

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	12KB (6K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	640 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4439t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 1-2:	PIC18F2X39 PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	------------------------------------	-------------

Bin Nomo	Pin Number		Pin Buffer	Description		
Fin Name	DIP	SOIC	Туре	Туре	Description	
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.	
RB0/INT0	21	21				
RB0			I/O	TTL	Digital I/O.	
INT0			I	ST	External interrupt 0.	
RB1/INT1	22	22				
RB1			I/O	TTL	Digital I/O.	
INT1			I	ST	External interrupt 1.	
RB2/INT2	23	23				
RB2			I/O	TTL	Digital I/O.	
INT2			I	ST	External interrupt 2.	
RB3	24	24	I/O	TTL	Digital I/O.	
RB4	25	25	I/O	TTL	Digital I/O.	
					Interrupt-on-change pin.	
RB5/PGM	26	26				
RB5			I/O	TTL	Digital I/O. Interrupt-on-change pin.	
PGM			I/O	ST	Low Voltage ICSP programming enable pin.	
RB6/PGC	27	27				
RB6			I/O	TTL	Digital I/O. Interrupt-on-change pin.	
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.	
RB7/PGD	28	28				
RB7			I/O	TTL	Digital I/O. Interrupt-on-change pin.	
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin.	
Legend: TTL = TTL	compa	tible inp	ut		CMOS = CMOS compatible input or output	

ST = Schmitt Trigger input with CMOS levels O = Output OD = Open Drain (no P diode to VDD)

= Input

L Р = Power

Register	Ар	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
FSR1H	2439	4439	2539	4539	xxxx	uuuu	uuuu	
FSR1L	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
BSR	2439	4439	2539	4539	0000	0000	uuuu	
INDF2	2439	4439	2539	4539	N/A	N/A	N/A	
POSTINC2	2439	4439	2539	4539	N/A	N/A	N/A	
POSTDEC2	2439	4439	2539	4539	N/A	N/A	N/A	
PREINC2	2439	4439	2539	4539	N/A	N/A	N/A	
PLUSW2	2439	4439	2539	4539	N/A	N/A	N/A	
FSR2H	2439	4439	2539	4539	xxxx	uuuu	uuuu	
FSR2L	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս	
STATUS	2439	4439	2539	4539	x xxxx	u uuuu	u uuuu	
TMR0H	2439	4439	2539	4539	0000 0000	uuuu uuuu	սսսս սսսս	
TMR0L	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս	
T0CON	2439	4439	2539	4539	1111 1111	1111 1111	սսսս սսսս	
OSCCON*	2439	4439	2539	4539	0	0	u	
LVDCON	2439	4439	2539	4539	00 0101	00 0101	uu uuuu	
WDTCON	2439	4439	2539	4539	0	0	u	
RCON ⁽⁴⁾	2439	4439	2539	4539	0q 11qq	0q qquu	uu qquu	
TMR1H	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1L	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CON	2439	4439	2539	4539	0-00 0000	u-uu uuuu	u-uu uuuu	
TMR2 [*]	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
PR2 [*]	2439	4439	2539	4539	1111 1111	1111 1111	1111 1111	
T2CON [*]	2439	4439	2539	4539	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	นนนน นนนน	
SSPADD	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPCON1	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
SSPCON2	2439	4439	2539	4539	0000 0000	0000 0000	นนนน นนนน	

TARI E 3-3.	INITIAL IZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)
IADLL J-J.	INTIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved. Users should not modify the value of these bits. See Section 4.9.2 for details.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 3-2 for RESET value for specific condition.
- **5:** Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWE	TBLPTRU	;	address of the memory block
	MOVINE	TELETEL		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ_BLOCK				
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINC0	;	store data
	DECFSZ	COUNTER	;	done?
	BRA	READ_BLOCK	;	repeat
MODIFY_WORI)			
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSRUH		
	MOVINE	DATA_ADDR_LOW		
	MOVTW	NEW DATA LOW		undate huffer word
	MOVWE	POSTINCO	,	update buller word
	MOVLW	NEW DATA HIGH		
	MOVWF	INDF0		
ERASE BLOCI	ĸ			
_	MOVLW	CODE ADDR UPPER	;	load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BCF	EECON1,CFGS	;	access FLASH program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECONI, FREE	;	enable Row Erase operation
	MOVIW	INICON, GIE	;	disable interrupts
	MOVWE	FECON2		write 55h
	MOVIW	AAh	,	WIICE 5511
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-	-	;	dummy read decrement
WRITE_BUFF	ER_BACK			
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOO	JP NOTITI	0		number of botton in bolding contation
	MOVTA	Ö COLINITED	;	number of bytes in noiding register
אסדייד אומיים	MOVWF TO UDEC	COUNTER		
WKIIE_WORD	_10_RKEG	POSTINCO W		get low byte of buffer data
	MOVWE	TABLAT	;	present data to table latch
	TBLWT+*	*		write data, perform a short write
			:	to internal TBLWT holding register.
	DECFSZ	COUNTER	;	loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	,	-

NOTES:

8.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Flag registers (PIR1, PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt, and after servicing that interrupt.

