013 Microchip Technology Inc.

PIC18FXX39

REGISTER 5-1: EECON1 REGISTER (ADDRESS FA6h)

	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0					
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD					
	bit 7							bit 0					
bit 7	EEPGD: F	LASH Progra	am or Data		Memory Select	bit							
	1 = Access 0 = Access	3 FLASH prog 3 data EEPR(gram memo OM memoi	ory ry									
bit 6	CFGS: FL/	CFGS: FLASH Program/Data EE or Configuration Select bit											
	1 = Access 0 = Access	s configuration s FLASH proc	n registers gram or da	ta EEPRON	1 memory								
bit 5	Unimplemented: Read as '0'												
bit 4	FREE: FL/	ASH Row Era	ase Enable) bit									
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 												
bit 3	WRERR: F	-LASH Progr	am/Data E	E Error Flag	a bit								
	1 = A write (any R	operation is ESET during	premature self-timed	ly terminate programmii	, d ∩g in normal or	peration)							
	0 = The wr	ite operation	completed	1									
	Note: Wr tra	nen a WRER Icing of the ei	R occurs, t rror conditi	the EEPGD on.	and CFGS bits	s are not cle	ared. This	allows					
oit 2	WREN: FL	ASH Prograr	m/Data EE	Write Enab	le bit								
	1 = Allows	write cycles	FEROM										
hit 1	WR·Write	Control hit											
	 WR: Write Control bit 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete. 												
bit 0	RD: Read	Control bit											
	1 = Initiates (Read f in softv 0 = Does r	s an EEPROI takes one cyc vare. RD bit c tot initiate an	M read cle. RD is c cannot be s EEPROM	leared in ha set when EE read	rdware. The R PGD = 1.)	D bit can on	ly be set (n	ot cleared)					
	Legend:												
	R = Reada	able bit	W = V	Vritable bit	U = Unimp	lemented bi	it, read as '	0'					

© 2002-2013 Microchip Technology Inc.

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

x = Bit is unknown

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
	_	_	—	EEIF	BCLIF	LVDIF	TMR3IF	_					
	bit 7							bit 0					
bit 7-5	Unimplem	Unimplemented: Read as '0'											
bit 4	EEIF: Data EEPROM/FLASH Write Operation Interrupt Flag bit												
	1 = The wr 0 = The wr	 1 = The write operation is complete (must be cleared in software) 0 = The write operation is not complete, or has not been started 											
bit 3	BCLIF: Bu	s Collision I	nterrupt Flag	g bit									
	 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 												
bit 2	LVDIF : Lov 1 = A low v 0 = The de	w Voltage De voltage conce vice voltage	etect Interru lition occurre e is above th	pt Flag bit ed (must be e Low Voltag	cleared in se ge Detect tri	oftware) p point							
bit 1	TMR3IF : T 1 = TMR3 0 = TMR3	TMR3IF : TMR3 Overflow Interrupt Flag bit 1 = TMR3 register overflowed (must be cleared in software)											
bit 0	Unimplem	ented: Rea	d as '0'										
	pioin												
	Legend:												
	R = Reada	ble bit	W = Wr	itable bit	U = Unir	nplemented	bit, read as '	0'					

'1' = Bit is set

'0' = Bit is cleared

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

- n = Value at POR

8.3 PIE Registers

bit

bit

bit

bit

bit

bit bit

bit

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1, PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 8-6: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0					
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	_	TMR2IE ⁽²⁾	TMR1IE					
	bit 7							bit 0					
7	PSPIE ⁽¹⁾ : P	arallel Slav	e Port Read	/Write Interr	upt Enable b	oit							
	1 = Enables the PSP read/write interrupt												
	0 = Disables the PSP read/write interrupt												
6	ADIE: A/D Converter Interrupt Enable bit												
	1 = Enables the A/D interrupt												
	0 = Disable	s the A/D in	terrupt										
5	RCIE: USA	RT Receive	Interrupt Er	nable bit									
	1 = Enables	s the USAR	T receive int	terrupt									
				terrupt									
4	TXIE: USAF	RT Transmit	Interrupt E	nable bit									
	1 = Enables	s the USAR	T transmit in	iterrupt									
•					and Employed by the								
3	SSPIE: Mas	ster Synchro	onous Seria	Port Interru	ipt Enable b	It							
	1 = Enables	s the MSSP	interrupt										
^													
~			DO Matak In	1	- - - 								
1			R2 Match In	terrupt Enar	DIE DIT								
	1 = Enables	s the TMR2	to PR2 mat	ch interrupt									
0			lo r 1\2 ma	Enchlo hit									
0	1 = Enchlor		overflow int										
	1 = Enables 0 = Disables	s the TMR1	overflow in	terrunt									
			0.00000000	ion up i									