REGISTER 8-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

	R/W-0	R/W-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0	
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	_	TMR2IF ⁽²⁾	TMR1IF	
	bit 7							bit 0	
bit 7	PSPIF⁽¹⁾: F 1 = A read 0 = No rea	Parallel Slav or a write o d or write ha	e Port Read peration has as occurred	l/Write Inter s taken plac	rupt Flag bit e (must be c	leared in s	oftware)		
bit 6	ADIF : A/D 1 = An A/D 0 = The A/	 ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete 							
bit 5	RCIF : USA 1 = The US 0 = The US	RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer, RCREG, is full (cleared when RCREG is read) 0 = The USART receive buffer is empty							
bit 4	TXIF : USART Transmit Interrupt Flag bit (see Section 17.0 for details on TXIF functionality) 1 = The USART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The USART transmit buffer is full								
bit 3	 SSPIF: Master Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 								
bit 2	Unimplem	ented: Rea	d as '0'						
bit 1	TMR2IF⁽²⁾: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred								
bit 0	<pre>TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = MR1 register did not overflow</pre>								
	Note 1: 1 2: 1	This bit is res This bit is res	served on P served for u	IC18F2X39 se by the Pr	devices; alw oMPT kerne	/ays mainta l; do not al	ain this bit cle ter its value.	ar.	
	Legend:								

- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

W = Writable bit

R = Readable bit

U = Unimplemented bit, read as '0'

NOTES:

FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

14.3 Software Interface

A sine table, stored in the ProMPT kernel, is used as the basis for synthesizing the DC bus using the PWM modules. The table values are accessed in sequence and scaled based on the frequency or the speed at which the motor is intended to run. The intended frequency input can be from an A/D channel or a digital value.

Parameters in the ProMPT modules can be accessed using the pre-defined Application Program Interface (API) methods. A list of the APIs is given in Section 14.3.3.

For example, to run the motor at 40 Hz, the user would invoke the PromMPT_SetFrequency API:

i = ProMPT_SetFrequency(40);

where i is an unsigned character variable. In this case, if i = 0 on return, the command has been successfully executed. If the frequency input is out of range, or if there is an error in setting the frequency, i is returned with a value of FFh.

Similarly, to check the frequency set by the ProMPT kernel, use the ProMPT_GetFrequency API:

i = ProMPT_GetFrequency(void);

where i is an unsigned character variable. Upon return from the ProMPT kernel, i will contain the frequency value in the ProMPT kernel.

14.3.1 THE V/F CURVE

The ProMPT kernel contains a default V/F curve stored in memory. The default curve is linear, as shown in Figure 14-2. Table 14-1 shows the data points used to construct the curve.

Users may require a different V/F curve for their application, based on the load on the motor, or based on the characteristics of the motor used. The curve can be changed in the application program using the API method SetVFCurve(X,Y), where x is the frequency and Y is the level of modulation of the DC bus voltage. As a rule, in customizing the curve, the input frequency corresponding to the point on the V/F curve that gives 100% modulation should match the motor's rated frequency. Similarly, full modulation should occur at the motor's rated input voltage. (See Figure 14-2 for details.)

Examples of the characteristics for V/F curves for typical motor applications are shown in Section 14-2 (page 115).

14.3.2 PARAMETERS DEFINED BY THE ProMPT API METHODS

Frequency: The frequency (in Hz) of the supply current for steady state motor operation.

Modulation: The level of modulation (in percentage) applied to the DC supply voltage by the PWM through the H-bridge to produce AC drive current.

Acceleration rate: The rate of increase of motor speed, achieved by ramping up the supply frequency. Expressed in Hz/s.

Deceleration rate: The rate of decrease of motor speed, achieved by ramping down the supply frequency. Expressed in Hz/s.

Boost: The mode for starting a stopped motor by varying the supply current frequency and modulation until steady state speed is reached. Boost is defined in terms of a frequency, a starting and ending modulation, and a time interval for the transition between the two.

PWM Frequency: The sampling rate (in kHz) at which the PWM module operates.

TABLE 14-1:	DATA POINTS FOR THE
	DEFAULT V/F CURVE

Frequency (Hz)	% Modulation
0	0
8	14
16	28
24	42
32	57
40	71
48	86
56	100
64	110
72	133
80	133
88	133
96	133
104	133
112	133
120	133
128	133

16.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended, leaving the SDA line held low and the START condition is complete.

Note: If at the beginning of the START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

FIGURE 16-19: FIRST START BIT TIMING

16.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

16.4.17.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to '0'. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 16-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

18.4 A/D Conversions

Figure 18-3 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 18-3: A/D CONVERSION TAD CYCLES

18.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 18-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 18-4: A/D RESULT JUSTIFICATION

	•••••		•••••••					
	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
	DEBUG	_	_	_	_	LVP	_	STVREN
	bit 7							bit 0
bit 7	DEBUG: B 1 = Backgr 0 = Backgr	ackground ound Debug	Debugger E gger disable gger enable	nable bit d. RB6 and d. RB6 and I	RB7 configu RB7 are ded	ired as gene licated to In-	eral purpose Circuit Deb	I/O pins. ug.
bit 6-3	Unimplem	Unimplemented: Read as '0'						
bit 2	LVP: Low Voltage ICSP Enable bit 1 = Low Voltage ICSP enabled 0 = Low Voltage ICSP disabled							
bit 1	Unimplem	Unimplemented: Read as '0'						
bit 0	STVREN: Stack Full/Underflow Reset Enable bit 1 = Stack Full/Underflow will cause RESET 0 = Stack Full/Underflow will not cause RESET							
	Legend:							
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'

REGISTER 20-4:	CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)
----------------	---

- n = Value when device is unprogrammed

u = Unchanged from programmed state

21.1 Instruction Set

ADD	DLW	ADD liter	al to W					
Syntax:		[label] A	[label] ADDLW k					
Operands:		$0 \le k \le 25$	$0 \le k \le 255$					
Operation:		(W) + k →	$(W) + k \to W$					
Status Affected:		N, OV, C,	N, OV, C, DC, Z					
Enco	oding:	0000	1111	kkk	k kk	kk		
Description:		The conte 8-bit litera placed in	The contents of W are added to the 8-bit literal 'k' and the result is placed in W.					
Wor	ds:	1						
Cycl	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Process Data		Write to W			
Example:		ADDLW (0x15					
Before Instruction								
W = 0x10								
After Instruction								
	W =	0x25						

ADDWF	ADD W to	ADD W to f					
Syntax:	[label] Al	[label] ADDWF f [,d [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(W) + (f) -	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C,	N, OV, C, DC, Z					
Encoding:	0010	01da	ffff	ffff			
Description.	result is si result is si (default). I Bank will I BSR is us	result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR is used.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Proce Data	ess N a de	Write to estination			
Example:	ADDWF	REG,	0, 0				
Before Instru	iction						
W REG	= 0x17 = 0xC2						
After Instruc	tion						
W	= 0xD9						

0xC2

=

REG

CPF	SGT	Compare	f with W, sk	ip if f > W				
Syntax:		[label] C	[label] CPFSGT f[,a]					
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:		(f) – (W), skip if (f) > (unsigned	(f) - (W), skip if $(f) > (W)$ (unsigned comparison)					
Statu	us Affected:	None	None					
Enco	oding:	0110	010a ffi	ff ffff				
Deso	cription:	Compares memory lo of the W b unsigned s If the conter fetched ins a NOP is e this a two- 0, the Acc selected, o If 'a' = 1, tt selected a	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value					
Wor	de	(ueraun). 1	1					
Cycles:		1(2) Note: 3 o	1(2) Note: 3 cycles if skip and followed by a 2-word instruction					
QC	vcle Activity:	~)						
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
			Data	operation				
11 51	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
lf sk	kip and follow	ed by 2-wor	d instruction:					
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Example</u> :		HERE NGREATER GREATER	HERE CPFSGT REG, 0 NGREATER : GREATER :					
	Before Instru	iction						
PC		= Ad	= Address (HERE)					
	W After Instruct	= ?						
	If REG	> W [.]						
	PC	= Ad	Address (GREATER)					
	If REG PC	≤ W; = Ad	dress (NGRE	ATER)				

CPF	SLT	Compare	f with W	, skip	o if f < W			
Synt	ax:	[label]	CPFSLT	f [,a]			
Ope	rands:	0 ≤ f ≤ 25 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:		(f) – (W), skip if (f) (unsigned	(f) - (W), skip if $(f) < (W)$ (unsigned comparison)					
Statu	us Affected:	None	None					
Enco	oding:	0110	0110 000a f		ffff			
Desc	cription:	Compares memory le of W by p subtraction If the content instruction is executed two-cycle Access B is 1, the B (default).	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden (default)					
Wor	ds:	1						
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.								
QC	Sycle Activity:	02	03		04			
	Decode	Read	Process	s	No			
		register 'f'	Data		operation			
lf sk	kip:							
	Q1	Q2	Q3		Q4			
	No	No	No	n	No			
lf el			d instruction.		operation			
11 51	01	Q2-W01	Q3	1011.	Q4			
	No	No	No		No			
	operation	operation	operatio	n	operation			
	No	No operation	No	n	No operation			
Example:		HERE NLESS LESS	HERE CPFSLT REG, 1 NLESS : LESS :					
Before Instruction								
PC = Address (HERE) W = 2								
	After Instruct	tion - :						
	If REG PC If REG PC	< W = Aα ≥ W = Aα	< W; = Address (LESS) ≥ W; = Address (NLESS)					

© 2002-2013 Microchip Technology Inc.

FIGURE 23-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 23-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	_	ns	
73A	Тв2в	Last clock edge of Byte 1 to the 1st clo	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100		ns	
75	TdoR	R SDO data output rise time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V
76 To	TdoF	SDO data output fall time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
80	TscH2doV, TscL2doV	SDO data output valid after SCK	PIC18FXXXX	_	50	ns	
		edge	PIC18LFXXXX	_	150	ns	VDD = 2V
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge		Тсү	_	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 24-15: TYPICAL AND MAXIMUM Vol vs. Iol (VDD = 3V, -40°C TO +125°C)

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769362

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.