Note 1: This bit is reserved on PIC18F2X39 devices; always maintain this bit clear.2: This bit is reserved for use by the ProMPT kernel; do not alter its value.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 9-1:PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4/LVDIN	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input, or low voltage detect input.
OSC2/CLKO/RA6	bit6	TTL	OSC2 or clock output or I/O pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-u0u 0000
LATA		LATA Dat	a Output F	Register		-xxx xxxx	-uuu uuuu			
TRISA		PORTA D	ata Directi		-111 1111	-111 1111				
ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

FIGURE 9-5: BLOCK DIAGRAM OF RB2:RB0 PINS

FIGURE 9-6: BLOCK DIAGRAM OF RB3 PIN

15.1.2 PWM DUTY CYCLE

The PWM duty cycle is set by the Motor Control module when it writes a 10-bit value to the CCPR1L and CCP1CON registers, where CCPR1L contains the eight Most Significant bits and CCP1CON<5:4> contains the two Least Significant bits. The duty cycle time is given by the equation:

PWM duty cycle = (10-bit CCP register value) • Tosc • (TMR2 prescale value)

where Tosc and the duty cycle are in the same unit of time.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This buffering is essential for glitchless PWM operation. At the same time, the value of TMR2 is concatenated with either an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler. When the CCPR1H:latch pair value matches that of the TMR2:latch pair, the PWM1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

where FPWM is the PWM frequency, or (1/PWM period).

Note: If the PWM duty cycle value is longer than the PWM period, the PWM1 pin will not be cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	—	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	—	TMR2IP	TMR1IP	0000 0000	0000 0000
TMR2 [*]	*	*	*	*	*	*	*	*	0000 0000	0000 0000
PR2 [*]	*	*	*	*	*	*	*	*	1111 1111	1111 1111
T2CON [*]	*	*	*	*	*	*	*	*	-000 0000	-000 0000
CCPR1L [*]	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR1H	PWM Reg	ister1 (MSB)	(read-only)						xxxx xxxx	uuuu uuuu
CCP1CON*	_	_	*	*	*	*	*	*	00 0000	00 0000
CCPR2L*	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR2H [*]	PWM Register2 (MSB) (read-only)									uuuu uuuu
CCP2CON*	—	—	*	*	*	*	*	*	00 0000	00 0000

TABLE 15-1: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' unless otherwise noted. Shaded cells are not used by PWM and Timer2.

These registers are retained to maintain compatibility with PIC18FXX2 devices; however, the indicated bits are reserved in PIC18FXX39 devices. Users should not alter the values of these bits.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

16.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

16.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I^2C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

16.2 Control Registers

The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly, depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

16.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS) - RA5/AN4/SS/LVDIN

Figure 16-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 16-1: MSSP BLOCK DIAGRAM (SPI MODE)

16.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C logic module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

16.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 16-20: REPEAT START CONDITION WAVEFORM

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x		
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
	bit 7							bit C		
bit 7	SPEN: Seri 1 = Serial p 0 = Serial p	ial Port Enal port enabled port disabled	ble bit (configures	RX/DT and	TX/CK pins	as serial po	ort pins)			
bit 6	RX9 : 9-bit F 1 = Selects 0 = Selects	Receive Ena 9-bit recept 8-bit recept	ible bit ion ion							
bit 5	SREN: Sing	gle Receive	Enable bit							
	<u>Asynchrono</u> Don't care	<u>ous mode</u> :								
	<u>Synchronou</u> 1 = Enables 0 = Disable This bit <u>Synchronou</u>	<u>us mode - N</u> s single rece s single rece is cleared a us mode - S	l <u>aster:</u> sive sive fter receptic <u>lave:</u>	on is comple	te.					
	Don't care									
bit 4	CREN: Cor	ntinuous Ree	ceive Enable	e bit						
	Asynchronous mode: 1 = Enables receiver 0 = Disables receiver									
	Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive									
bit 3	ADDEN: Ad	ddress Dete	ct Enable bi	t						
	Asynchrono 1 = Enables when R	ous mode 9- s address de SR<8> is se	bit (RX9 = 1 etection, ena et	l <u>):</u> ables interru	pt and load	of the receiv	ve buffer	e narity hit		
bit 2	FERR: Framing 1 = Framing 0 = No fram	ming Error b g error (can ning error	it be updated	by reading	RCREG regi	ster and rec	ceive next va	alid byte)		
bit 1	OERR : Ove 1 = Overrun 0 = No ove	errun Error b n error (can rrun error	bit be cleared l	by clearing b	oit CREN)					
bit 0	RX9D: 9th This can be	bit of Receiv Address/D	/ed Data ata bit or a p	parity bit, an	d must be ca	alculated by	user firmwa	re		
	Legend:									
	R = Readal	ole bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'		

REGISTER 17-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1		
	_		_		BORV1	BORV0	BOREN	PWRTEN		
	bit 7							bit 0		
bit 7-4	Unimplem	ented: Rea	d as '0'							
bit 3-2	BORV1:B	ORV1:BORV0: Brown-out Reset Voltage bits								
	11 = VBOR 10 = VBOR 01 = VBOR 00 = VBOR	11 = VBOR set to 2.5V 10 = VBOR set to 2.7V 01 = VBOR set to 4.2V 00 = VBOR set to 4.5V								
bit 1	BOREN: B	Brown-out R	eset Enable	bit						
	1 = Brown 0 = Brown	-out Reset e -out Reset d	nabled lisabled							
bit 0	PWRTEN :	Power-up T	imer Enable	e bit						
	1 = PWRT 0 = PWRT	disabled enabled								
	Legend:									
	R = Reada	ble bit	P = Prog	rammable bit	t U = Uni	mplemented	l bit. read as	s 'O'		
	- n = Value	when devic	e is unprog	rammed	u = Unc	hanged fron	n programm	ed state		

REGISTER 20-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

REGISTER 20-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

					•			
	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
			_	—	WDTPS2	WDTPS1	WDTPS0	WDTEN
	bit 7							bit 0
bit 7-4	Unimplem	ented: Rea	d as '0'					
bit 3-1	WDTPS2:W	VDTPS0: W	atchdog Tin	ner Postscal	e Select bits			
	111 = 1:12	8						
	110 = 1:64							
	101 = 1:32							
	100 = 1:16							
	011 = 1.0 010 = 1.4							
	001 = 1:2							
	000 = 1:1							
bit 0	WDTEN: W	/atchdog Tir	mer Enable	bit				
	1 = WDT e	nabled						
	0 = WDT d	isabled (cor	trol is place	d on the SW	DTEN bit)			
	Legend:							
	R = Reada	ble bit	P = Prog	rammable bi	t U = Uni	implementee	d bit, read as	· '0'
	- n = Value	when devic	e is unprogr	ammed	u = Uno	changed from	m programm	ed state

20.3 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared, but keeps running, the \overline{PD} bit (RCON<3>) is cleared, the \overline{TO} (RCON<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

20.3.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a Peripheral Interrupt.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. TMR3 interrupt. Timer3 must be operating as an asynchronous counter.
- 4. CCP Capture mode interrupt.
- 5. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 6. MSSP (START/STOP) bit detect interrupt.
- MSSP transmit or receive in Slave mode (SPI/I²C).
- 8. USART RX or TX (Synchronous Slave mode).
- 9. A/D conversion (when A/D clock source is RC).
- 10. EEPROM write operation complete.
- 11. LVD interrupt.

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and will cause a "wake-up". The TO and PD bits in the RCON register can be used to determine the cause of the device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared, if a WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 2) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

20.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

20.4.1 PROGRAM MEMORY CODE PROTECTION

The user memory may be read to, or written from, any location using the Table Read and Table Write instructions. The device ID may be read with Table Reads. The configuration registers may be read and written with the Table Read and Table Write instructions.

In User mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from Table Writes if the WRTn configuration bit is '0'. The EBTRn bits control Table Reads. For a block of user memory with the EBTRn bit set to '0', a Table Read instruction that executes from within that block is allowed to read. A Table

Read instruction that executes from a location outside of that block is not allowed to read, and will result in reading '0's. Figures 20-4 through 20-6 illustrate Table Write and Table Read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a block erase function. The block erase function can only be initiated via ICSP or an external programmer.

Register Values Program Memory Configuration Bit Settings 000000h WRTB,EBTRB = 11 0001FFh 000200h TBLPTR = 000FFFWRT0.EBTR0 = 01 PC = 001FFETBLWT * 001FFFh 002000h WRT1,EBTR1 = 11 003FFFh 004000h PC = 004FFETBLWT * WRT2,EBTR2 = 11 005FFFh **Results:** All Table Writes disabled to Blockn whenever WRTn = 0.

FIGURE 20-4: TABLE WRITE (WRTn) DISALLOWED

TABLE 21-2: PIC18FXXX INSTRUCTION SET

Mnemo	nic,	Description	Cycles	16-Bit Instruction Word				Status	Notes
Operai	nds	Description	Cycles	MSb		LSb		Affected	Notes
BYTE-ORIE	INTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	0da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
		borrow							,
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	·
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS							1
BCF	f.b.a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1.2
BSF	f, b. a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f.b.a	Bit Test f. Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3.4
BTFSS	f. b. a	Bit Test f. Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3.4
BTG	f. d. a	Bit Togale f	1	0111	bbba	ffff	ffff	None	1.2
	., ., .		1	1 2 2 2 1	2224			1	., –

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

PIC18FXX39

BCF		Bit Clear	f						
Syntax:		[<i>label</i>] E	BCF f,	b[,a]					
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Operation:		$0 \rightarrow f < b >$	$0 \rightarrow f < b >$						
Status Affect	ted:	None							
Encoding:		1001	bbba	ffff	ffff				
Description		Bit 'b' in r is 0, the A selected, If 'a' = 1, selected a (default).	egister 'f Access E overridir then the as per th	' is cleare bank will h ng the BS bank will he BSR va	ed. If 'a' be iR value. I be alue				
Words:		1	1						
Cycles:		1							
Q Cycle Ac	tivity:								
Q		Q2	Q	3	Q4				
Deco	de	Read register 'f'	Proce Data	ess a reg	Write gister 'f'				
Example: BCF FLAG_REG, 7, 0 Before Instruction FLAG_REG = 0xC7 After Instruction									
L L	-0_i\l								

BN		Branch if	Negativ	ve				
Synt	ax:	[<i>label</i>] B	N n					
Ope	rands:	-128 ≤ n ≤	$-128 \le n \le 127$					
Ope	ration:	if negative (PC) + 2 +	bit is '1 2n \rightarrow F	, PC				
Statu	us Affected:	None	None					
Enco	oding:	1110	0110	nnni	n nnnn			
Description: If the Negative bit is '1', then the program will branch. The 2's complement number '2n added to the PC. Since the PC w have incremented to fetch the ne instruction, the new address will PC+2+2n. This instruction is the a two-cycle instruction.					then the mber '2n' is the PC will ch the next ress will be ion is then			
Wor	ds:	1						
Cycl	es:	1(2)	1(2)					
Q C If Ju	Cycle Activity	:						
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n'	Proce Data	ss a	Write to PC			
	No operation	No operation	No operat	ion	No operation			
lf N	o Jump:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n'	Proce Data	SS a	No operation			
<u>Exar</u>	<u>mple</u> :	HERE	BN	Jump				
	Before Instru	uction						
	PC	= ad	dress (H	ERE)				

10	_	auur033	(11)1(1)
After Instruction			
If Negative	=	1;	
РC	=	address	(Jump)
If Negative	=	0;	
PC	=	address	(HERE+2)
If Negative PC If Negative PC	= = =	1; address 0; address	(Jump) (HERE+:

PIC18FXX39

BNO	v	Branch if	Branch if Not Overflow							
Synta	ax:	[<i>label</i>] B	[<i>label</i>] BNOV n							
Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$							
Oper	ation:	if overflow (PC) + 2 +	if overflow bit is '0' $(PC) + 2 + 2n \rightarrow PC$							
Statu	s Affected:	None	None							
Enco	ding:	1110	0101 nn	nn nnnn						
Desc	ription:	If the Over program w The 2's co added to t have incre instruction PC+2+2n. a two-cvcl	flow bit is '0' vill branch. mplement nu he PC. Since mented to fe , the new ad This instruction.	, then the umber '2n' is e the PC will etch the next dress will be ction is then						
Worc	ls:	1								
Cycle	26.	1(2)								
Q C If Ju	ycle Activity: mp: Q1	Q2	Q3	Q4						
	Decode	Read literal 'n'	Process Data	Write to PC						
	No operation	No operation	No operation	No operation						
If No	o Jump:									
_	Q1	Q2	Q3	Q4						
	Decode	Read literal 'n'	Process Data	No operation						
Exan	nple:	HERE	BNOV Jump							
I	Before Instru PC	iction = ad	dress (HERE))						
,	After Instruct If Overflo PC If Overflo PC	tion w = 0; = adu w = 1; = adu	dress (Jump) dress (HERE-) +2)						

BNZ		Branch if	Branch if Not Zero						
Syntax	(:	[<i>label</i>] B	[<i>label</i>] BNZ n						
Opera	nds:	-128 ≤ n ≤	$-128 \le n \le 127$						
Opera	tion:	if zero bit i (PC) + 2 +	if zero bit is '0' (PC) + 2 + 2n \rightarrow PC						
Status	Affected:	None	None						
Encod	ing:	1110	0001	nnn	n	nnnn			
Description: If the Zero bit is 0, then the program will branch. The 2's complement number added to the PC. Since the have incremented to fetch instruction, the new address PC+2+2n. This instruction a two-cycle instruction.					imbe the tch t dress tion	er '2n' is PC will he next s will be is then			
Words	:	1							
Cycles	s:	1(2)	1(2)						
Q Cyo If Jurr	cle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	Read literal 'n'	Proces Data	SS	Writ	e to PC			
,	No operation	No operation	No operati	on	оре	No eration			
If No .	Jump:								
	Q1	Q2	Q3			Q4			
	Decode	Read literal 'n'	Proces Data	SS	оре	No eration			
Example: HERE BNZ Jump									
Be	efore Instru	uction – adu	dress (H	28E)					

After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE+2)

DS30485B-page 222

FIGURE 23-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 23-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	K↓ or SCK↑ input		_	ns	
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte 1 to the first cloc	k edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK ed	ge	100	—	ns	
75	TdoR	SDO data output rise time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX			ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXXX	_	50	ns	
	TscL2doV	edge	PIC18LFXXXX	_	150	ns	VDD = 2V
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	PIC18FXXXX	_	50	ns	
			PIC18LFXXXX	_	150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

TABLE 23-21: A/D CONVERTER CHARACTERISTICS: PIC18FXX39 (INDUSTRIAL, EXTENDED) PIC18LFXX39 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—		10	bit	
A03	Eı∟	Integral linearity error	_		<±1	LSb	Vref = Vdd = 5.0V
A04	Edl	Differential linearity error	—		<±1	LSb	Vref = Vdd = 5.0V
A05	EG	Gain error	_		<±1	LSb	Vref = Vdd = 5.0V
A06	EOFF	Offset error	—	_	<±1.5	LSb	Vref = Vdd = 5.0V
A10	_	Monotonicity	guaranteed ⁽²⁾			_	$VSS \leq VAIN \leq VREF$
A20 A20A	Vref	Reference Voltage (VREFH – VREFL)	1.8V 3V		_	V V	Vdd < 3.0V Vdd ≥ 3.0V
A21	Vrefh	Reference voltage High	AVss	_	AVDD + 0.3V	V	
A22	Vrefl	Reference voltage Low	AVss - 0.3V	_	Vrefh	V	
A25	VAIN	Analog input voltage	AVss - 0.3V	_	AVDD + 0.3V	V	VDD ≥ 2.5V (Note 3)
A30	ZAIN	Recommended impedance of analog voltage source	_	_	2.5	kΩ	(Note 4)
A50	IREF	VREF input current (Note 1)	_	_	5 150	μΑ μΑ	During VAIN acquisition During A/D conversion cycle

Note 1: Vss \leq VAIN \leq VREF

2: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

3: For VDD < 2.5V, VAIN should be limited to < .5 VDD.

4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition times.

FIGURE 23-22: A/D CONVERSION TIMING